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Abstract

We report the discovery and the analysis of the short ( <t 5E days) planetary microlensing event, OGLE-2015-
BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment, and the planetary
anomaly (at I∼19) was captured by The Korea Microlensing Telescope Network. The event has three
surviving planetary models that explain the observed light curves, with planet-host mass ratio q∼5.4×10−3,
4.5×10−3 and 4.5×10−2, respectively. The first model is the best-fit model, while the second model is
disfavored by Δχ2∼3. The last model is strongly disfavored by Δχ2∼15 but not ruled out. A Bayesian
analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass
planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown
dwarf. The source-lens relative proper motion is μrel∼9 mas yr−1, so the source and lens could be resolved by
current adaptive-optics instruments in 2020 if the lens is luminous.

Unified Astronomy Thesaurus concepts: Gravitational microlensing exoplanet detection (2147)

Supporting material: data behind figure

1. Introduction

Early observations using ALMA (Testi et al. 2016)
and Herschel (Daemgen et al. 2016) suggest that disks around
brown dwarfs and M-dwarfs with mass below 0.1Me are
frequent. Searching for and studying planets around
such ultracool dwarfs (Mhost<0.1Me) are important for the
conditions for planet formation theories (e.g., Ida & Lin
2005; Boss 2006) at the low-mass end. However, the detection
of planets around ultracool dwarfs is challenging due to the

intrinsic faintness of the host stars. At the time of writing, more
than 4000 confirmed exoplanets have been detected,19 but only
21 of them are orbiting an Mhost<0.1Me star.
Among the 21 such known planets, four of them were found

by direct imaging method: 2MASS 1207–3932 (Chauvin et al.
2004), 2MASS 0441-2301 (Todorov et al. 2010), VHS 1256-
1257 (Gauza et al. 2015), and CFBDSIR 1458+1013 (Liu et al.
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19 http://exoplanetarchive.ipac.caltech.edu as of 2019 October 31.
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2011). All of these planets are super-Jovian planets (>4MJ)
and have a planet-host mass ratio q>0.15, which indicates
that these systems may form similarly to binary systems. In
addition, seven temperate terrestrial planets were discovered
around the nearby ultracool dwarf stars TRAPPIST-1 (Gillon
et al. 2017) via the transit method, and two similar planets
around Teegarden’s Star were detected by the radial velocity
method (Zechmeister et al. 2019), which suggests that
terrestrial planets should be frequent around ultracool dwarfs.

Microlensing opens a powerful window for probing planets
around ultracool dwarfs because it does not rely on the light from
the host stars but rather uses the light from a background source
(Mao & Paczynski 1991; Gould & Loeb 1992). Microlensing has
detected three planets orbiting an Mhost<0.1Me star with
unambiguous mass measurements. Bond et al. (2017) and
Shvartzvald et al. (2017) detected a q∼6×10−5 planet in the
micolensing event OGLE-2016-BLG-1195, and a joint analysis of
ground-based and Spitzer data (Shvartzvald et al. 2017) revealed
that this planetary system is composed of an Earth-mass
(∼1.4M⊕) planet around a ∼0.078Me ultracool dwarf. Han
et al. (2013) discovered a ∼2MJ planet orbiting a ∼0.02Me very
low-mass brown dwarf (BD) in the event OGLE-2012-BLG-0358,
and Bennett et al. (2008) detected a ∼3M⊕ super-Earth planet
around a ∼0.08Me ultracool dwarf (Kubas et al. 2012) in the
event MOA-2007-BLG-192. For the planets using Bayesian
analysis to estimate the host mass, Jung et al. (2018a) reported a
super-Jovian planet orbiting an Mhost<0.1Me star with a ∼90%
probability. Jung et al. (2018b) reported a Jovian-mass planet
around a BD, but the host star also has a ∼30% probability to be
an M dwarf or K-dwarf. In addition, there are three events with
degenerate solutions. Bayesian analysis shows that one of the
solutions of MOA-2015-BLG-337 (Miyazaki et al. 2018) and
KMT-2016-BLG-1107 (Hwang et al. 2019) probably consist of a
giant planet orbiting a BD. Sumi et al. (2016) found three
degenerate planetary models in the event MOA-2013-BLG-605,
two of which suggest a super-Earth orbiting a BD. For the five
events using Bayesian analysis to estimate the host mass and/or
that have degenerate solutions, we can verify that the host is an
ultracool dwarf by adaptive-optics (AOs) instruments in the future.

