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The problem of calculating the kinetic energy created by impulsive acceleration of an
incompressible continuously stratified fluid is formulated. Solutions are obtained for small
density perturbations and a particular profile for various Atwood numbers and length scales.
The kinetic energy is reduced when the undisturbed density variation is more diffuse.

. INTRODUCTION

When two fluids of different density separated by an
initially plane interface are set in motion by an acceleration
normal to the interface, small disturbances are amplified
when the acceleration is directed from the light to the heavy
fluid. This is the well-known Rayleigh-Taylor instability.
An instability can also occur when the acceleration is impul-
sive, i.e., it acts for almost zero time but is so large that a
finite momentum is communicated to the fluids. For exam-
ple, a shock propagating normal to the interface has this
effect. This instability goes under the name of the Richt-
myer—Meshkov'*? instability. It should be noted that unlike
the Rayleigh-Taylor case, it occurs independently of the di-
rection of the acceleration. The reason is that the Richt-
myer—-Meshkov instability is caused by pressure gradients
perpendicular to the impulsive acceleration, which arise
from the action of the acceleration on the transverse density
fluctuations, and the direction of the acceleration is unim-
portant. The amplitude of the subsequent evolution of the
disturbance can of course be affected by finite accelerations
or gravitational forces. It should also be noted, however, that
in the absence of such forces the growth of perturbations is
linear in time in contrast with the exponential growth char-
acteristic of Rayleigh-Taylor instablity.

Experiments on shock-generated Richtmyer—-Meshkov
instability have recently been reported by Brouillette and
Sturtevant.® A novel feature of this work is the use of contin-
uous rather than piecewise constant density distributions.
One of the subjects of interest is the dependence on the initial
density distribution of the width of the turbulent mixing lay-
er, which develops in the later stages.

The study of Rayleigh-Taylor instabilities in continu-
ously stratified fluids was first undertaken by Lord Ray-
leigh,* who derived analytical solutions for exponential den-
sity profiles. For general density profiles it is necessary to
solve a second-order differential equation with appropriate
boundary conditions. A derivation of this result has been
given by Chandrasekhar.’ More recently, Mikaelian has ob-
tained approximate growth rates by treating the continuons
stratification as a set of fluid layers of piecewise constant
densities.” This approach has also been applied to the
Richtmeyer-Meshkov instability.®

In this paper we shall calculate the dependence of the
initial kinetic energy of the disturbance on the density per-
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turbation and original density profile. This serves two pur-
poses. First, initial conditions are provided for a fully nonlin-
ear simulation of the finite-amplitude stage of the instability,
and second initial energy densities are found for turbulence
model calculations of the development of the fully turbulent
mixing layer (Barenblatt® and Leith'?).

We shall assume that the fluids are incompressible. This
is a reasonable approximation for shock induced impulsive
acceleration when the shocks are weak as the velocities in-
duced by the shock are subsonic. (This approximation was
made, for example, by Rott'' in a treatment of the vorticity
created by diffraction of a shock by a wedge.) We can then
imagine that the motion is generated by motion of contain-
ing walls with a velocity V' directed parallel to the undis-
turbed density gradient. That is, we suppose the fluid is con-
tained within a perfectly rigid box which at time ¢ = 0 is set
impulsively into motion. At time ¢ = 0™, the normal compo-
nent of velocity on the boundaries is therefore assumed
specified.

In a longitudinally infinite medium set in motion by pas-
sage of a shock as in the Brouillette and Sturtevant experi-
ment, when the transmitted and reflected shocks have trav-
eled a distance large compared with the width of the region
of density change, the state will be like that of a shock reflect-
ed from a sharp interface. Then there is a uniform velocity
far from the mixing region, which can be modeled by motion
of containing walls. In the experiment, the shocks are reflect-
ed by the ends of the apparatus and return to the mixing
region. This additional perturbation is not considered here,
but could be modeled by the application of repeated impul-
sive accelerations to the evolving incompressible flow.

