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Methods section: 
 
Materials. Oleylamine (OAm; technical grade, 70%), 1-octadecene (ODE; technical grade, 
90%), Cesium carbonate (Cs2CO3; 99.9%), oleic acid (OA; technical grade, 90%), methyl acetate 
(MeOAc; anhydrous, 99.5%), octane (anhydrous, ≥99%), lead nitrate (Pb(NO3)2; 99.999%), 
hexane (reagent grade, ≥95%), formamidinium acetate (FA-acetate, 99%) were purchased from 
Sigma-Aldrich and used as received unless otherwise specified.  
 
CsPbI3 QD synthesis.  The synthesis was performed following the method reported in our 
previous publications with slight modification.1,2 First, 20 mL of ODE is mixed with 1.25 mL of 
OA containing 0.407 g of Cs2CO3. This was degassed at 120°C for 20 min under vacuum in a 
three-neck flask to form Cs-oleate. The Cs-oleate precursor was kept under N2 instead of vacuum 
after Cs2CO3 was completely dissolved in the solution. Then the PbI2 precursor was formed by 
mixing 0.5 g of PbI2 and 25 mL of ODE in a three-neck flask and heated at 120°C for 20 min 
under vacuum. A preheated mixture of OA and OAm (135°C, 2.5 mL each) was transferred into 
the PbI2 solution that was kept at 120°C under vacuum. After the PbI2 completely dissolved in 
the solution, the reaction flask was heated to the desired temperature (140, 160, or 180°C) under 
flowing N2. Then 2 mL of the Cs-oleate precursor was swiftly injected into the reaction flask. In 
general, smaller nanocrystals are obtained with lower growth and larger are obtained with higher 
temperature, but some sizes overlap this trend when using the size selective precipitation. 
Immediately after the reaction, the mixture was quenched by submerging the flask into an ice 
bath within 3 s after the injection. After cooling to room temperature, 70 mL of MeOAc was 
added into the colloidal solution and the mixed solution was centrifuged at 7500 rpm for 5 min. 
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The precipitated CsPbI3 QDs were dispersed in 10 mL of hexane. The purified QDs can be 
stored for over a month without noticeable degradation.  
 
CsPbI3 QDs size-selective precipitation and purification. MeOAc was added in the initial 
CsPbI3 QD solution in a volume ratio of 1 : 3. After centrifugation at 7500 rpm for 5 min, larger 
NCs were precipitated. The supernatant was decanted and MeOAc was added to it in a volume 
ratio of 1 : 3 and the mixed solution was centrifuged at 7500 rpm for 5 min, producing another 
batch of precipitates. This process was repeated multiple times until there is no obvious 
precipitation of QDs from the supernatant. The resulting precipitate from every batch was 
redispersed in 3 mL of hexane. The obtained QD solution was centrifuged at 7500 rpm for 5 min 
and the precipitate was discarded. The supernatant was filtered through a 0.45 μm nylon filter 
and then kept in a sealed vial for characterization.  
 
CsPbI3 QDs Characterization. TEM images were obtained using a FEI Tecnai F20 electron 
microscope with 200 kV accelerating voltage. Ultraviolet-visible absorption spectra were 
measured using a Shimadzu UV-3600 UV-vis-NIR spectrophotometer. Steady-state 
photoluminescence (PL) spectra were recorded with a 450 nm excitation by a Horiba Jobin Yvon 
fluoromax-4 spectrophotometer. Powder X-ray diffraction (XRD) data were obtained using a 
Rigaku’s DMax diffractometer with Cu-kα radiation (wavelength 1.5406 Å) operated at 40 kV 
and 250 mA, with a step width of 0.02° and a count time of 1.0 s in the 2θ range from 3° to 70°. 
Reference markers for XRD are calculated with Mercury software employing the reported 
crystallographic information3. The Rietveld refinement of the XRD data was performed using the 
TOPAS-Academic software package.  
 
