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The structure of turbulent line vortices is examined. A general argument is constructed to show that
the vortex must develop an overshoot of circulation if it entrains fluid at a rate greater than that due to
molecular diffusion. A weak hypothesis on the distribution of Reynolds stress leads to the logarithmic
profile of Hoffman and Joubert and an estimate of the maximum Reynolds stress. The results of a turbulence
model due to Saffman are presented and shown to be poor.

I. INTRODUCTION

The flow immediately behind an airplane wing con-
sists of a nearly plane vortex sheet and a wake both
stretching across the span of the wing. Within a short
distance downstream, the vortex sheet curls up and
forms a pair of nearly axisymmetric trailing vortices,
concentrating a large portion of the vorticity from the
vortex sheet into the cores of the vortex pair. At this
early stage of vortex development, appreciable axial
velocities are found in the cores of the vortices. The
details of flow during this stage are still unclear at the
present time. But experiments of Dosanjh et al.' show
that the circulation of each vortex is about 609, of the
circulation at the center of the wing producing the
vortex and remains constant farther downstream.

Farther downstream, the vortices grow by turbulent
diffusion. A study of this stage of vortex growth is of
interest in connection with the practical problem of
avoiding possible damage to aircraft that might acci-
dentally penetrate the vortex wakes of other aircraft.
During this stage, the vortices grow sufficiently slowly
so that the distance between the vortices is large com-
pared with the diameter of each. Thus, there is negli-
gible interaction between them. Further, the axial
velocities in the cores of the vortices, although large
in the early parts of this stage, decay more rapidly
downstream than the tangential velocities and as a
good approximation {or at least a first approximation)
we need study only an isolated trailing vortex with no
interaction of axial motion on the tangential motion.

Lamb?® considered the problem of the diffusion of a
laminar line vortex in time. His similarity solution can
be applied to a laminar trailing vortex by replacing
time in the solution by z/ Uy, where U, is the constant
axial velocity and z is the axial distance. This solution
is conveniently written in the similarity variable »:
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where T is the circulation at any 4 and I is the circu-
lation at . This solution shows a region of rigid body

(2)

rotation close to n=0 where the tangential velocity,
#g, increases linearly with radius. With further increase
in 7, #4 reaches a maximum and then decreases to zero
like 1/9 as p— . If we define a core circulation Ty and
a core radius 71 as the circulation and the radius where
the tangential velocity is a maximum, we can easily
show from Eq. (2) that I'y/Ty=0.716 and 7, is given
by m?=5.04(»/Th).

Squire? suggested that a turbulent trailing vortex
could be described by Lamb’s solution if » in it were
replaced by an eddy diffusivity », as

T/Ty=1—exp(—nt/4a), (3)

where a=v,/T} is, on dimensional grounds, some func-
tion of the vortex Reynolds number To/». Many wind
tunnel studies and the few flight studies to date indi-
cate that the similarity form is reached in a short dis-
tance downstream of the wing; but the circulation pro-
file does not conform to Eq. (3). In particular, Eq. (3)
implies a value for I'y/Ty=0.716, while experiments
indicate a value for the same in the range 0.4-0.6.
Consequently, it is only possible to find a rough value
of a. This is usually done by comparing the maximum
velocity given by Eq. (3) for the observed Ty with the
measured value. Such a value for ¢ provides a rough
measure of vortex growth and is a convenient basis for
comparing the results of various experimenters. It is
given by, as is easily derived from Eq. (3),

2=2.6X103(ToUs/tn’z), (4)

where #, is the observed value of the maximum tan-
gential velocity at an axial distance z. Evidently, z
should be measured from a virtual origin so chosen
that #.%2 is independent of z.