We take axes with the x axis parallel to the undisturbed
density gradient, say vertically upward, and the y axis hori-
zontal. The upper fluid has density p, and the lower fluid has
density p,. The velocity Vis acting downward. We just con-
sider two-dimensional motion (the extension of three di-
mensions is straightforward).

At the initial time ¢ = 07, the density is taken to be

Po=ﬁ(x)+€p’(x9y), (1)

where p—p,, and p' >0 as x - + o. The perturbation is
assumed to introduce no mass, so that f p' dx dy = 0. The
initial velocity field at £ = 0" after the impulsive accelera-
tion satisfies the boundary conditions (u,v) —( — ¥,0) as
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x— + o and v = 0 on vertical side walls.

The imposition of the velocity produces an impulsive
pressure P(x,y)5(t), where 8(¢) is the delta function. The
initial motion is a balance between acceleration and pressure
gradient (viscous and convective inertial terms are negligi-
ble). Hence the initial velocity field is

uwx) = — 222 1), voxm) = =L 22 H,
Po Ox Po

(2)

where H(t) is the Heaviside function
The impulsive pressure is determine by the requirement
that the velocity field is incompressible, i.e.,

o

Z—o, 3)
ax dy

which give the equation to determine the impulsive pressure
i(_l_éf)+ 3(1 aP) 0, 4)
dx \po dx I\po

together with the boundary conditions
ﬂ’——»p,V as x— + oo,
Ix

(5)

ﬂ)---qon as x— — oo.
ax

At a vertical wall y = const, we have simply P /dy = 0.
Writing

P= Vf pdx+ep, (6)
0

we find that the perturbation impulsive pressure satisfies ex-
actly

(12), 202 v2(2). o
o2l (1P )= _yv I L). D
6[6)6 e 3%/ 3\pg 3y o \o)

Note that the right-hand side of (7) is in fact O(€) through
the use of (1). This equation is to be solved, subject to the
requirement that dp'/dx vanishes as x— 4+ o« and dp’/
dy = 0 on side walls. Note that we do not and in general
cannot require that p’ vanishes as x— + .

The vorticity generated by the acceleration is

___(é'&@__@_ 31’) (8)

pa\dx dy dy %

Note that this perturbation vorticity is zero, and the flow is
uninteresting unless the density perturbation depends upon
.

The initial kinetic energy (KE) (per unit span), relative
to the frame moving with velocity V, is

KE=1 [ [ polcu+ 2+ 21ax 9)
where
u+ V= V(l-ﬁ)—ii”— —£9% (10
Po/  po 9% Po -

il. SMALL DISTURBANCES

We now suppose that ¢ is small and consider finding p’
and the velocities to lowest order. Suppose
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p = (1/L)g(x/L)cos ky, (1)

where L is a characteristic length scale of the undisturbed
density profile g, and 277/k is the channel width. We normal-
ize € so that (g(£)d& = 1, where £ = x/L. This makes the
integrated (with respect to x) density perturbation of order
€. Note that € has dimensions density times length. Then

p' = Vf(x/L)cos ky, (12)
where f(£) satisfies the equation
d ( 1 df ) k2L* ( )
41 =2 13
AT R T (2

with f~0asf— + .

A. Limiting cases

There are two limiting cases. First we consider kL — .
(The width of the layer is large compared with the horizon-
tal scale of the density perturbation.) Then

~__P _‘L(i)
/= k2L% de\p)’

provided that g or p do not have jumps or cusps. Substitution
into the expression for the kinetic energy gives the leading
term for the kinetic energy per unit span and per unit width,
denoted by KE/,

