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Supplementary Notes  

 
The first two axes of object space do not depend on the precise image set or network 
It might seem suspiciously serendipitous for IT to be organized according to the first two 

dimensions of object space, given that these first two dimensions were computed using a specific 

image set with a specific deep convolutional network. We confirmed these first two axes in fact 

do not depend strongly on the particular image set (Extended Data Fig. 4d-f) or network 

(Extended Data Fig. 4g-j) used to compute them. The correlations between the first two PCs 

computed using our original image set and using a subset of 1224 images randomly sampled 

from a new image database (consisting of 18,700 images of non-face objects without 

backgrounds and 600 face images from the FEI database, Extended Data Fig. 2d) were highly 

significant (0.92 for PC1 and 0.84 for PC2; both significant at p < 10-15, Extended Data Fig. 4e). 

The first two PCs of object space also did not depend on the precise network used to compute 

them. Extended Data Fig. 4i shows the correlation between the first two PCs computed using 

AlexNet and those computed using 8 other networks (Vgg-f1, Vgg162, Vgg192, Googlenet3, 

Inceptionv34, Resnet1015, Densenet2016, and Inceptionresnetv27). In each case, the correlations 

were highly significant (p < 10-12). Furthermore, replotting Fig. 4b using PC1 and PC2 computed 

from 8 other networks reveals, in each case, four distinct clusters spanning PC1-PC2 space 

corresponding to the four anatomical networks (Extended Data Fig. 4j). Overall, the robustness 

of the first two axes of object space to the specific image set and network used to compute them 

suggests that they are fundamental properties of object space. 

Details regarding the object space map 
Early reports suggested that IT is organized into “feature columns,” groups of cells ~0.5 mm in 

diameter sharing common feature selectivity8,9. The patches we report here are substantially 

larger. Recordings from multiple grid holes suggest each patch spans 3-4 mm (Extended Data 

Fig. 8a-d). Within single grid holes spanning just 1 mm, we found that clustering was not precise, 

with the extent of scatter in preferred axis in a single grid hole on the order of one quadrant of 

PC1-PC2 space (Extended Data Fig. 8e, f). Furthermore, even though cells within the IT object 

space map carry a rich object code consisting of many more than the two dimensions (PC1, PC2) 

defining the map, we did not find clustering for any dimensions beyond the first two, further 

suggesting that dimensions beyond the first two are distributed across the IT object map 

(Extended Data Fig. 8g, h). It is possible that finer scale organization exists; our electrode tracks 

were not perfectly normal to the cortical surface, and recordings from single grid holes might have 

spanned multiple fine columns. Dense recordings spanning each of the networks and their border 

regions and/or high-resolution imaging will be necessary to fully clarify whether there exists finer 

spatial organization within each network, and whether transitions between networks are 

continuous or discrete. 

We found clear evidence for at least three full maps of object space in IT. Previous studies suggest 

the existence of six face patches in each hemisphere, with some individual variability10. Thus we 

think there may exist additional copies of the object space map in IT. Initial microstimulation 

experiments in monkey M1 revealed three connected patches (NML1, NML2, NM3, Fig. 1b, 

Extended Data Fig. 1). FMRI experiments contrasting activation to the five most- and least- 

preferred objects determined from single-unit electrophysiology in M1 also revealed three patches 

in monkeys M1-M4, with correspondence to the patches identified by microstimulation in monkey 

M1 (Fig. 2c). Subsequent fMRI experiments using stimuli from the four quadrants of object space 

(Fig. 4a) revealed four NML patches in both monkeys M3 and M4 (Fig. 4c, d). Based on 



anatomical location, NML1 targeted for electrophysiology in Fig. 2a1 in monkeys M1 and M2 

corresponds to the most posterior NML patch in monkeys M3 and M4 (Fig. 4c posterior, Fig. 4d 

posterior group), NML2 corresponds to the second most posterior NML patch in M3 and M4 (not 

shown in Fig. 4c, Fig. 4d not outlined), and NML3 corresponds to the third most posterior NML 

patch in M3 and M4 (Fig. 4c middle, Fig. 4d middle group). 