Table S1. Physical parameters of CsPbI3 QD samples. The mean sizes and standard deviation are 
determined assuming a Gaussian distribution from TEM analysis. The 1st Excitonic transition 
energy and Stokes’ shift are obtained from the corresponding UV and PL spectra for each size of 
QDs. 
Mean size 

(nm) 
Standard 

deviation (nm) 
Size dispersion 

(%) 
1st Excitonic transition 

energy (meV) 
Stokes’ shift 

(meV) 
5.2 0.6 11.5 1955 42 

5.7 0.7 12.3 1946 42 

6.3 0.7 11.1 1925 38 

7.2 0.8 11.1 1907 49 

7.6 0.8 10.5 1887 39 

8.5 0.9 10.6 1861 28 

9.2 1 10.8 1847 30 

13.9 2.2 15.8 1842 38 

15.3 1.7 11.1 1834 42 
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Figure S1. (a) TEM images of CsPbI3 QD samples before and after size-selective precipitation. 
The mean size of QD sample (right) is 8.5 nm after size-selective precipitation. The pristine QDs 
(left) were synthesized at 180°C. The scale bars in TEM images are 100 nm. (b) PL spectra of 
CsPbI3 QD samples before and after size-selective precipitation. The starting QD sample was 
separated into four fractions with mean sizes of 8.5 ± 0.9, 9.2 ± 1.0, 13.9 ± 2.2 and 15.3 ± 1.7 
nm, respectively. The average FWHM of PL peaks for QD sample decreases from 42 to 32 nm 
after size-selective precipitation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

Table S2. FWHM from PL spectra of perovskite QD samples with different sizes.  
CsPbI3  

in this work 
CsPbI3  

from other works 
CsPbBr3  

from other works 
Mean size 

(nm) 
FWHM 
(nm) 

Mean size 
(nm) 

FWHM 
(nm) 

Mean size 
(nm) 

FWHM 
(nm) 

5.2 49 6.54  58 4.55 15 

5.7 50 9.66 39 5.57 24 

6.3 45 108  45 6.45 24 

7.2 36 10.84 44 7.459 18 

7.6 34 11.210 38 9.411 25 

8.5 32 11.812 41 1113 18 

9.2 33 11.84 46 13.77 17 

13.9 32 1314 42 12-1515 20 

15.3 32 2016  40 1517 20 

 
 
 
 

 
Figure S2 (a-c) Crystal structure model of α, β and γ phases for CsPbI3 QDs exhibited with 
different angles, respectively. The bulk lattice constants of the γ phase at room temperature are 
8.5766 Å for a, 8.8561 Å for b, and 12.4722 Å for c.18  
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Table S3. Rietveld refinement parameters of CsPbI3 QD samples with the mean size of 5.7 and 
15.3 nm. All parameters for the model of α, β and γ phases were obtained at 300K. The 
experimental data were taken using a Rigaku’s DMax diffractometer with Cu-kα radiation 
possessing a wavelength of 1.5406 Å. 
 

QD size 
(nm)                                                        5.7 

Crystal 
system 

Cubic (α phase) Tetragonal (β phase) Orthorhombic (γ phase) 

Space 
Group Pm-3m P4/mbm Pbnm 

Lattice 
constant a=6.223(3) a=8.804(15); c=6.228(18) a=8.591(6); b=9.038(7); 

c=12.461(8) 

Rwp 14.05 13.13 10.85 

Atomic position 

Pb 0 0 0 0 0 0 0 0 1/2 
Cs 1/2 1/2 1/2 -1/2 0 1/2 -0.0165 0.4451 1/4 
I1 0 0 1/2 0 0 1/2 -0.209(1) 0.294(1) 0.520(1) 
I2 N/A N/A N/A -0.217(1) 0.282(1) 0 -0.022(3) 0.017(2) 3/4 

QD size 
(nm)                                                       15.3 

Crystal 
system Cubic (α phase) Tetragonal (β phase) Orthorhombic (γ phase) 

Space 
Group Pm-3m P4/mbm Pbnm 

Lattice 
constant a=6.211(2) a=8.776(8); c=6.214(10) a=8.633(6); b=8.844(2); 

c=12.482(2) 

Rwp 20.11 16.91 10.73 

Atomic position 

Pb 0 0 0 0 0 0 0 0 1/2 
Cs 1/2 1/2 1/2 -1/2 0 1/2 -0.0165 0.4451 1/4 
I1 0 0 1/2 0 0 1/2 0.199(1) 0.299(1) 0.524(1) 
I2 N/A N/A N/A -0.217(1) 0.282(1) 0 -0.057(1) 0.001(1) 3/4 
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Table S4. Lattice constants of the QD samples. The lattice constants are calculated based on the 
Rietveld refinement with γ phase. Some of samples with the same size were synthesized from 
different batches. 
 