' 372 )
KE =£¥ f £ 4.
4L J_. p
The second limiting case is kL — 0. This corresponds to a
sharp interface that is displaced into the surface
x = 5 cos ky. The equivalent density perturbation is a delta
function, g = 8(x/L),e = (p, — p,)n. The results in this
limit can be obtained from the differential equation by em-
ploying the method of matched asymptotic expansions (see
the Appendix). To determine the leading term, one can
work out directly the disturbance for a perturbed sharp in-
terface in the straightforward way used for Rayleigh-Taylor

instability. The result is

(14)

(15)

P =[p\V/(p, +py)]e “cosky, for x>0,

(16)
= [p,V/(p, + p,) 1€ cos ky, for x<O.
The kinetic energy is
KE' = eVZk /4(p, + p,). (17)

Comparing the two expressions (15) and (17), we see
that less kinetic energy is generated when the width of the
undisturbed density distribution is increased. Thus to limit
the amount of kinetic energy in the Richtmyer—-Meshkov
instability, the jump in density should be spread out.

B. Streamfunction

An alternative way of carrying out the calculation is to
employ the streamfunction ¥, which exists by virtue of the
incompressibility equation. We write

b= —w+ep, w=2L y- % (g
ax’ dy
where
uy= —V+eu, vy,=ev'. (19)
Then
P. G. Saffman and D. |. Meiron 1768

Downloaded 11 Dec 2006 to 131.215.225.181. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



TABLE L. Values of E(A, 4) for selected values of 4 and A.

A
\ 0.01 0.1 0.2 0.5 1

15 2 2.5 3 4 5
0 049503 045383 041433 032483 023370 017980  0.14493¢ 0.120826  0.1033049 7.9736—2 647352
0.1 049507 045408 041472 032533 0234140 0180163  0.145225 01210711 0.103514 7.9897—2 648662
0.2 049516 045484 0415898 032686 023548 0181249  0.146115 0121816  0.104152 8.0390—2 65266 —2
0.4 049557 0458021 0420847 033336 0241222 0185904  0.149930 0.125014  0.106889 8.25011—2 6.6977 —2
0.6 049630 0463881 0430123 034588 0252448  0.195045 0157430 0.131301 0112271 866511 —2 7.0340—2
038 049750 047384 0446390 0369039 0273833 0212598  0.171861 0.143402  0.122629 9.46323—2 7.6805 —2
09 049841 0481698 0459727 0389367 0293378 0228805 0185215 0154600 0.132209 0102002 827732
W _ 1 P + Yoo op _ 1 f_p_’ (20) It is perhaps more appropriate to express the kinetic
dy PoOx py Ox po dy energy in terms of the crest to trough displacement 7 of the
Eliminating p’ gives the equation for ¢/, constant density lines, which produce the density perturba-
tion,
Y dpo , I Ip %’ '
V2 4 Yy ZFro Zr Fo 3 V— . 21 =
PV Y+ dx dx + dy Iy dy @b 7 =2¢/(p, + p;)A =2¢/(p, — p>). (30)
In terms of the streamfunction, the kinetic energy is easily ~ Then the expression (28) for the kinetic energy is
shown to be , KE' = [kV*7(p; — p2)¥/8(p; + p) 1E(A,4).  (31)
KE = — VéJf /4 ai dx dy. (22) For given k, 77, ¥, and 4, the energy is least when L is largest.
% The initial conditions calculated here produced by an
This expression is exact. incompressible acceleration can either be used as initial val-
If we write ues for an incompressible stratified Euler code to study the
Y = Vh(x/L)sin ky, where ¢’ -0, as x— + o, (23) latter evolution (this is currently under study) or as provid-
then to 1 t order in €. h satisfies the equation ing initial data for a turbulence model or subgrid model cal-
en o fowes ’ 4 culation. Milinazzo and Saffman'? proposed a turbulence
d’h K2L%h + 1 dp dh _ _ kLg (24)  model for incompressible stratified flow that worked well for
de? p dé d¢ p the effects of density difference on the turbulent mixing layer

with boundary condition #—0, as £— + . The kinetic en-
ergy produced by the disturbance is

KE = ? kVZJ‘ hg dE. (25)

In the limit kL — oo, h ~g/kLp and the kinetic energy is the
same as that obtained before in Eq. (15).

