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Zakharov’s (1968) Hamiltonian formulation of water waves is used to prove 
analytically Tanaka’s ( 1983) numerical result that superharmonic disturbances to 
periodic waves of permanent form exchange stability when the wave energy is an 
extremum as a function of wave height. Tanaka’s (1985) explanation for the 
non-appearance of superharmonic bifurcation is also derived, and the non-existence 
of stability exchange when the wave speed is an extremum is explained. 

1. Introduction 
We consider the stability of finite-amplitude two-dimensional water waves of 

permanent form to two-dimensional disturbances of the same wavelength, which are 
called superharmonic. This problem WM considered first by Longuet-Higgins (19784, 
who showed that gravity waves are stable to such disturbances for h/h < 0.1337, 
which was the greatest height for which the calculations were accurate. Extrapolation 
of the results indicated an exchange of stability for h/h = 0.1388, which is the height 
for which the wave speed c first attains a stationary value (in this case a maximum) 
as a function of wave height. This is expected, since there is a disturbance stationary 
relative to the wave when c is an extremum. Here h denotes wave height defined as 
vertical distance between crests and troughs, and h is the wavelength (i.e. horizontal 
distance between neighbouring crests). An exchange of stability means that in a frame 
moving with the wave the eigenvalue giving the growth rate of infinitesimal 
disturbances goes through zero from pure imaginary to real and that the critical 
eigenvector describes a disturbance that is stationary relative to the propagating 
wave. 

However, Tanaka (1983) reexamined the superharmonic instability of gravity 
waves and found the surprising result that exchange of stability occurs for a wave 
height less than that for which c is first stationary. It is, in fact, within numerical 
error, the wave height for which the energy of the wave, kinetic plus potential, has 
its first maximum as a function of wave height. Tanaka’s result was also unexpected, 
because the appearance of a zero eigenvalue usually implies, according to simple 
bifurcation theory, either the existence of a limit point or superharmonic bifurcation 
to a new branch of solutions with the same wavelength. But the wave of maximum 
energy is not a limit point (the precise meaning of limit point in the water-wave 
context will be given below; see the discussion following (3)), and on the other hand 
superharmonic bifurcation is inconsistent with Garabedian’s (1965) theorem that 
gravity waves are unique if all crests and all troughs are of the same height, and the 
calculations by Chen C Saffman (1980), who searched for superharmonic bifurcation 
into both symmetrical and asymmetrical waves by numerical means and were unable 
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to find it. Furthermore, there was no sign of a stability exchange for the wave of 
maximum speed. 

In recent work, Tanaka (1985) has convincingly confirmed his calculations and 
explained why his hd ing  of an exchange of stability away from a limit point does 
not contradict the non-existence of superharmonic bifurcation. Briefly, it is due to 
the algebraic multiplicity and geometrical multiplicity being different and the sole 
eigenvector that gives the new branch coinciding with the eigenvector for the trivial 
bifurcation corresponding to horizontal translation. Longuet-Higgins (1984) has 
shown that the existence of a zero eigenvalue implies for gravity waves that either 
the wave is at a limit point or the corresponding eigenvector is that for a horizontal 
shift. 

In this note we shall give an analytic proof of Tanaka’s results and confirm his 
prediction that there will be an exchange of stability at  every stationary value of 
the energy, and moreover that these exchanges of stability do not produce super- 
harmonic bifurcation into a physically new type of wave. It will also be shown that 
exchange of stability does not in general occur when the wave speed c is an extremum. 

It should be noted that the distinction between exchange of stability and 
occurrence of superharmonic instability is real as non-stationary modes may in 
principle coalesce to give propagating instabilities, although no evidence has yet been 
found that this occurs for two-dimensional superharmonic disturbances.? It does 
occur for subharmonic (Longuet-Higgins 19783) and three-dimensional (McLean 
et ul. 1981) disturbances. 

2. Steady waves 
We employ the Hamiltonian formulation of water waves presented by Zakharov 

(1968) and apply it to a wave propagating in the direct ion with wavelength 2 ~ .  The 
canonical variables are complex quantities a, and a: ( -  00 < n < GO), which are 
linear combinations of the complex Fourier components of the wave elevation ~ ( x ,  t )  
and velocity potential evaluated on the surface $(z, t ) .  The total energy density 
(kinetic plus potential per unit horizontal length) is E(a,, u:). Zakharov showed that 
the equations for the evolution of the wave could be written in Hamiltonian form 
as 

aa . aE aa* .aE 
= - I - ,  - = I - ,  

at aa* at aa 
- 

with a = {a,,}. Changing to a coordinate system moving with speed c, the equations 
take the form 

aE aa* aE - _  - -i-+icl,a, - = i--icl,a*, 
aa 
at aa* at , aa 

where I,, denotes the diagonal matrix with n on the nth row and nth column. 