Mean size of 

the QD sample 

(nm) 

a  b c 

Value 
(Å) 

Error range 
(±) 

Value 
(Å) 

Error range 
(±) 

Value 
(Å) 

Error range 
(±) 

5.67 8.6258 0.0066 8.9800 0.0063 12.4710 0.0091 

5.70 8.5504 0.0071 9.0809 0.0080 12.4585 0.0093 

5.70 8.5920 0.0067 9.0389 0.0076 12.4681 0.0089 

5.90 8.6167 0.0062 8.9928 0.0063 12.4708 0.0084 

6.20 8.5365 0.0088 9.0897 0.0098 12.4614 0.0113 

6.20 8.5288 0.0087 9.0784 0.0094 12.4394 0.0112 

6.28 8.5011 0.0085 9.0553 0.0089 12.4492 0.0119 

6.80 8.7064 0.0088 8.8394 0.0060 12.5301 0.0080 

7.13 8.6477 0.0062 8.9504 0.0061 12.4733 0.0085 

7.30 8.6836 0.0069 8.9288 0.0067 12.4700 0.0096 

7.30 8.6238 0.0062 8.9611 0.0066 12.4468 0.0084 

7.50 8.6366 0.0071 8.9432 0.0068 12.4505 0.0099 

7.60 8.6701 0.0060 8.9403 0.0057 12.4655 0.0079 

8.07 8.6711 0.0043 8.8107 0.0037 12.5495 0.0041 

8.47 8.7014 0.0053 8.8715 0.0044 12.4877 0.0068 

9.22 8.6801 0.0035 8.8520 0.0031 12.5087 0.0042 

15.20 8.6333 0.0022 8.8435 0.0021 12.4814 0.0025 

15.28 8.6184 0.0016 8.8709 0.0016 12.5125 0.0019 
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Figure S3. Unit cell volume dilatation relative to the bulk unstrained unit cell volume plotted 
versus 1/L. Unit cell volumes for different sized nanoparticles (NCs) are computed using the 
lattice constant data in Table S4. The unit cell volume of the bulk (hollow square) unstrained 
crystal is computed with the bulk lattice constants from Sutton and co-workers.18  The best fit 
slope of the curve is m = 0.12 nm. 
 
 
Surface energy calculations 

The surface energy (surface stress) of a nanoparticle is defined as the energy required to 

create unit surface area or as the partial of the nanoparticle free energy (G) with respect to its 

surface area (A). For a spherical nanoparticle of radius R, this has the well-known form as Eq. 

S1, 

∆𝐺 = 𝛾∆𝐴 = 2𝛾
𝑅

∆𝑉    (S1)  

where J is the surface energy or surface stress, and the term 2𝛾
𝑅

 is known as the capillary pressure. 

For nanoparticles of non-spherical shape, the capillary pressure is determined by the generalized 

capillary equation19,20 (Eq. S2),  

Δ𝑃 =  𝛾 2
3

𝐴
𝑉
    (S2) 

where V is the volume of the nanoparticle and J is the area averaged surface stress. For a cube-

shaped nanoparticle with edge length, L, this takes the form as Eq. S3, 

Δ𝑃 =  4 𝛾
𝐿

    (S3) 

For positive surface stress, the capillary pressure compresses the nanoparticle, inducing 

lattice contraction; whereas for negative surface stress, it induces lattice expansion.20 The 

resulting volume dilatation, which is equal to the volume dilatation of the lattice unit cell, is 

found using the bulk modulus, B = -VdP/dV as Eq. 4,   
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Δ𝑉𝑐
𝑉𝑐,𝑏𝑢𝑙𝑘

= − 4𝛾
𝐵

1
𝐿
    (S4)  

This relation predicts that the unit cell volume dilatation will be a linear function of the 

reciprocal of the nanocrystal size, L.  Indeed, in Figure S3, the measured unit cell volume 

dilatation is plotted versus 1/L, shows the expected linear relationship. Thus, the surface energy 

can be determined from the slope of the volume dilatation vs 1/L shown in Figure S3 and shown 

in Eq. S5, 

𝛾 = − 𝐵𝑚
4

   (S5) 

where m is the slope of the plot of the volume dilatation vs 1/L. With the bulk modulus, B =16 

GPa, calculated using density functional theory for CsPbI3 in the cubic perovskite phase, and the 

slope, m = 0.12 nm, the surface energy for CsPbI3 NCs made here and capped with oleate and 

oleylammonium ligands is found as γ = -3.0 eV nm-2. Using an average pseudo-cubic lattice 

constant of 0.622 nm, this corresponds to a surface energy of -1.2 eV per surface unit cell on a 

(100) surface face. 

An alternate analysis was developed for non-spherical particles in terms of continuum 

elasticity theory by Huang et al.21 In this model, the volume dilatation of a solid nanoparticle of a 

given size and non-spherical shape is determined in terms of the surface energy J and the bulk 

modulus, B, using a shape factor F to approximate the effect of the non-spherical shape shown as 

Eq. S6. 