Turbulent trailing vortices have been studied experi-
mentally. Full scale experiments to estimate the maxi-
mum velocity in the trailing vortex of a large airplane
were conducted by Rose and Dee# A small airplane
equipped with an incidence meter (i.e., a pivoted vane)
was flown through the eye of the vortex shed from the
large airplane. Estimates of the maximum velocity in
the vortex at various distances along the axis were
made using the incidence data from the small airplane.
It was found that u.? was a constant indicating that
the vortex was self-preserving. They found the value
for @ to be about 2X107* but in their calculation it
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was assumed that Ty was the same as the circulation at
the root of the wing. If we allow for the fact that Ty
is only about half this value, we have a value for a about
1.0X 104, McCormick et al’ studied the flow in a
vortex shed by a small airplane by using an instrument
labeled the vortimeter. The vortimeter, consisting of a
vertical array of horizontal cylinders, was mounted at
a suitable height above the ground. By flying the air-
plane to one side and suitably above the instrument, it
was possible to arrange the vortex to sweep across the
instrument, this being visually aided by a tuft grid
mounted suitably nearly. From the strain gauge data,
it was possible to estimate the velocity distribution in
the vortex at various distances from the airplane. Their
results indicate that Ty is only 0.45 of the circulation
at the root of the wing, Also from their results we have
calculated a value for ¢ in the range 0.3X10™* to
0.6X 10, This range for ¢ is not far from the estimates
from Rose and Dee’s experiments.

Dosanjh et al.! conducted some experiments on trail-
ing vortices in a wind tunnel. A wing of rectangular
plan form was mounted normal to the side wall of a
wind tunnel. Measurements of flow inclination were
made in the vortex using a five hole flow direction probe.
From the flow direction and total pressure data, axial
and tangential velocity distributions were calculated.
The results indicate that the circulation of the vortex
is about 58%, of the value at the root of the wing. The
value of a¢ was estimated to be about 5X107%. Other
similar experiments lead to similar estimates for a. We
present several of them in Table I. It is observed that
the values of ¢ in flight studies are substantially smaller
than the values from wind tunnel studies. This differ-
ence should be due entirely to the difference in vortex
Reynolds numbers between the two cases. Flight experi-
ments are in the Reynolds number range of 105-107
while the wind tunnel studies are in the range 103-105,
This rather large effect of Reynolds number on the
growth of vortices is surprising.

Hoffman and Joubert® present an analysis of the
turbulent trailing vortex. They derive a universal law
for the distribution of circulation valid for any turbu-
lent vortex not necessarily self-similar. In a region away
from the center and not too close to the outer edge, the
universal law gives a logarithmic variation of circula-

TasLE 1. Growth parameters for trailing vortices.

To/v /T a b=r (Uq/Toz)1?
Rose and Dee ~107 0.4 2X10™* 1.8X1072
Rose and Dee ~10" 0.4 1X10* 1.3X10
(corrected)

Dosanjh et al. 2X10* 0.6 5Xi03 1.3x10?
Newman 2X1r 0.5 2X10°3 7X1072

McCormick et al. ~10¢  0.37 5x10 8.2X107*
Safiman’s model © 1.2 7.6X107% 3.1x107
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tion which can be written as
T/Ti=[(1/H) logw(r/n)+1], (5)

where T'; and 7, are the core circulation and core radius
as already defined. 1/H is a universal constant whose
value they find by comparison with their own experi-
ments to be 2.14. We note that it should be equal to
log,10=2.303 for Eq. (5) to satisfy the definition of »
(i.e., tangential velocity should be a maximum at
radius 7). One of the ways of deriving Eq. (5), as
presented by Hoffman and Joubert, assumes that the
flow in the core follows a universal form independent
of the conditions farther out so that T'/T should be a
unique function of r/r,. This assumption is verified by
their experiments. It is then assumed that ¢T'/dr should
be independent of .. Comparison of the universal profile
given by Eq. (5) with experiments indicates good agree-
ment between them throughout a vortex except for
small regions near the center and the outer edge. A
typical comparison is shown in Fig. 1. In Fig. 1 we have
also included the curve given by Eq. (3) for constant
eddy viscosity. This agrees with the universal profile
for 0<r/r1<1.2 and there is some disagreement for
iarger values of /1. On the other hand, we can rewrite
Eq. (5) in the form (using the consistent value for H):

T/To= (T1/To) [log.(r/r)+1] (6)

which indicates that the slope of the circulation profile
as a function of logr depends linearly on TI'y/Ty. Since
observed values of I'y/T are considerably different from
the constant eddy viscosity value, profiles of T'/Ty
against 7 are considerably different for experiment and
constant eddy viscosity.