I1l. A PARTICULAR PROFILE
We now consider a definite case. We take
p =1+ Atanh(x/L), g=}sech’(x/L). (26)
The quantity 4 is the Atwood number. The initial density is
Po=p + (€/2L)sech*(x/L)cos ky 27

produced by a deformation of the lines of constant density by
a vertical distance 7 = €/24 cos ky.
We can write (25) in the form

KE' = [€kV?/2(p, + p2) 1E(4,4), (28)
where A = kL. Comparison with the limits (15) and (17),
using the results = _ sech® £ d€ = ¢, shows that

E~}] or E~1/34,
as A—0 or A — w0, respectively.

Results of numerical solution of the equation, using a

two-point boundary value ordinary differential equation
code, are shown in Table I and Fig. 1.

(29)
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and it might be worth studying in the present context.
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FIG. 1. Contours of constant £(A,4) scaled by 1000 for selected values of 4
and A.
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APPENDIX: BOUNDARY LAYER ANALYSIS

Here we consider the behavior of the scaled pressure
f(x) in the limit as A —0. Using matched asymptotic expan-
sions we confirm the results in (16) and (17). We will also
compute the correction to the leading-order term for the
normalized energy E(4,4) given by (29).

The task at hand is to analyze the solution of (13):

)
dé\p d¢ p dE
where A = kL and £ = x/L. In order to generate an outer
solution we make the substitution x = £L and consider the
limit as x> oo with k held fixed. We assume here that the
density 5(x/L) and the perturbation g(x/L) approach their
respective limiting values at an exponential rate as |x|— co.
Thus our derivation will only be valid for a stratification of
the form (26). The modification of this derivation to allow
more general forms of the stratification is straightforward.
The outer solution of (A1) to O(A ?) is given by

(cro + Cr1A + crad z)exp( — kx),

(cro + 1A + crad Hexp( + kx), x>0.
(A2)

The inner solution is obtained by solving (A1) in a perturba-
tion series in A again to O(4 ?). The result is

&
f}(f)"’J; 8(&£)dE 4+ cro0 + 4 (0110

(A1)

x>0,

fo(x)"[

3 3
+C111J ﬁ(fl)dgl) +/12(Clzo +‘—'121J:) p(£,)dé,

+c,mf p(@)d;:f :(—lg—dﬁ

f p(g3)d§3f 5 gzL g(§1)d§1). (A3)

Next we examine the behavior of the inner solution f; (£) as

Cro +A(cr1 — Croé) +/12(CR2 —cm§+
Jo(x)~

Matching powers of 4 and £ as £ — + « we obtain the linear
equations:

O(iogo): Z+ +CIOO=CR0,
O(A£°): ¢1y0 + €11 By
O(A): ¢4,

O(A%€°):

=CRr1s
= —Cgro>

E, +c¢;5 By +crooH, + €130 = Cras
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Cro

c
€rLo +'1(CL1+CLO§)+’12(CL2 +CL1§+’;_0§2)’ x<0.

|€ |- o and the behavior of the outer solution f, (A£) as
A —0such that 1£ 0. This determines the matching region.
As&— + o theinner solution has the asymptotic expansion

J1E)~Z, +crp0+A[crio+ (AL E+ B, )] +42
X[(Ci§2+Di§+Ei)+c121(Ai§

+B:t)+c122(Fi§2+G:t§+Hi)+6120],
(A4)

where
- & | (6045
0

N
A, = lim — + &,)dé,
x = 0 c OP(_§1) i3

'3

2, = lim([ B ede, 4. ¢),
— o0 0
C, =2,/

D, = hm(é‘ f p( +§3)‘F‘ (1 £ ds,

Xng(i§l)d§|—Ci§),

E, = llm(f ol +§3)J§‘ St 6 dg,

XJ; g(i§1)d§1—ci§2—Di§)’
F, =}

AN
G, =é}1n:>(—EJ;P(i§2)

v -efoef sl
~F.£°-G.¢)