Δ𝑉𝑐
𝑉𝑐,𝑏𝑢𝑙𝑘

= −2 (4 𝜋
3

)
1
3 𝛾

𝜒1/2𝐵   
1
𝐿
    (S6) 

Here, F is an effective radius, defined as the radius of a spherical nanoparticle with the 

same volume as the nanoparticle under consideration, and 𝐿 = √𝑉3  where V is the nanoparticle 

volume.  As in the simpler generalized capillary model, the volume dilatation is again predicted 

to be a linear function of the reciprocal of the nanocrystal size, L. For the case of a cube shaped 

nanocrystal, the shape factor is given by Eq. S7. 

𝜒 = 2 ( 3
4𝜋

)
1/3

= 1.24   ((S7) 

Using these factors, surface energy can be determined for a cube shaped NC from the slope of 

the volume dilatation vs 1/L shown in Figure S3, as Eq. S8, 

𝛾 = − 1
2

( 3
4𝜋

)
1
3 𝜒1/2𝐵𝑚   (S8) 
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where m is the slope of the plot of the volume dilatation vs 1/L. This expression, like Eq. S5, 

predicts that the volume dilatation will be linear with respect to 1/L with a slope proportional to 

the surface energy.  

In Table S5 we compare the values of the surface energy using Eq. S5 and Eq. S8, 

determined from the slope of the volume dilatation curve shown in Figure S3. The surface 

energy calculations are performed with the bulk modulus B = 16 GPa for α-CsPbI3 calculated 

using density function theory reported by Jong and coworkers,22 as well as B = 19.8 GPa 

measured for the non-perovskite δ-CsPbI3 by Rakita et al.23 The values calculated using the two 

methods are in good agreement.  

 
 
Table S5 Calculated values of ligand capped CsPbI3 NC surface energy using the generalized 
capillary model19 as Eq. S5, and the elasticity theory model21 shown in Eq. S8. The value of the 
slope, m, determined by a linear fit to the data shown in Figure S3 is 0.12 nm. 
 

Bulk modulus B Capillary model Elastic model 

16 GPa22 -3.0 eV nm-2  -4.1 eV nm-2  

19.8 GPa23 -3.7 eV nm-2  -5.1 eV nm-2  

 

 
Quantum confinement model calculations 

Within the effective mass approximation, the wavefunction of an exciton is (Eq. S9)24,25 

𝜓𝑚,𝑛(𝒓𝒆, 𝒓ℎ) = Φ𝑚,𝑛(𝒓𝑒, 𝒓ℎ) 𝑓𝑚,𝑛(𝒓𝒆, 𝑟ℎ)    (S9) 

Here Φm,n (re, rh) represents the band-edge basis cell-periodic functions for the exciton at the 

band extrema of conduction band (m) and valence band (n), while fm,n (re, rh) is the envelope 

function for the exciton which describes the slowly varying electron and hole motion in the 

nanocrystal. The envelope functions fm,n (re, rh) are found by solving the effective mass equation 

(Eq. S10) with appropriate boundary conditions.24,25 

𝐻̂𝑚′,𝑛′; 𝑚,𝑛
𝑒𝑓𝑓 𝑓𝑚,𝑛(𝒓𝒆, 𝒓ℎ) = 𝐸𝑓𝑚,𝑛(𝒓𝑒, 𝒓ℎ)  (S10) 

For a simple 2-fold degenerate band system such as the perovskites, the effective mass 

Hamiltonian for the exciton is given by Eq. S11, 
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𝐻̂𝑒𝑓𝑓 = −
ℏ2

2𝑚𝑒
∇𝑒

2 −
ℏ2

2𝑚𝑒
∇ℎ

2 − 𝑈(𝒓𝒆, 𝒓𝒉) 

            = − ℏ2

2𝑚𝑒
∇𝑒

2 − ℏ2

2𝑚𝑒
∇ℎ

2 − 𝑒2

𝜖|𝒓𝒆−𝒓ℎ|     (S11) 

In this expression, me and mh are the effective masses at the band edge for the electron and hole, 

respectively. U(re, rh) represents the Coulomb interaction between the electron and the hole 

screened by the dielectric function (ϵ). For a bulk semiconductor of volume V, that is large 

enough that quantum confinement effects are negligible, the solution to Eq. S10 is well known to 

correspond to a product of a hydrogenic function in the relative electron-hole coordinate, r = re - 

rh, and a plane wave function corresponding to the center-of-mass coordinate of the exciton (R), 

where R = (me re + mh rh) = M and M = me + mh, associated with wavevector K. The exciton state 

with lowest energy relative motion has an envelope wavefunction given by Eq. S12, 