As noted earlier, the vortex growth parameter a de-
pends on the Reynolds number I'o/v. Owen’ presents an
analysis of a simple model using an integral method to
explain the observed variation of a¢ with To/», but the
model contains features which are unclear to the present
writers.

An interesting secondary effect of trailing vortex flow
is the generation of an axial pressure gradient. Low
pressure is produced near the axis of the vortex due
to centrifugal acceleration of the fluid in it. As the
tangential velocity in the vortex decays with axial
distance, suction near the axis of the vortex is reduced
and thus we have a positive axial pressure gradient in
the core of the vortex. This pressure gradient induces
an axial velocity defect very much resembling an ordi-
nary wake. Batchelor® studied the development of axial
velocity in a laminar trailing vortex assuming that the
perturbation of axial velocity is small compared with
the free stream velocity. This assumption is believed
to be satisfied in the later stages of vortex growth. In
the early stages of vortex growth, the axial velocity
defect is not small compared with the free-stream
velocity and may significantly affect the development
of the vortex itself.
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F1c. 1. Comparison of circulation profiles. Solid line cor-
responds to the universal profile of Hoffman and Joubert. O-
points corresponding to constant eddy viscosity; --typical
measurement by McCormick ef al. (Ref. 5).

In what follows we study the diffusion of a turbulent
trailing vortex assuming that the axial velocity defect
is small so that it does not affect the tangential motion.
We shall show, from very general considerations, that
the circulation distribution in a turbulent vortex is very
likely to acquire a maximum value which is greater
than I'y. That is, weexpect a strange situation to develop
in which the circulation rises above Ty and then falls
back to I'y as r—o. However, a profile with regions of
negative circulation gradient is unstable in the Rayleigh
sense, which leads us to believe that the overshoot will
be small and followed by a long tail in which the circu-
lation gradient is small and negative. Experiments to
to date do not indicate the presence of any significant
overshoot in the circulation profile implying, perhaps,
that the height of the overshoot is about the same as
the accuracy of the measurements. But, another possi-
bility is that the instability associated with a negative
circulation gradient produces an axial periodic struc-
ture with qualitative features like Taylor vortices in
cylindrical Couette flow. (Casual observations of con-
trails sometimes show this type of structure. One can
also speculate that there may be a relation to some
types of vortex breakdown.)

Safiman® proposed a model for inhomogeneous turbu-
lent flows. The model was applied to some simple flows
by Govindaraju®® with encouraging results. We shall
present the results from a similarity solution using this
model, but the solution so obtained indicates a rather
large overshoot in the circulation profile. Further, the
rate growth of the vortex seems to be overestimated by
this model. The reason for the failure of the model is
still unclear.

It is also possible to study the development of axial
velocity in a trailing vortex using Saffman’s model
assuming the axial velocity defect to be small. The
solution exhibits the same structure as the laminar
vortex studied by Batchelor.® We do not present the
details of such an analysis as the results are not suffi-
ciently interesting. ‘

GOVINDARAJU AND P. G.