In the matching region the outer solution has the asymptotic
expansion

é‘z), x>0,
(A5)
i
O(A°%): D, +cpd, +¢100Gs = —Crus
O(A%?%): C, +2F . ci00 = Cro- (A6)
Matching powers of 4 and £ as £ - — « we obtain
O(A%°): Z_ + cr00 =CLo»
O(A£°): c¢ro+cruB_=cpy,
O(AE): ¢ A_=cpo»
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1.0

FIG. 2. A comparison of the numerical solution of (A1) with the boundary
layer approximation of (A11) for 4 = 0.6 and 4 = 0.1. (i) the numerical
solution for f{£); (ii) the boundary layer approximation of f{£); (iii) the
density p — 1; and (iv) the density perturbation g(£).

O(A%€°%): E_+cmB_ +crooH_ + o0 =0ps»
OA%): D_+cipnA_+cr0G_=cpy,
O(A%7%): 2C_ +2F_cio0 =Cpo- (AT)

Equations (A6) and (A7) comprise 12 equations for 11
unknowns. However, on closer inspection it is found that the
first and last equations of (A6) and (A7) are dependent and
this leaves 10 equations for 11 unknowns. Thus a complete
solution can only be determined to O(4). In order to obtain a
complete solution to O(A ?) it is necessary to continue to
O(13).

For the choice of 5 and g given in (26) it is possible to
solve for the boundary layer solution in closed form. We
have

Z, =14,

A, =1+4,

Bi = —Alog?2,

C, ==}

D, = F[172(4 F 1) ]log[(1 + 4)/2],

G, = +[4/(4 F1)]log[(1+4)/2].
Solving (A6) and (A7) we have

CIOO =A/2:
Crio = 4(A2 — Dlog[(1 —4)/(1+4)]) —Alog2/2,
ey =4

Cro = (14+4)/2, (A8)
cr1 = 1A% — Dlog[(1 —A)/(1 + 4)],
¢ro= —(1—-4)72,

ey =4(4% — Diog [(1 - A)/(1 + D]
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This allows us to determine the outer solution correct to
O(A) from (A2). The inner solution is given by

(&) ~4[tanh(&) — 1] + ¢;00 + Aes10

+ ¢ [€+ Alog(cosh €)1} (A9)
In the matching region the solution has the form
4 + /1 c —C )s >b’
fM(§)~[RO (Rl R0§ g (AIO)
€ro +AlcL +¢.08), £<0.

Thus a solution correct to O(A), which is uniformly valid
over the interval — o <& < 0, is given by

Ju (&) =fo(LE) + f1(&) — fu (E). (All)

In Fig. 2, we compare the asymptotic solution (A11) witha
numerical solution of (13) for A = 0.1 and 4 = 0.6. Note
that as A — 0 the outer solution agrees with (16).

Finally we turn to the calculation of the normalized en-
ergy E(A,4). This is given by

1+~ 1 df \?
E(A =—f dé ——||g - =L ,1“].
(A4,4) ) §p(§)( )+f
(A12)

In order to compute the asymptotic expansion of E, we break
up the region of integration as follows:

o=l L

where & is in the matching region of the inner and outer
solutions given by (A2) and (A3). Over the interval
— 8 < £ <6 we substitute into (A12) the inner solution.
Similarly the appropriate outer solution is used for |£ | > 8.
We then compute the asymptotic expansion of each integral
in the limit 6 - o0, A —0 such that A5—0. The final result
must be independent of 5. We omit the details and indicate
the result:

E(AA)~}+ A [(47 = 1)/44 Jlog[(1 + 4)/(1 — 4)],
(A13)

in agreement with (29) in the limit A -0.
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