𝑓𝑲;1𝑠 (𝒓𝒆, 𝒓ℎ) = 1
√𝑉

𝑒𝑖𝑲∙𝑹𝜙1𝑠(𝑟𝑒 − 𝒓ℎ)    (S12) 

where ϕ1s (r) is the hydrogen ground state wavefunction with exciton Bohr radius ax. (Eq. S13) 

𝜙1𝑠(𝑟) = 2
𝑎𝑥3/2 𝑒−𝑟/𝑎𝑥 1

√4𝜋
  (S13) 

Here, ax = ao H�P, where ao is the hydrogen Bohr radius, P is the reduced exciton mass, with 

corresponding binding energy (Bx) calculated by Eq. S14, where Ry is the Rydberg. 

𝐵𝑥 = 𝜇
𝜖2 𝑅𝑦 = ℏ2

2𝜇𝑎𝑥
2 = 1

2
𝑒2

𝜖𝑎𝑥
  (S14) 

 
Excitons in confined systems 

For an exciton confined to a nanocrystal, the effective mass equations are solved subject 

to the requirement that the wavefunction vanishes at the nanocrystal surface. 

Strong confinement 

When the exciton Bohr radius (ax) is much larger than the nanocrystal size (L), the strong 

confinement regime is employed in which correlated motion of the electron and hole can be 

neglected. In this case, for a cube-shaped nanocrystal of edge length, L, the envelope function of 

the exciton can be written as the product of electron and hole wavefunctions as Eq. S15, 

𝑓(𝒓𝑒, 𝒓ℎ) = 𝜓𝑔𝑟(𝒓𝒆)𝜓𝑔𝑟(𝒓𝒉)  (S15) 

where ground-state wavefunctions of electrons, \gr (re), and holes, \gr (rh), are given by Eq. S16, 

𝜓𝑔𝑟(𝑥, 𝑦, 𝑧) = (2/𝐿)3/2cos (𝜋𝑥/𝐿)cos (𝜋𝑦/𝐿)cos (𝜋𝑧/𝐿)   (S16) 
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The exciton energy relative to the bandgap (Eg) is found by computing the expectation value of 

the two-particle Hamiltonian (Eq. S11). The result is found as Eq. S17,26 

𝐸𝑥
𝑆𝑡𝑟𝑜𝑛𝑔 = 𝐸𝑔 +

ℏ2

2𝜇 (
3𝜋2

𝐿2 ) − 3.05
𝑒2

𝜖𝑖𝑛𝐿 

                                  = 𝐸𝑔 + 𝐵𝑥[ 3𝜋2

(𝐿 𝑎𝑥⁄ )
2 − 2 × 3.05 × 𝑎𝑥

𝐿
]    (S17) 

Here P is the reduced mass of the exciton, 1/P = 1/me + 1/mh and ϵin is the dielectric constant in 

the nanocrystal. The next term, which scales with size as 1/L2, is the kinetic energy of the 

electron and hole while the third term is the energy of their Coulomb attraction, calculated in 

first order perturbation theory. In the second line of the equation, the energy has been recast in 

terms of the ratio of the nanocrystal size to the exciton radius and parameterized in terms of Bx 

that is defined in Eq. S14. 

Weak confinement 

In the case that L is much larger than ax, the weak confinement regime, where the 

electron and hole motion are strongly correlated, is realized. In this case, the plane wave 

envelope associated with bulk exciton states (Eq. S12) is replaced by a confined particle-in-a-box 

function. For the ground-state exciton in the weak confinement regime, the exciton envelope 

wavefunction is therefore given by (Eq. S18). 

𝑓(𝒓𝑒, 𝒓ℎ) = 𝜙1𝑠(𝒓𝒆 − 𝒓ℎ) 𝜓𝑔𝑟(𝑹)   (S18) 

The relative wavefunction is simply the ground state hydrogenic function while the ground 

center of mass wavefunction is that of a particle-in-a-box. The energy relative to the bandgap of 

the ground state in a cube-shaped NC in the weak confinement regime is then described as Eq. 