Here, we report the analysis of the microlens planetary event
OGLE-2015-BLG-1771. The observed data are consistent with
three planetary models, and a Bayesian analysis suggests the
host star is likely an ultracool dwarf (Mhost<0.2Me). The
paper is structured as follows. In Section 2, we introduce data
acquisition and processing of this event. We then describe the
light-curve analysis in Section 3 and estimate the physical
parameters of the planetary system in Section 4. Finally, we
discuss the implications of our work in Section 5.

2. Observations

OGLE-2015-BLG-1771 was discovered by the Optical
Gravitational Lensing Experiment (OGLE; Udalski et al.
2015) using its 1.3 m Warsaw Telescope at the Las Campanas
Observatory in Chile and alerted by the OGLE Early Warning
System (Udalski et al. 1994; Udalski 2003) at UT 00:46 on
2015 August 2. The event was located at equatorial coordinates
(α, δ)J2000=(17:55:11.76, −28:51:45.9), corresponding to
Galactic coordinates (ℓ, b)=(1.14,−1.76). It therefore lies in
OGLE field BLG505, monitored by OGLE with a cadence
of Γ=3 hr−1. The event was also observed by the Korea
Microlensing Telescope Network (KMTNet; Kim et al. 2016).
KMTNet consists of three 1.6m telescopes, equipped with 4

deg2 field-of-view cameras at the Cerro Tololo Interamerican
Observatory (CTIO) in Chile (KMTC), the South African
Astronomical Observatory (SAAO) in South Africa (KMTS),
and the Siding Spring Observatory (SSO) in Australia (KMTA).
The event was located in the KMTNet BLG02 field, which was
observed in 2015 with a cadence of Γ=6 hr−1. The majority of
observations by OGLE and KMTNet were taken in the I-band,
with some V-band images taken for the color measurement
of microlens sources. For the light-curve analysis, the I-band
magnitude is instrumental magnitude, but the difference to the
standard I-band magnitude is within 0.2 mag (Udalski et al.
2015). During 7230<HJD′<7237 (HJD′=HJD−2450000),
the Moon was <70 deg away from the target and the sky
background was brighter than V=20mag arcsec−2, while the
target was only V∼22 mag during the peak. Thus, the V-band
data have a signal-to-noise ratio (S/N) too low to determine
the source color. The photometry of OGLE and KMTNet was
extracted using custom implementations of the difference image
analysis technique (Alard & Lupton 1998): Wozniak (2000;
OGLE) and Albrow et al. (2009; KMTNet).

3. Light-curve Analysis

Figure 1 shows the observed data together with the best-fit
models. The light curve shows a “U” shape bump at ¢HJD ∼
7235.1, which is generally produced by a caustic crossing in a
binary-lensing (2L1S) event, so we fit the data with the 2L1S
model in Section 3.1. We also check the binary-source (1L2S)
model in Section 3.2.

3.1. Binary-lens Model

Standard binary lens models require seven parameters to
calculate the magnification, A(t). The first three are point-lens
parameters (t0, u0, tE; Paczyński 1986): the time at which the
source passes closest to the center of lens mass, the impact
parameter normalized by the angular Einstein radius qE, and the
Einstein radius crossing time, respectively. The next three (q, s,
α) define the binary companion: the mass ratio, the projected
separation between the binary components scaled to qE, and the
angle between the source trajectory and the binary axis in the
lens plane, respectively. The last one ρ is the angular source
radius θ* scaled to qE (r q q= E* ). We use the advanced
contour integration code (Bozza 2010), VBBinaryLen-
sing,20 to compute the binary-lens magnification A(t). In
addition, for each data set i, we introduce two flux parameters
( f iS, , f iB, ) to represent the flux of the source star and any
additional blend flux. The observed flux, fi(t), calculated from
the model, is

( ) ( ) ( )= +f t f A t f . 1i i iS, B,

We locate the χ2 minima by searching over a grid of
parameters ( a rs qlog , log , , ). The grids consist of 41 values
equally spaced between −1�log s�1, 10 values equally
spaced between 0°�α<360°, 51 values equally spaced
between −5�log q�0 and 8 values equally spaced between
−3�log ρ�−1. For each set of (log s, log q, α, ρ), we fix
log q, slog and ρ, but free at u t, , ,0 0 E . We find the minimum
χ2 by Markov chain Monte Carlo (MCMC) χ2 minimization
using the emcee ensemble sampler (Foreman-Mackey et al.
2013). The upper panel of Figure 2 shows the χ2 distribution in
the ( s qlog , log ) plane from the grid search, which indicates

20 http://www.fisica.unisa.it/GravitationAstrophysics/VBBinaryLensing.htm
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that the distinct minima are within −0.5�log s�0.5 and
−4�log q�−1. We therefore conduct a denser grid search,
which consists of 101 values equally spaced between
−0.5�log s�0.5, 10 values equally spaced between 0°�
α<360°, and 41 values equally spaced between −4�
log q�0. As shown in the lower panel of Figure 2, we find
five distinct minima (labeled as “A,” “B,” “C,” “D,” and “E” in
the lower panel Figure 2).