described by solutions of the equations 
Equilibrium solutions that describe waves of permanent form are therefore 

+Cl ,  A*  = 0, 
aE 

clnA = 0, -- 
aE 

aA* CIA 
-- (3) 

where we denoteequilibrium values by A and A*. It is convenient in this formulation 

t Note added in proof: Such instabilities have been predicted and found recently by MacKay & 
Saffman ; paper in preparation. 
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to think of the wave speed c as the independent variable and the Fourier coefficients 
(and thus the wave height) as dependent variables. (This approach was also adopted 
by Saffman (1980) in a study of the general properties of subharmonic bifurcation.) 
If we normalize gravity so that the wave speed c = 1 for an infinitesimal wave of 
period 2x, then nonlinear waves are obtained by finding solutions with c > 1. If, as 
we follow the family of solutions by increasing c, we find that c has a maximum (and 
this is the case for gravity waves on deep water), we have a limit point or turning 
point, and the solution curve bends back in (A, c)-space. This would be recognized by 
dA/dc and dA*/dc becoming infinitely large. 

Owing to the symmetry of inviscid water waves, the energy E(a, a*) has certain 
symmetries. In  particular, E is invariant under the change a+a* and also a,+a-,. 
Further, invariance under horizontal translation implies that, if A = {A,} is a solution 
of the system (3) for some value of c, so is AS = {A, eint} for arbitrary values of the 
displacement 6. The solution of (3) is therefore not unique. Mathematically, the 
Jacobian of the system (3) is singular, i.e. the matrix 

where M = a2E/aA*aA-dn and N* = a2E/aAaA, has codimension greater than 
zero. The null vector associated with the invariance under translation is obtained from 
evaluating dAE/dg at 6 = 0, and it follows that the right and left eigenvectors of J 
are 

a = ( / ,A ,  -/, A*), at = (/, A*, /n A). 

Now E is real, and a steady solution can be uniquely specified by the condition 
that A and A* are real, i.e. 

The matrices M and N are then real and symmetric, and the order of the system 
(3) is halved. The asterisk on A,  M and N is now dropped. For the family of 
steady solutions, the energy E is an implicit function of wave speed given by 
E(c) = E(A(c), A(c)). The variation of E along the family is found from (3) to be 

A(c) = A*(c). (6) 

given by 
dA -2-.-- - 2 ~ / ,  A*- dE aE dA 

dc aA dc dc ' 
_ -  (7) 

3. Perturbations 

steady solution. We write 
Let us now consider time-dependent perturbations of the same wavelength to the 

= A+Eb(t), a* = A+eb*(t), (8) 

substitute into (2) and linearize in E .  This gives the linear equations 

. db* 
dt = Mb*+Nb, (9) 

We require solutions of these equations with b and b* complex conjugates, but in 
order to determine stability or instability it is sufficient to look for solutions with 

, (10) b = b+ eiUt,  b* = b- eiut 
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where b+ and 6 -  are not necessarily complex conjugates. Then the eigenvalue u and 
eigenvector ( b + ,  b - )  are solutions of 

u + M  M b+ 
L N  u-M]  [ b - ] =  O' 

and appropriate linear combinations of the eigenvectors will give solutions that 
satisfy the complex conjugate condition. It follows trivially from (11)  by writing 
equations for b+ f 6 -  that these vectors satisfy the eigenvalue problems 

a2(b+-b - )  = ( M + N ) ( M - N ) ( b + - b - ) ,  (12) 

u2(b+ + b - )  = ( M - N )  ( M + N )  (b+ + b - ) .  (13) 

This provides a mathematical proof of the result, which can be deduced from 
invariance under time reflection, that  the eigenvalues come in pairs ( f u) if real or 
pure imaginary, and quartets ( f u, & u*) if complex. Note that the matrix on the 
right-hand side of (12) or (1  3) is not symmetric, so the values of u2 are not necessarily 
real. For numerical purposes, using (12) or (13) reduces the order of the system by 
one-half. The analytical questions involve the dimension of the null space of the 
matrix J, in addition to  the algebraic multiplicity of the zero eigenvalue, and i t  then 
seems more natural to work with the larger system given by (11) .  

It follows from (4) that  u = 0 is a root of ( l l ) ,  and i t  is a consequence of time 
reversal or (12) and (13) that  i t  is a double root. We now consider the criterion for 
CT = 0 to  be a quadruple root, which will occur when two, in general non-zero, 
eigenvalues vanish for one wave of the family and there is an exchange of stability. 