S19,26 where the total exciton effective mass is Mx = me + mh: 

𝐸𝑥
𝑊𝑒𝑎𝑘 = 𝐸𝑔 +

ℏ2

2𝑀𝑥
(
3𝜋2

𝐿2 ) − 𝐵𝑥 

                             = 𝐸𝑔 + 𝐵𝑥{ 𝜇
𝑀𝑥

[ 3𝜋2

(𝐿 𝑎𝑥⁄ )
2] − 1}    (S19) 

 

Intermediate confinement 

Nanocrystals with L ~ ax are in the intermediate confinement regime, where confinement 

effects on the carrier energies are significant but the motion of the electron and hole are 

correlated to such a degree that the strong confinement treatment of the Coulomb binding of the 
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electron and hole is inadequate. To model this, we write the envelope function of the confined 

excitons using a one-parameter ansatz function, Eq. S20.26,27  

𝑓(𝑟𝑒, 𝑟ℎ) = 1
√𝑁(𝛽)

𝑒−𝛽|𝒓𝑒−𝑟ℎ|𝜓𝑔𝑟(𝒓𝑒)𝜓𝑔𝑟(𝒓ℎ)   (S20)  

The term ψgr is the confined wavefunction for carriers in the strong confinement limit (Eq. S16) 

and therefore satisfies the boundary condition that the envelope function vanishes at the 

nanocrystal surface, while the term involving β, the variational parameter, has the form of the 

hydrogenic relative motion of the electron and hole, and builds correlation of the electron-hole 

motion into the wavefunction. In the expression, N(β) is a normalization factor, determined by 

the condition Eq. S21,  

∬ 𝑑3 𝑟𝑒𝑑3𝑟ℎ𝑓2(𝑟𝑒, 𝑟ℎ) = 1     (S21) 

where the integration is performed over the volume of the nanocrystal. In the variational 

approach we calculate the expectation value of the two-particle Hamiltonian (Eq. S11) in a cube 

with L and minimize this with respect to 𝛽. This procedure is done numerically and is described 

in the literature.26,27 

 
Exciton energy versus size for parabolic bands 

Using the results developed above, we show the exciton energy for the strong, weak, and 

intermediate confinement limits in an idealized simple parabolic band system in Figure S4. 

There, the exciton energy, Ex, relative to the bulk bandgap, Eg, is plotted in units of the exciton 

binding energy, Bx versus L/ax, the ratio of the edge length, L of a cube-shaped NC to the exciton 

radius ax. From the plots, it is clear that for L < ~2ax the energy calculated using the intermediate 

confinement wavefunction, Eq. S20, converges to the strong confinement result, while for L > ~ 

7ax it converges to that calculated in the weak confinement limit. Inspection of the figure makes 

clear that for sizes L > 3ax the strong confinement model fails to accurately capture the Coulomb 

binding of the exciton, which drives the exciton energy below the bulk bandgap. Since 

perovskite NCs have exciton radii in the 3-4 nm size range,28 this fact necessitates use of an 

intermediate confinement model for perovskite NCs for sizes L > 9 nm. 

 



13 
 

 
Figure S4. Exciton energy versus size for different confinement regimes in a parabolic band 
model. Exciton energy relative to the bulk bandgap (Ex-Eg) is plotted in units of the exciton 
binding energy (Bx) versus the ratio of the edge length of a cube-shaped nanocrystal to the 
exciton radius (L/ax). The solid red line represents the result of a variational calculation valid for 
the intermediate confinement limit, L ~ ax. Also shown for reference are the calculated exciton 
energies in the strong confinement regime (L < ax, blue dashed line), the weak confinement 
regime (L >> ax; green dashed line), and the exciton binding energy (black dotted line). 
 

 
Calculations for CsPbBr3 Nanocrystals 

As a calibration of the quantum size level model developed for CsPbI3 nanocrystals, 

described in the main text, we also calculated the size-dependent exciton energies of CsPbBr3 

nanocrystals and compared our model to data available in the literature. We begin the discussion 

of this effort by first reviewing the current status of the literature pertaining to modelling of 

exciton confinement energy versus nanocrystal size for the heavily studied CsPbBr3 system.   

Notwithstanding the discussion in the previous section, all studies that we are aware of 

thus far in the literatures which systematically investigate exciton confinement energy versus 

nanocrystal size for CsPbBr3 NCs (or any other metal halide perovskite nanocrystal material) 

have employed the strong confinement approximation. The first such study, by Protesescu et al., 

compared a strong confinement model with measured room temperature PL energies versus sizes 

for approximately cube shaped NCs.29 The model utilized the parabolic band approximation 

using effective mass parameters determined for bulk CsPbBr3 by density functional theory (DFT) 

determined as  me= 0.14,  mh = 0.15 for an exciton reduced mass of P =0.072.29 A more recent 

calculation by Rossi et al.30, utilized the Kang Wise strong confinement model,31 which captures 

band non-parabolicity effects. This published calculation, like the Protesescu model, also utilized 