We then investigate the best-fit model with all parameters set
free using MCMC. The MCMC results show that the Model
“A” provides the best fit to the observed data, while the Models
“B,” “C,” “D,” and “E” are disfavored by Δχ2∼3, 15,
54, and 134, respectively (see Table 1 for the parameters and

their 68% uncertainty range from MCMC). Figure 3 shows the
lens-system configurations of the individual degenerate models.
In Figures 4 and 5, we find that most of the χ2 difference of
Models “D” and “E” are from the anomalous region. Together
with the relatively large Δχ2, we only investigate Models “A,”
“B,” and “C” in the following analysis. In addition, all of the
surviving models (A, B, and C) have very low mass ratios,
indicating that the companion is a planetary-mass object.
In some cases, the microlens parallax pE can be measured by

considering the orbital motion of Earth around the Sun in the
light-curve analysis (Gould 1992; Alcock et al. 1995).
However, this method is generally feasible only for events
with long timescales t yearE /2π (e.g., Udalski et al. 2018)

Figure 1. The data of OGLE-2015-BLG-1771 together with the best-fit 2L1S and 1L2S models. Data points for different data sets and light curves for different models
are shown with different colors.

(The data used to create this figure are available.)
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that introduce significant deviation from rectilinear motion in
the lens-source relative motion. For OGLE-2015-BLG-1771,
the timescale <t 5E days, so the parallax effect should be
negligible. As a result, the addition of parallax to the models
only provides Δχ2<2, and the upper limit of the microlens
parallax as the 1σ level is p  100E for all three models. The
microlens parallax should be <10 for typical microlensing
events (see Table 2 of Zhu et al. 2017), so the light-curve
analysis gives no useful constraint on the microlens parallax.

3.2. Binary-source Model

A binary-source event is the superposition of two point-lens
events. Gaudi (1998) first pointed out that a 1L2S event can
mimic a 2L1S event if the binary source (labeled as “S1” and
“S2”) has a large flux ratio =q f fF S1 S2 and the second source
“S2” passes much closer to the lens. We therefore search for
1L2S solutions using MCMC, which shows that the best-fit
1L2S model is disfavored by Δχ2∼86 compared to the best-

Figure 2. χ2 distributions of the grid search projected onto the ( s qlog , log ) plane. The upper panel shows the space that is equally divided on a (41 × 51) grid with
ranges of −1.0�log s�1.0 and −5.0�log q�0, respectively. The lower panel shows the space that is equally divided on a (101 × 41) grid with ranges of
−0.5�log s�0.5 and −4.0�log q�0.0, respectively. The labels “A,” “B,” “C,” “D,” and “E” in the lower panel represent five distinct minima.
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fit 2L1S model (see Table 1 for the parameters). In Figure 5, we
find that most of the χ2 difference comes from the anomalous
region, in which the 1L2S model cannot fit the “U” shape of the
anomalous region. Thus, we exclude the 1L2S solution.

4. Physical Parameters

Uniquely determining the total lens mass ML and distance
DL requires two observables: the angular Einstein radius qE and

Table 1
Best-fit Models and Their 68% Uncertainty Range from MCMC

Models A B C D E Binary Source

t0,1 (HJD′) 7235.60±0.01 7235.62±0.01 7235.51±0.01 7235.61±0.01 7234.74±0.23 7235.77±0.02
t0,2 (HJD′) L L L L L 7235.06±0.03
u0,1 0.121±0.008 0.114±0.006 0.242±0.009 0.273±0.016 0.024±0.016 0.112±0.024
u0,2 L L L L L 0.001±0.025
tE (days) 4.28±0.24 4.53±0.18 2.49±0.10 2.62±0.12 8.64±0.98 5.39±0.85
s 1.202±0.010 0.998±0.008 1.119±0.006 0.850±0.008 2.216±0.090 L
q (10−3) 5.38±0.64 4.47±0.51 45.5±4.5 3.39±0.35 70.9±9.8 L
α (deg) 223.7±1.2 222.4±0.4 191.9±0.4 38.6±0.4 146.8±0.8 L

