CaltechAUTHORS
  A Caltech Library Service

Proton radiation effects on carrier transport in diamond radiation detectors

Zou, Mengnan and Bohon, Jen and Smedley, John and Distel, James and Schmitt, Kyle and Zhu, Ren-Yuan and Zhang, Liyuan and Muller, Erik M. (2020) Proton radiation effects on carrier transport in diamond radiation detectors. AIP Advances, 10 (2). Art. No. 025004. ISSN 2158-3226. PMCID PMC7043858. https://resolver.caltech.edu/CaltechAUTHORS:20200203-111428602

[img] PDF - Published Version
Creative Commons Attribution.

3923Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200203-111428602

Abstract

Diamond, a highly radiation-resistant material, is considered a nearly ideal material for radiation detection, particularly in high-energy physics. In this study, radiation damage from high-energy proton beams was induced in diamond crystals to determine exposure lifetime in detectors made from this material; the effects were investigated using non-destructive x-ray techniques and through the FLUKA simulation package. Two diamond detectors were irradiated by an 800 MeV proton beam at different fluence rates, and the real-time current response was recorded to observe degradation in the signal over time. It was determined that the proton fluence rate had a significant effect on the device degradation. The detector performance from the irradiated detectors was characterized using x-ray beam-induced current measurements, and the mechanism of proton radiation damage to diamond sensors, especially the radiation effects on carrier transport, was studied. The vacancies generated from proton irradiation were considered the major source of detector degradation by trapping holes and inducing an internal electric field. Simulation results from the FLUKA package revealed an uneven distribution of the radiation-induced vacancies along the beam path, and the corresponding detector signals calculated from the simulation results displayed a good match to the experimental results.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1063/1.5130768DOIArticle
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043858PubMed CentralArticle
ORCID:
AuthorORCID
Zou, Mengnan0000-0002-6387-8668
Bohon, Jen0000-0002-7664-9899
Distel, James0000-0002-7621-0165
Zhu, Ren-Yuan0000-0003-3091-7461
Zhang, Liyuan0000-0002-0898-787X
Muller, Erik M.0000-0003-3933-9602
Additional Information:© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Submitted: 7 October 2019; Accepted: 12 January 2020; Published Online: 3 February 2020. The authors would like to thank all the CFN cleanroom staff for support of device fabrication and Donald Pinelli for his help with design suggestions, assembly, and wire-bonding. We appreciate the assistance of synchrotron beamline staff Klaus Attenkofer at ISS (NSLS-II), and Ron Nelson and Zhehui Wang from Los Alamos National Laboratory for supporting the proton irradiation experiment at LANSCE. The authors would also like to acknowledge the support from U.S. Department of Energy for Higher Energy Physics under Grant No. DESCOO15841. This research used resources [17-BM, 8-ID] of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The Case Center for Synchrotron Biosciences was supported by the National Institute of Biomedical Imaging and Bioengineering under Grant No. P30-EB-009998.
Funders:
Funding AgencyGrant Number
Department of Energy (DOE)DE-SC0015841
Department of Energy (DOE)DE-SC0012704
NIHP30-EB-009998
National Institute of Biomedical Imaging and BioengineeringUNSPECIFIED
Issue or Number:2
PubMed Central ID:PMC7043858
Record Number:CaltechAUTHORS:20200203-111428602
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20200203-111428602
Official Citation:Proton radiation effects on carrier transport in diamond radiation detectors. Mengnan Zou, Jen Bohon, John Smedley, James Distel, Kyle Schmitt, Ren-Yuan Zhu, Liyuan Zhang, and Erik M. Muller. AIP Advances 10:2; doi: 10.1063/1.5130768
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:101071
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:03 Feb 2020 19:22
Last Modified:06 Mar 2020 16:03

Repository Staff Only: item control page