effective mass parameters determined using DFT.30 Using the parameters from Rossi et al., and 
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the expressions for the band edge effective masses in the literature27, we find the band edge 

effective masses corresponding to the Rossi model parameters to be me= 0.121, mh = 0.117 for an 

exciton reduced mass of P =0.060.  Both of these models significantly overestimate the exciton 

energy because the band edge effective masses, determined in both cases using DFT, are a factor 

of ~ 2 smaller than the measured value of P =0.126 for bulk CsPbBr3.28 Additionally, none of 

these models take account of the Coulomb interaction between the electron and the hole. In the 

next sub-section, we will describe the calculation of the exciton energy in CsPbBr3 NCs which 

correctly accounts for this Coulomb interaction, using measured bulk effective mass parameters 

rather than parameters determined using DFT. 

 

Model based on measured effective mass parameters and accounting for e/h interaction 

Given the deficiencies of the published models for exciton energies in CsPbBr3 

nanocrystals discussed in the last section, we calculated the size-dependent exciton energies of 

CsPbBr3 nanocrystals using measured bulk effective mass parameters rather than parameters 

based on density functional theory calculations and accounting for the electron-hole Coulomb 

interaction.  We compare our calculations against the published exciton absorption data from 

Brennan et al.32 For these calculations, we used dielectric constant (ϵeff) and Kane energy (Ep) 

determined from low temperature exciton magneto-transmission measurements on bulk 

orthorhombic CsPbBr3 reported by Yang et al.28 The bulk bandgap parameter, Eg, was adjusted to 

achieve best fit to the measured room temperature CsPbBr3 nanocrystal absorption peak energy 

versus nanocrystal size data of Brennan et al.,32 shown in Figure S5 alongside the fit. The 

parameters used in the calculation are summarized in Table S6.  

In Figure S5, we show calculated size dependence in the strong confinement 

approximation assuming parabolic band dispersion (blue line), the intermediate confinement 

approximation calculated for parabolic band dispersion (red line), and the intermediate 

confinement approximation calculated for a coupled-band model, taking account of conduction-

to-valence band coupling in the context of the Kang and Wise model (purple).31,33 This model, 

which accounts for the s- to p- coupling between conduction and valence band quantum size 

levels, was implemented by using energy dependent effective masses  according to Eq. 6 of the 

main text, derived in the report by Sercel et al.,33 which closely matches the full Kang-Wise 

model for spherical nanocrystals of radius aeff  = L / √3. The correspondence aeff  = L / √3 is based 
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on matching the energy of a cube shaped nanocrystal to that of a spherical nanocrystal in strong 

confinement. The figure also shows that the parabolic dispersion models significantly 

overestimate the exciton absorption energy for small-sized nanocrystals while the strong 

confinement approximation does not correctly capture the exciton binding energy at large size, as 

expected. The best fit requires a bulk bandgap, Eg, approximately 50 meV larger than the 270 K 

bandgap reported by Yang and coworkers.28 

 
Figure S5. (a and b) Measured vs calculated sizing curves for CsPbBr3 nanocrystals. Model 
calculations in the strong confinement regime in the parabolic approximation, and the 
intermediate confinement regime within the parabolic and non-parabolic approximations, are 
presented with the blue, red and purple lines, respectively. The measured data shown as solid 
circles are from Brennan et al.32 The calculated lines were drawn in two ways: CsPbBr3 NC 
absorption peak energy versus NC size L (solid lines in a) and the absorption peak energy plotted 
versus the inverse square of NC size 1/L2 (dashed lines in b)  to better  illustrate the departure 
from linearity of energy plotted versus 1/L2 expected in the parabolic approximation. The model 
parameters are derived from 2K magneto-transmission measurements on bulk CsPbBr3,28 with 
the exception of the bandgap which is adjusted to achieve the best fit to the measured data. 
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Table S6 Summary of electronic structure parameters used for CsPbBr3 nanocrystals. The Kane 
energy was extracted from a 2-band fit to the reduced effective mass and dielectric constant of 
bulk CsPbBr3 at T=2K reported by Yang and co-workers.28 The bandgap was determined by the 
best fit to the room temperature nanocrystal absorption data reported by Brennan and co-
workers.32  All other parameters are measured values from the literature.28 
 

Parameter Value  
Bandgap Eg 2.454 eV 

Kane energy Ep 27.88 eV 

Exciton reduced mass μ 0.132 

Dielectric constant ϵeff 7.3 

Exciton radius ax 2.93 nm 

Exciton binding energy Bx 33.6 meV 

 
Lattice strain effect calculations 

The lattice constants measured versus nanocrystal size, given in Table S4 and shown in 

Figure 3 of the main text, are different from the bulk lattice constants (given in the caption of 

Figure S2). As a result, the unit cell volume (Vc) varies as a function of L. The resulting unit cell 

volume dilatation relative to the bulk (ΔVc/Vc,bulk) can be viewed as a strain and is expected to 

impact the bandgap parameter, Eg, via the deformation potential shown in Eq. S22. 