( )r -101
3 4.41±0.46 3.64±0.34 8.27±0.80 9.15±0.78 4.41±0.50 131±27

( )r -102
3 L L L L L 10±2

qF L L L L L 0.080±0.012
IS 21.77±0.08 21.86±0.06 20.91±0.05 20.82±0.08 22.86±0.13 22.25±0.24
IB 21.03±0.04 20.99±0.03 22.04±0.14 22.36±0.30 20.74±0.02 20.85±0.06
c dof2 3489.8/3481 3492.7/3481 3505.1/3481 3543.5/3481 3624.1/3481 3575.4/3480

Figure 3. Geometries of the five different binary-lens models. In each panel, the caustic is color-coded to match the light curves in Figures 1 and 4. The yellow dots
represent the positions of the planet, and the yellow asterisks represent the positions of the host star. The black solid line is the trajectory of the source, and the arrow
indicates the direction of the source motion. The axes are in units of the Einstein radius qE, and the black dashed line is the angular Einstein ring of the lens system.
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Figure 4. A zoom of the planetary anomaly region. The symbols are the same as those in Figure 1.

Figure 5. The upper panel shows the observed data with different models. The lower panel shows the cumulative distribution of χ2 differences as a function of time
between different models indicated by different colors. We use the 2L1S Model A as the reference model and the χ2 differences are given by c c cD = -2

model
2

A
2 .

Most of the χ2 difference of 2L1S Models “D,” “E,” and 1L2S Model are from the anomalous region.
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the microlens parallax pE (Gould 1992, 2000)

( )q
kp p q p

= =
+

M D,
au

, 2L
E

E
L

E E S

where ( )k º =G c4 au 8.1442 mas/Me, p = DauS S is the
source parallax, and DS is the source distance. We estimate the
angular Einstein radius by q q r=E * in Section 4.1. However,
the observed data give no useful constraint on the microlens
parallax (see Section 3.1). Thus, we conduct a Bayesian
analysis in Section 4.2 to estimate the physical parameters of
the planetary system.

4.1. Color–Magnitude Diagram

We estimate the angular source radius q* based on the de-
reddened brightness and color of the source (Yoo et al. 2004). We
construct the color–magnitude diagram (CMD) using OGLE stars
within a 2′×2′ square centered on the position of the event (see
Figure 6). We measure the centroid of the red giant clump as
(V−I, I)cl=(2.65±0.01, 16.68±0.01), and compare it to the
intrinsic centroid of the red giant clump (V−I, I)cl,0=(1.06,
14.39; Bensby et al. 2013; Nataf et al. 2016), which yields an
offset ( ) ( )D - =  V I I, 1.59 0.02, 2.29 0.03cl .

From the light-curve modeling, the source apparent bright-
ness is = I 21.77 0.08S,A , = I 21.86 0.06S,B and =IS,C

20.91 0.05 for Models “A,” “B,” and “C,” respectively.
However, in this case, we have no color measurements of the

source due to too low S/N in V-band. Nevertheless, it is still
possible to estimate the source color following the method of
Bennett et al. (2008) and Kondo et al. (2019). We first calibrate
the CMD of Holtzman et al. (1998) Hubble Space Telescope
(HST) observations to the OGLE CMD using its red-clump
centroid of ( ) ( )- =V I I, 1.62, 15.15HSTcl, (Bennett et al.
2008). We then estimate the source color by taking the average
color of the calibrated Holtzman field stars whose brightness
are within 3σ of the microlens source star. Using the derived
offset of the red giant clump, the de-reddened brightness IS,0

and color ( )-V I S,0 of the source can be measured. Finally, we
apply the color/surface-brightness relation of Adams et al.
(2018) to estimate the angular source radius θ*. We summarize
the values of the source and the derived angular Einstein radius
qE and the lens-source relative proper motion μrel in Table 2.

Figure 6. Color–magnitude diagram of a 2′×2′ square centered on OGLE-2015-BLG-1771. The black dots show the stars from the OGLE catalog, which are
roughly calibrated to the standard filter using the formula of Udalski et al. (2015). The green dots show the HST CMD of Holtzman et al. (1998) whose red-clump
centroid is adjusted to OGLE’s using the Holtzman field red-clump centroid of(V−I, I)=(1.62, 15.15; Bennett et al. 2008). The red asterisk shows the centroid of
the red clump, and the blue, magenta, and yellow dots represent the position of the source of different models.