SAFFMAN

II. ANALYSIS

A. The Overshoot of Circulation

We can easily derive the basic equation governing
the growth of an axisymmetric turbulent vortex start-
ing from the Navier-Stokes equations. Under the
boundary-layer approximation (3/873>8/9s5) and the
assumption of small axial velocity defect, this equation
can be written as

b, e _ ”_i[ra 9 (“—¢>] ~ 2 ). ()

“az  rar| or\r

In the above Us is the free stream velocity. u,, the
tangential velocity, should be proportional to r as
r—0 and should go like Ty/2xr for large 7 so that the
circulation tends to I'y as »—cc. The distribution of the
Reynolds stress —u,'#,” is unknown, but it should be
bounded for »—0 and should decay to zero as r—.
The flow for large » approaches potential flow since
vorticity fluctuations decay. Thus, it is reasonable to
assume, in fact, that the turbulent fluctuations u,/, «,’
each go to zero faster than 1/7 for large 7 so that —uy'u,’
tends to zero faster than 1/72. A sufficient condition is
that the vorticity fluctuations should be O(r73). It is
reasonable to assert that the vorticity fluctuations are
exponentially small as r—oo.

Equation (7) can be written in terms of the mean
circulation I'=2xruy as (since Ty is a constant):

9 v 9 J /T 1 9
02 =22 52 (5] 1 2
062( o) rar[r dr \r? 27y Or (rius'r’)

(8)

Muitiplying both sides of Eq. (8) by 7 and integrating
throughout with respect to 7, we have:

da (= 4 /T

U ——/ T'—To)rdr= 3~<—>

* 0z 0 ( W dr=r or \r?
9)

The second term on the right-hand side vanishes be-
cause us'u,’ goes to zero faster than 1/7°. From Eq. (8)
it is easily shown that I'—T, goes to zero faster than
1/72 if uy/u,’ goes to zero faster than 1/¢* for large 7.
Thus, the integral on the left-hand side of Eq. (9)
exists and in the first term on the right-hand side we
replace T by I'y as r—« when Eq. (9) becomes

© 7’2

0—21I'

© y—T 2
6/ 0 v (10)
0

oz To Us”

It is easily verified that Lamb’s solution Eq. (2) satis-
fies this identity. Integrating Eq. (10), we have

/wn_rrW=A+&ﬁtﬁA (11)
0

Po ZJO
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where 4 is some constant of dimensions (length)? deter-
mined at the station =2 This integral can be given a
physical interpretation in terms of the angular momen-
tum defect. The integral is also equal to one-half of
the radius of gyration squared of the mean vorticity
distribution.

From Eq. (11) we can deduce that a growing turbu-
lent vortex will acquire a profile in which T is some-
where greater than T'y. We take r,(2) as a characteristic
radius of the vortex, where r; has the definition given
in Sec. I, and introduce a new variable

E=r/n(2), (12)
then
©Th—T y: | ZV(Z—Z())
= =—4 —7", (13
J() / - At 1)
By definition,
a (T Tr
—=)=— hen £=1. 14
as(ro) et (9

If the profile were given by Eq. (3), J(2) =0.4. If
the profile were of constant angular velocity up to r=r;
(i.e., rigid body rotation for <7 and potential flow
for r>n, J(2) =0.25. Thus, the initial value of J(z)
can be expected to lie between 0.25 and 0.4, But as z
grows larger, 7; increases and

J(2)—(2v/Uy) lim(z/r?).

Now, as defined in Table I, ,=5(Tz/U,) V% Hence as
2 increases, the growth of the vortex reduces J(2) until
it is of order 2v/T4b% Using Table I, we have estimates
of this quantity ranging from about 1.2)X102 for Rose
and Dee’s data to about 6)X 102 for the data of Dosanjh
et al. In any event, provided the vortex grows at a rate
faster than the spread due to molecular diffusion alone,
the quantity J(z) decreases from a value greater than
0.25 to a value small compared with one. For the limit-
ing case of infinite Reynolds number, the limiting value
of J(2) is zero.

From the definition of J(2) and the constraint Eq.
(14), plus the further requirement that T « £ as £-0,
it is clear that a reduction in the value of J(z) to some-
thing close to zero can only be accomplished by letting
Fo—T have negative values, unless pathological behav-
ior is allowed. In fact, if we impose the plausible condi-
tion that #s should have only one maximum, it can be
proved rigorously that I'v— I must be negative for some
range in £>1; for the minimum value of J(2) is £ when
I'< Ty everywhere and #, has only one maximum. (See
Fig. 2.)