Δ𝐸𝑔 =  𝛼𝑉
Δ𝑉𝑐

𝑉𝑐,𝑏𝑢𝑙𝑘
    (S22) 

The volume deformation potential is given by Eq. S23,34 from which we can compute the 

bandgap shift associated with a given unit cell volume dilatation (ΔVc/Vc,bulk). 

𝛼𝑣 ≡ 𝑑𝐸𝑔

𝑑𝐿𝑛𝑉
= 𝑉 𝑑𝐸𝑔

𝑑𝑉
    (S23) 

To carry out this calculation we use the pressure deformation potential for CsPbI3 

nanocrystals measured in the literature35 of αp = 1.4×10-2 eV/GPa. We note that the pressure 

deformation potential and the volume deformation potential are related through the bulk 

modulus, B = -VdP/dV, as shown in Eq. S24. 

 𝛼𝑃 ≡ 𝑑𝐸𝑔

𝑑𝑃
= − 𝛼𝑣

𝐾
   (S24) 

Using the bulk modulus B= 16 GPa calculated in density functional theory for CsPbI3 in 

the cubic perovskite phase,22 we find the volume deformation potential αV = 0.22 eV, 

substantially smaller than the 2 eV value calculated by Frost et al.34 As a check,  the bulk 
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modulus for CsPbI3 measured in the non-perovskite δ phase by Rakita et al.23 is K = 19.8 GPa, 

leading to αV = 0.28 eV. In Figure S3 we show the unit cell volume dilatation versus 1/L, 

calculated using the lattice parameters in Table S4 and the bulk lattice parameters given in 

Figure S2. Using the calculated unit cell volume dilatation, we determined the bandgap shift vs 

1/L using αV = 0.22 eV , shown in Figure S6. A linear interpolation is given in Eq. S25. 

∆𝐸𝑔(𝐿) = 26.4 𝑚𝑒𝑉 × 1 (𝑛𝑚)
𝐿 (𝑛𝑚)

  (S25) 

For the small sized NCs (5.7nm) the bandgap shift is ~ 4.6 meV. This degree of dilatation-

induced bandgap shift is almost negligible; nevertheless, we evaluated the effect of the volume 

dilatation on the model sizing curves and the best-fit parameter values shown in Figure S7 and 

Table S7, respectively. Inspection of the best-fit parameter values in Table S7 shows that 

inclusion of the strain effect results in a slight increase of the exciton reduced mass P (from 

0.159 to 0.163), reflecting the fact that the exciton energy increase with decreasing size is partly 

due to the strain effect calculated here. 

 
Figure S6. The bandgap shift relative to the bulk, unstrained bandgap is plotted versus 1/L. The 
values calculated with a volume deformation potential model for each sample (solid circle) are 
fitted to a linear function (sold line), whose equation is given in Eq. S25. The value for the bulk 
unit cell (hollow circle) unstrained crystal is calculated using the linear fit in Figure S3 with the 
deformation potential αV = 0.22 eV.   
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Figure S7. Measured vs calculated sizing curves fitted using the best model with (pink dotted 
line) and without (black solid line) strain effect. The measured absorption peak energies are 
plotted versus L (a) and 1/L2 (b), respectively. Measured 300K data are shown as solid circle 
points in the figures. The theoretical curves shown are calculated using the intermediate 
confinement model with band non-parabolicity effects. Parameters used in these plots are 
summarized in Table S7. 
 
Table S7 Summary of electronic structure parameters for the best-fit model of CsPbI3 NC 
absorption energy, with and without strain effect. The best-fit values are determined by fitting to 
the CsPbI3 absorption data as shown in Figure S7. The dielectric constant is constrained to the 
value measured for bulk α phase CsPbI3 in the reported by Yang and coworkers.28 
 

Parameter Best-fit without strain  Best-fit with strain  

Bandgap Eg 1.840 eV  1.840 eV  

Kane energy Ep 17.4 eV 17.0 eV 

Exciton reduced mass μ 0.159  0.163 

Dielectric constant ϵeff 10 (constrained) 10 (constrained) 

Exciton radius ax 3.33 nm 3.25 nm 

Exciton binding energy Bx 21.2 meV 22.1 meV  
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