Table 2
De-reddened Source Color and Magnitude, the Values of θ*, qE and μrel

Models Unit A B C

IS,0 mag 19.48±0.09 19.57±0.07 18.62±0.06
( )-V I S,0 mag 0.92±0.14 0.95±0.16 0.78±0.09

q* μas 0.49±0.08 0.48±0.08 0.65±0.07

qE mas 0.111±0.022 0.132±0.025 0.079±0.011
mrel mas yr−1 9.5±2.0 10.6±2.1 11.6±1.7
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Figure 7. Bayesian posterior distributions of the lens host mass Mhost, the lens distance DL, the planet mass Mplanet, and the projected planet-host separation r⊥ for
Models “A,” “B,” and “C.” In each panel, the distributions marked in black are obtained with αpl=−4.0, while those marked in blue are derived with αpl=0.6. The
red solid vertical line and the two red dashed lines represent the median value and the 16th and 84th percentiles of the distribution obtained with αpl=−4.0.
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4.2. Bayesian Analysis

Our Bayesian analysis is based on the Galactic model of
Jung et al. (2018b) derived from the models of Han & Gould
(1995, 2003). Because the timescale of the event is <5 days,
we expect that objects in the planetary-mass regime are also
plausible lenses (e.g., Miyazaki et al. 2018). We therefore
adopt a broken power-law mass function as follows:

( ) ( )= a-  dN dM a M M M0.001 0.013 30 pl

( ) ( )= -  dN dM a M M M0.013 0.08 41
0.3

( ) ( )= -  dN dM a M M M0.08 0.5 52
1.3

( ) ( )= -  dN dM a M M M0.5 1.3 63
2.3

where the last three terms are the Kroupa mass function
(Kroupa 2001) used in Zhu et al. (2017), (a0, a1, a2, a3) are
normalizing coefficients, and αpl is the slope of the planetary-
mass regime. We create a sample of 109 simulated events for
αpl=−4.0 and 0.6, respectively. The planetary slope
αpl=−4.0 is similar to that of Mróz et al. (2017) for unbound
or wide-orbit Jupiter-mass planets. αpl=0.6 has 1 : 0.26 for
the relative fractions of number between main-sequence stars
and planetary-mass objects, which is just slightly higher than
the result of Mróz et al. (2017) who found that the upper limit
on the frequency of Jupiter-mass free-floating or wide-orbit
planets is 0.25 per main-sequence star at 95% confidence. For
each simulated event i of model k, the weight is given by

( ) ( ) ( )q= G  W t , 7i k i k i k i kGal, , , , E , E

where q mG µ ´i k i k i k, E, , rel, , is the microlensing event rate,
( ) ti k, E and ( )qi k, E are the likelihood of its derived parameters

( )qt , i kE E , given the error distributions of these quantities for
that model

( )
[ ( ) ]

( )

s

ps
q=

- -
= = X

X X
X t X

exp 2

2
, or .

8

i k
i k X

X
,

2 2

E E
k

k

The resulting posterior distributions of the lens host mass
Mhost, the lens distance DL, the planet mass Mplanet, the
projected planet-host separation r⊥, the angular Einstein radius
qE, and the lens-source relative proper motion μrel for Models
“A,” “B,” and “C” are shown Figure 7 and Table 3. For each
parameter, the uncertainties are the 68% probability range
about the median of the probability distribution. For Models
“A” and “B,” the effects of different αpl are negligible, and the
planetary system is probably composed of a Saturn-mass planet
orbiting a late M dwarf. For Model “C,” the distributions of
planetary host mass (Mhost<13MJ) are different for the two

αpl, with 3.2% probability distribution for αpl=−4.0 and
12.0% for αpl=0.6. Because both distributions indicate a mid-
mass BD host star, we adopt the distributions of αpl=−4.0 for
the final lens properties. The projected planet-host separation is
∼0.5–1.0 au for the three models, which indicates that the
planet is well beyond the snow line (assuming a snow line
radius rSL=2.7(M/Me) au; Kennedy & Kenyon 2008).