We have thus shown that depending upon the initial
distribution of tangential velocity and the Reynolds
number of the vortex, the mean circulation in the outer
part of the vortex must be greater than I'y when the
vortex grows sufficiently (i.e., when the vortex grows

A TURBULENT TRAILING VORTEX
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F16. 2. Sketch of T'/T'p against £ Tangent at =1 must pass
through origin and the curve must touch tangent from below.
J(2) is the area between curve and T/To=1, weighted with .
For a single maximum of #,, the curve must lie below tangent
from origin. For a profile with only one maximum for #4, minimum
of J occurs when I'=T¢f for £<1 and I'=T' for £>1. (O Profile
roughly as measured by McCormick. (2) Profile for which J~0.
® The profile corresponding to constant eddy viscosity. ®
“Il’lathologlcal” shape for which J is small and T'<Ty every-
where.

to roughly twice the initial size and beyond). It is to
be stressed that this result is independent of any hy-
pothesis about the Reynolds stress and any numerical
calculations involving any closure approximation should
demonstrate an overshoot of circulation, provided the
closure approximation is self-consistent with the con-
servation of angular momentum. (The overshoot has
been found independently by Donaldson and Sullivan,
who studied the turbulent vortex numerically with a
particular closure approximation.)

B. Similarity Solutions

We consider a similarity solution for which

erely ) - (lig). o0

where 6=6(2) is a characteristic radius of the vortex.
By substitution into Eq. (8), it is found that a neces-
sary condition for the existence of similarity solutions
is that & « (Toz/U,) 2. For definiteness, we choose r1(z)
as the characteristic radius. Then,

r=b(Tez/ o), (16)

where b is a constant to be determined. Substitution
into Eq. (8) gives

1o Lo Leo- 2 2[e2 (D)), an

where the explicit dependence of f and g on the Reyn-
olds number Ty/v is omitted. In addition, f(w)=1,
f< £ as &0 and

() =£(1) (18)
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by the definition of ;. Integrating (17), we obtain

® 2v

/0 §1~1) de=

which could have been obtained directly from Eq. (13).

We repeat that if 2v/Tb?<$ and the velocity distribu-

tion has only one maximum (or equivalently no mini-

mum), it follows rigorously from Eq. (19) that f>1
for some values of £ greater than 1.

Of course, Eq. (17) is one equation for two unknown
functions, and cannot be solved in detail without a
closure approximation relating g and f. (One such ap-
proach is described in Sec. IIC.) Nevertheless, some
interesting results can be derived from a fairly weak
hypothesis about g(£). We know that g(£) =0(¢72) as
£—o, and also g(£) «= £ as £-0 because the velocity
field is regular at the origin. It follows from Eq. (17)
that g is positive near £=0, corresponding to an out-
ward flux of angular momentum and it is reasonable
to believe that g will be positive everywhere. Then,
as £ increases from O to o, g(£) starts like £2, reaches
a maximum at some value of £ and then drops back
to zero.

We denote this maximum value of g(¢) by g and
suppose it occurs at £=£,. We now make the hypothesis
that when the Reynolds number is large, the distribu-
tion of g in the neighborhood of its maximum is flat,
i.e., we suppose that d%/d£*<g,, for £ around §,,. This
hypothesis is equivalent to supposing that the structure
of the turbulence depends weakly on the distance from
the origin in the vicinity of £,. It resembles the hypoth-
esis of a constant stress layer in wall turbulence. Then,
we can approximate Eq. (17) by

(19)

vy L om g

R S =0n7 L () (20)
which integrates to give

f(&) = (gn/78) logt+£(1), (21)

provided £=1 is in the region of constant Reynolds
stress. Now, f(1) =T4/Ty, and it follows from Eq. (18)
that

gm/1l'b2= Pl/ro (22)
or in dimensional terms
max (uy's,') =3 (wU,TY). (23)

Sufficiently accurate measurements of the maximum
Reynolds stress to check this result do not seem to be
available. In addition, we can, of course, write Eq.
(21) as

I'/Ti=log(r/m)+1

which is the logarithmic profile of Hoffman and Joubert,
but it should be stressed that the derivation given here
is fundamentally different from theirs. (Their Reynolds
stress is, in fact, of the opposite sign to that of our
argument.)