Decoding analysis 
To quantify the object information available in the map of object space formed by the four networks, 
we analyzed object decoding accuracy as a function of number of distractor objects, number of 
neurons used to build the decoder, and number of object feature dimensions. Extended Data Fig. 
11d shows decoding accuracy as a function of number of distractor objects (see Methods). We 
compared the actual object feature vectors of a subset of images to the reconstructed feature 
vector for one image (“target”) using a Euclidean distance metric. If the actual object feature vector 
with the smallest distance to the reconstructed object feature vector portrayed the target, the 
decoding was considered correct. For 39 distractors, decoding accuracy was ~ 0.65 when cells 
across four networks were combined. Decoding accuracy increased as a function of number of 
cells within each network (Extended Data Fig. 11e). Object decoding accuracy increased with 
addition of new object space dimensions, up to 10 (Extended Data Fig. 11f; note this is just a 
lower bound, and the dimensionality would likely increase even further with use of other stimulus 
sets).   
 
Intuitively, neurons in certain networks should be more discriminative of certain stimuli. To 
quantify this, for each object and each network, we computed a “specialization index” SIij that 
measures how much better decoding accuracy for object i computed from activity in network j is 
compared to decoding accuracy for object i computed across all other networks, using the same 
number of neurons in each case (see Methods). Distributions of SIij across 1224 objects in the 
NML and body networks revealed many objects with values significantly greater than zero (t-test 
two-tailed p<0.01, Extended Data Fig. 11i), indicating that they have a specialized representation 
by the corresponding network. A predicted consequence is that perturbation of specific networks 
should differentially affect object recognition behavior. This is supported by a recent study 
showing that inactivating millimeter-scale IT subregions results in selective object recognition 
deficits11. 
 
  



 

Table 1 

 

ID
  

L/R Face Body NML Stubby Color Disparity Scene Covered 

IT 

Whole 

IT 

Covered 
Percentage 

           

M1 L 104 102 82 N/A 45 36 30 340 618 55% 

M1 R 90 78 76 N/A 35 60 30 320 603 51% 

M2 L 90 82 95 82 40 60 40 320 570 56% 

M2 R 85 95 91 93 40 50 45 315 560 56% 

M3 L 84 49 66 85 30 71 N/A 299 599 50% 

M3 R 102 67 99 85 22 35 N/A 307 533 58% 

M4 L 73 60 78 81 27 45 N/A 241 510 47% 

M4 R 110 93 60 100 45 50 N/A 306 505 59% 

Avg  90 76 84 85 34 51 36 306 570 53% 

 

 

           

Table 1. Coverage of IT cortex by the object-topic map. The table lists the cortical area in mm2 

for seven different networks identified by seven localizers for the four macaque subjects used in 

this study. IT was defined as the aggregation of TE and TEO (as defined by 12,13). 

 

  



 

Table 2. A table summarizing 8 predictions that follow from the hypothesis that IT contains 

a coarse map of object space, together with justifications and experimental evidence. 

 

 

  
Prediction 

 
Justification 

 
Experimental evidence 

 1. IT should contain a network 
representing stubby objects. 

If IT contains a coarse map of object 
space, then distinct quadrants of 
object space should map to distinct 
networks. 

Fig. 2d, Fig. 4b, c 

2. The spatial layout of patches should 
follow the arrangement of preferred 
stimulus clusters in object space. 

If IT contains a coarse map of object 
space, then the topography of object 
space should be conserved. 

Fig. 4e-g 

3. The object space model should 
parsimoniously explain existing 
experimental findings about large-
scale IT organization. 

The object space model is a 
comprehensive, computable model. 

Extended Data Fig. 9 

 4. Coding principles of the face 
network should generalize to other 
networks in IT. 

In the object space model of IT, face 
patches are not unique, but simply 
responsible for representing one part 
of object space. 

Fig. 2a-d (consistent visual selectivity) 
Fig. 3 (increasing invariance, axis 
model) 
 

5. IT cortex is organized according to 
the first two axes of object space 
rather than low-level features or 
image organization. 

The object space of AlexNet fc6 is not 
based on low-level features. 

Extended Data Fig. 6c, e 

6. IT cortex is organized according to 
shape-based object space dimensions 
rather than high-level semantic 
dimensions. 

The object space of AlexNet fc6 is not 
based on semantic identity. 

Extended Data Fig. 6d, Extended Data 
Fig. 10 

7. The first two axes of object space 
should not depend critically on the 
precise deep network or image set 
used to compute them. 

Initial support for the idea that IT is 
laid out according to object PC1-PC2 
space was based on axes computed 
using a specific set of 1224 images run 
through a specific deep network, 
AlexNet.  Unless we were 
exceptionally lucky, these axes should 
generalize. 

Extended Data Fig. 4d-j 

 8. Different regions of IT should make 
different contributions to object 
recognition behavior. 

Many stimuli are better discriminated 
by one network compared to others, 
depending on their first two 
components in object space. 

Extended Data Fig. 11i 
Rajalingham et al., Neuron, 2019 
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