5. Discussion

We have reported the discovery and analysis of the
microlens planet OGLE-2015-BLG-1771Lb. Our analysis
suggests that the planetary system probably consists of a gas-
giant planet and an ultracool dwarf. This conclusion is based on
a Bayesian analysis that shows that the lens has a ∼65%
probability of being <0.1Me and a ∼85% probability of being
<0.2Me (for αpl=−4.0). Of course, this still leaves a
significant possibility that the lens could be a more massive
star. For example, similar to this event, the Bayesian posterior
for the primary of OGLE-2014-BLG-0962 (Shan et al. 2019)
peaks at a mass of ∼0.07Me with an 84% probability that the
mass is <0.2Me. However, including the parallax measure-
ment for that event yields a measured mass of 0.2Me. In the
present case, the measured source-lens relative proper motion
for the three models is quite large (see Table 2) and the source
is quite faint (I>20.7). This is similar to the case of OGLE-
2005-BLG-169 for which HST (Bennett et al. 2015) was able to
resolve the source and the lens when they were separated by
∼48mas. Thus, even for model A (which has the lowest proper
motion, μrel∼8.5 mas yr−1), the source and lens will be
separated by ∼50mas as soon as 2020. If the host star is an
M<0.1Me star, the lens apparent magnitude should be I 
27, which cannot be observed. Thus, we can verify within a
few years that the host is an ultracool dwarf by excluding M 
0.1Me hosts for OGLE-2015-BLG-1771 using high-resolution
imaging.
For many years (beginning with the second microlens planet,

OGLE-2005-BLG-071Lb; Udalski et al. 2005), most microlen-
sing planets were discovered based on the strategy advocated by
Gould & Loeb (1992) using a combination of wide-area surveys
for finding microlensing events and intensive follow-up observa-
tions for capturing the planetary perturbation. The second-
generation microlensing surveys, conducted by the Microlensing
Observations in Astrophysics (MOA; Sumi et al. 2016), OGLE,
Wise Observatory (Shvartzvald et al. 2016), and KMTNet, aim to
detect planets by wide-area, high-cadence observations, without
the need for follow-up observations. For the planet OGLE-2015-
BLG-1771Lb, the event timescale (<5 days) and the planetary
signal (∼5 hr) are short, and the anomaly is faint (Ianom∼19).
Because the detection limit of the microlens follow-up

Table 3
Physical Parameters for OGLE-2015-BLG-1771

a = -4.0pl αpl=0.6

Lens Parameters Unit Model A Model B Model C Model A Model B Model C

Mhost Me -
+0.077 0.044

0.119
-
+0.086 0.047

0.133
-
+0.055 0.033

0.091
-
+0.076 0.044

0.119
-
+0.085 0.047

0.132
-
+0.049 0.033

0.091

Mplanet MJ -
+0.433 0.251

0.674
-
+0.401 0.226

0.624
-
+2.634 1.615

4.361
-
+0.427 0.255

0.672
-
+0.397 0.227

0.620
-
+2.331 1.576

4.368

DL kpc -
+7.07 1.09

1.00
-
+6.86 1.14

1.04
-
+6.96 1.00

0.96
-
+7.04 1.14

1.02
-
+6.83 1.17

1.05
-
+6.85 1.15

1.02

r⊥ au -
+0.85 0.16

0.16
-
+0.78 0.15

0.15
-
+0.56 0.08

0.09
-
+0.85 0.17

0.16
-
+0.77 0.15

0.15
-
+0.55 0.10

0.09

qE mas -
+0.100 0.018

0.019
-
+0.114 0.020

0.021
-
+0.072 0.010

0.010
-
+0.100 0.018

0.019
-
+0.115 0.021

0.021
-
+0.071 0.010

0.010

mrel
-mas yr 1

-
+8.5 1.5

1.6
-
+9.2 1.6

1.7
-
+10.4 1.4

1.4
-
+8.5 1.5

1.6
-
+9.2 1.6

1.7
-
+10.4 1.4

1.4
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observations is I  18 (Gould et al. 2010; Cassan et al. 2012), this
planet can only be detected by the second-generation microlensing
surveys. For those nine microlens planets that have a >50%
probability to orbit an Mhost<0.1Me host star, only OGLE-
2012-BLG-0358Lb was detected using the strategy of Gould &
Loeb (1992). Moreover, the rate of discovery of such planets is
much higher beginning with 2015 (i.e., the observations of
KMTNet), during which 6/9 planets were detected. In addition,
the typical timescale tE for the microlensing events with an
M<0.1Me lens is 10 days. For the three planets detected
before 2015, all of them have >t 20E days, while 5/6 planets
beginning with 2015 have <t 10E days, which suggests that the
current second-generation microlensing surveys are more sensitive
to the planets around ultracool dwarfs. Future statistical analyses
of the microlens sample of planets around ultracool dwarfs will
potentially reveal the properties of such planets and thus provide
stringent constraints on the planet formation theories.
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