GOVINDARAJU AND P. G.

SAFFMAN

C. Analysis Based on Saffman’s Model

Saffman® proposed a model for inhomogeneous tur-
bulence. The model describes turbulence in terms of
two scalar densities, the “energy density” e and the
“vorticity density” w governed by nonlinear diffusion
equations:

2
dw? dw? ou;\ |V ] dw?
ubadl = e 2 BB —— bl
ot T ax; o [(390]') ] Bt dx; <0E ax,~> ’
de de a de
5} “+u; o, =o*e(25;2) V2— e} 5;1 (o-*E a_x) , (249
with
1/6u; Ou; e
g= (M) g 2
Sii 2 (E)xl + ax) ! w ( 5)

In the above u; are the components of the mean velocity
vector, «, o*, B8, ¢, and ¢* are universal constants. For
the solution of any flow problem, we have, in addition
to the model equations above, the equations of conser-
vation of mass and momentum as

ou; _

ax,' o
— tu;— =—pt L 4 L (2Esy).
al +u; 9% p 3 + 6x,-( $ij)

It will be observed that the Reynolds stress tensor
2Es;; is described by a scalar eddy diffusivity E, related
to the turbulent densities e and w by Eq. (25). Also,
the vorticity equation contains (du,/dx;)? and is thus
sensitive to rigid body rotation while the energy equa-
tion contains the strain s;; which is not. This is in
accordance with the intuitive idea that energy produc-
tion should not depend on rotation while vorticity
should, being related to angular momentum.

The constants «, o*, 8, ¢, and ¢* are determined once
and for all by comparing the solutions obtained by
using the model equations with the known properties
of some simple turbulent flows. From such considera-
tions Saffman found that

a*=03, 0=0%*=05, §<BL2, a*<a<a*/V2. (27)

Solutions of the model equations are not very sensitive
to the values of the parameters in the range given by
Eq. (27). One can conveniently choose the values of
the parameters in the middle of the range.

A notable feature of the above model is the presence
of sharp interfaces dividing turbulent and nonturbulent
parts of the fluid. Such interfaces occur in all free turbu-
lent flows including the turbulent vortex of interest
here. Full analytical solutions of the model equations
are not possible because of their complexity and numer-
ical solutions cannot be satisfactorily extended all the
way to such interfaces. We get round this difficulty by
using analytical (series) solutions near the interfaces
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and extend them into the turbulent fluid using a nu-
merical solution,

For the flow in a turbulent trailing vortex, we can
look for a similarity-type solution of the form

ug=(ToUos/2)?F (£),
e=(Tolo/2)J (§),
w= (U(]/Z)K(E),

where £ is the similarity variable defined in Sec. IIB.
Use of Eq. (28) in Eqs. (24) and (26) results in a set
of ordinary differential equations for F, J, and K.
Details of the solution, not presented here, may be
found in Govindaraju!® where the development of axial
velocity in such a flow is also studied. Results of inter-
est in the present context are presented in Fig. 3 and
Table I.

(28)

III. DISCUSSION

A notable feature of all the experimental results
reviewed is the absence of an overshoot in the circula-
tion profile. This is very surprising as we have shown
in Sec. IIB that an overshoot in the circulation profile
is extremely likely. Thus, we are led to believe that
the measurements are of insufficient accuracy or are
not sufficiently extended in the radial direction or are
both. As an example we may consider McCormick’s
profile of Fig. 3 from which we can compute the integral
J(2) of Eq. (13) to be about 2 while we have shown
in Sec. ITA that for any reasonable initial distribution
of circulation, J(#) is less than 0.4 and decreases down-
stream. Thus, we have strong indication that the
measurement of circulation by McCormick ef al. is
of insufficient accuracy. This conclusion is somewhat
strengthened by a significant amount of scatter found
in McCormick’s data. More accurate studies of circu-
lation distribution in vortices are needed to verify this
conclusion.