4. Exchange of stability 
We suppose we are not at a limit point, and calculate the quantity dA/dc, which 

is obtained by differentiation of the equilibrium equation (3) with respect to  c. We 
have 

This equation implies 

We rewrite this to say 

dA 
( M + N ) - = / n A .  

dc 

J [  dA/dc ]=[ InA] 
dA /dc - I n  A 

that the equation 

Jt = a 

has a solution /? = (dA/dc, dA/dc). Since, from (5) ,  Ja = 0, i t  follows that u = 0 is 
a multiple eigenvalue of J with a one-dimensional null space spanned by a. The 
corresponding left eigenvector is at. These two vectors are orthogonal, i.e. at*a = 0. 

Now consider the equations 
JY = t (17) 

and J6 = y .  (18) 

If these equations have solutions, then the eigenvector a has algebraic multiplicity 
at least four, and exchange of stability occurs. The necessary and sufficient condition 
for them to have solutions is that  the right-hand sides are orthogona1,to at. (These 
results for matrices are easily proved by considering the Jordan normal forms (see 
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e.g. Gantmacher 1960, for a 4 x 4 matrix and examining the various possibilities). 
Note that, from the symmetry, y can be chosen to have the form (c+,  - c + ) ,  and hence 
the right-hand side of (18) is trivially orthogonal to at when (17) has a solution. It 
is therefore sufficient to consider just (1 7). 

Now the condition for (17) to have a solution is 

dA 
/ , ,A*-  = 0. 

dc 

But this is exactly from (7) the condition for the energy to have an extremum. Thus 
when the energy is a maximum or minimum, the eigenvalue problem for the growth 
rate of infinitesimal perturbations has a quadruple zero (i.e. an algebraic multiplicity 
of four), but just one independent eigenvector (i.e. a geometrical multiplicity of one), 
which corresponds to translation. This is exactly the phenomenon found by Tanaka 
(1985) in his numerical calculations for gravity waves a t  the first maximum of E and 
suggested for the subsequent minimum. The present deduction shows that this 
behaviour is general for any Hamiltonian system with the appropriate symmetries. 
It would apply, for example, to gravity-capillary waves if the energy has an 
extremum. 

Since the bifurcation that takes place at a zero eigenvalue is such that the tangent 
vector of the solution branch is a linear combination of the corresponding null-space 
eigenvectors, there is indeed superharmonic bifurcation associated with the exchange 
of stability at the extremum values of the energy, but it is a trivial bifurcation 
corresponding to translation, and not the appearance of new types of waves. 
Garabedian’s theorem is not violated, and Chen 6 Saffman’s calculations are 
confirmed. 

We have from (12) and (13) that cr2 is the eigenvalue of a matrix. It follows that 
n2 remains real unless there is further coalescence of eigenvalues, i.e. a multiplicity 
of six. There is no reason to expect this happens in general, and hence after the 
exchange of stability c2 will be negative and Q will be pure imaginary. Thus the 
unstable modes for larger values of c will be growing waves which move with the same 
speed as the undisturbed wave. 

5. Behaviour at the limit point 
Let us change the independent variable from c to h, where h is the wave height 

or some equivalent monotonic measure of arclength along the family of steady 
solutions. The equation (15) describing the change of A along the solution curve is 

dA dc 
dh dh 

(M+N)-=/ , ,A-.  

At a limit point, dc/dh = 0, and hence (dA/dh, dA/dh) is a right null vector of J. 
This vector and a are then two independent null eigenvectors, and 0 is a double 
eigenvalue. However, (16) no longer has a solution, and we cannot infer a quadruple 
zero and an exchange of stability.7 Thus the behaviour at  the limit point is special 
in that the dimension of the null space is two, but there are no further zeros of the 
eigenvalue and the double zero corresponding to translation invariance remains a 
double zero. The extra eigenvector describes the continuation along the regular 

7 I wish to  thank Dr P. A. E. M. Janssen for providing a counter-example to a fallacious 
argument that a quadruple zero existed a t  the limit point. 
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solution branch. The plausible argument that the existence of a limit point implies 
an exchange of stability fails in this case because i t  implicitly assumes that other zero 
eigenvalues do not exist, which is not so here owing to the Galilean invariance. 

A simple example which shows explicitly that a Hamiltonian with the appropriate 
symmetries has the properties described in this paper will be published elsewhere 
(Zufiria & Saffman 1985). 

I have benefited from discussions with Dr H. C. Yuen, Dr P. A. E. M. Janssen and 
Mr J. Zufiria. This work was supported by the Office of Naval Research 
(NW14-79-C-0412 NR062-639). 
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