In Sec. IIC we presented the results of an analysis
using Saffman’s turbulence model. Figure 3 compares
the circulation profile obtained this way with profiles
corresponding to constant eddy viscosity and experi-
ments of McCormick. We note rather large differences.
The model leads to a circulation profile with ‘a large
overshoot (about 409, over the value at ), Although
the presence of overshoot is clearly correct, the magni-
tude of the overshoot is disturbing. Also reference to
values of ¢ and & in Table I shows that the rate of
growth of the vortex is severely overestimated by the
model. This failure of the model to adequately describe
vortex flow is perhaps associated with the stability of
flow due to strong rotation in this type of flow. Some
attempts to modify the model to get a more satisfying
description of vortex flow (without affecting the results
for other simple flows at the same time) have not been
very successful to date.

It should be pointed out that the presence of a sharp
interface between turbulent and nonturbulent parts of

4
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F1c. 3. Comparison of circulation profiles. @ Profile typical of
McCormick’s measurements; (@) Profile for constant eddy
viscosity; ® From Saffman’s model.

the flow is not a serious fault of the model. The bound-
ary between turbulent and nonturbulent regions of any
real flow is, in fact, sharp, but unsteady on a time scale
large compared with that of the turbulent fluctuations.
Thus, if the solution of the model equations were un-
steady, the sharp edge between the turbulent and non-
turbulent regions would be smoothed out when the
flow is averaged over a time scale large compared with
that of the unsteadiness of the flow. Further, such an
averaging would considerably reduce the overshoot in
the circulation profile. This combined with the fact
that the steady circulation profile is strongly unstable
in the Rayleigh sense leads us to believe that the model
equations permit unsteady solutions with more desir-
able averaged properties. Finding such solutions, if
they exist, does not seem to be feasible because of the
complexity of the problem.

Now, some comments about the experimental studies
of the trailing vortices are in order. As the Table I indi-
cates, wind tunnel studies of the trailing vortices are
for a Reynolds number in the range 10°~10° while the
flight studies are in the range 10%-107. From the table
it is seen that the vortex growth rate is significantly
different for flight tests and the wind tunnel experi-
ments. This difference, barring experimental errors, can
only be attributed to the effect of Reynolds number.
The data about vortex growth at the higher Reynolds
numbers come from the only two flight studies to date.
The flight studies are difficult and the accuracy of this
data is not known, Wind tunnel studies to date do not
cover this range. Thus, it seems desirable to conduct
accurate studies of the vortex in a wind tunnel in the
range of Reynolds numbers 10°-10,

Such a study of a vortex can be conveniently carried
out using a wing spanning the test section of a wind
tunnel such that one-half of the wing has an angle of
attack equal and opposite the other. The vortices shed
by the parts of the wing merge to form a single vortex
from the center of the wing. We can easily derive an
expression for the vortex Reynolds number and the
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outer radius of the vortex 7, (defined as the radius at
which I'/Ty=0.95) as

ro/v=CLUoC/2V, 7o=k(%CLCZ) 1/2, (29)

where % is a number whose value is somewhat uncertain.
It is likely to be between 0.1 and 0.3, the former de-
rived from full flight data and the latter from wind
tunnel data. In the above Cy, is the lift coefficient of
each part of wing of chord ¢ placed in a stream of
speed U,. Calculations based on Eq. (29) indicate that
it is not feasible to obtain Reynolds numbers in the
range 10°-107 using reasonable dimensions of equip-
ment. It looks feasible to obtain a Reynolds number of
105 which can be obtained using a wing of chord 15 cm
in a stream of 20 m/sec. The resulting vortex is about
30 cm radius about 10 m downstream of the wing. An
accurate study of even such a vortex is likely to provide
valuable data about the vortices.
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