CaltechAUTHORS
  A Caltech Library Service

Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties

Coughlin, Michael W. and Dietrich, Tim and Antier, Sarah and Bulla, Mattia and Foucart, Francois and Hotokezaka, Kenta and Raaijmakers, Geert and Hinderer, Tanja and Nissanke, Samaya (2020) Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties. Monthly Notices of the Royal Astronomical Society, 492 (1). pp. 863-876. ISSN 0035-8711. https://resolver.caltech.edu/CaltechAUTHORS:20200227-130326807

[img] PDF - Published Version
See Usage Policy.

1271Kb
[img] PDF - Submitted Version
See Usage Policy.

1581Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200227-130326807

Abstract

GW170817 showed that neutron star mergers not only emit gravitational waves but also can release electromagnetic signatures in multiple wavelengths. Within the first half of the third observing run of the Advanced LIGO and Virgo detectors, there have been a number of gravitational wave candidates of compact binary systems for which at least one component is potentially a neutron star. In this article, we look at the candidates S190425z, S190426c, S190510g, S190901ap, and S190910h, predicted to have potentially a non-zero remnant mass, in more detail. All these triggers have been followed up with extensive campaigns by the astronomical community doing electromagnetic searches for their optical counterparts; however, according to the released classification, there is a high probability that some of these events might not be of extraterrestrial origin. Assuming that the triggers are caused by a compact binary coalescence and that the individual source locations have been covered during the EM follow-up campaigns, we employ three different kilonova models and apply them to derive possible constraints on the matter ejection consistent with the publicly available gravitational-wave trigger information and the lack of a kilonova detection. These upper bounds on the ejecta mass can be related to limits on the maximum mass of the binary neutron star candidate S190425z and to constraints on the mass-ratio, spin, and NS compactness for the potential black hole–neutron star candidate S190426c. Our results show that deeper electromagnetic observations for future gravitational wave events near the horizon limit of the advanced detectors are essential.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1093/mnras/stz3457DOIArticle
https://arxiv.org/abs/1910.11246arXivDiscussion Paper
https://github.com/mcoughlin/gwemlightcurvesRelated ItemCode
ORCID:
AuthorORCID
Coughlin, Michael W.0000-0002-8262-2924
Antier, Sarah0000-0002-7686-3334
Bulla, Mattia0000-0002-8255-5127
Foucart, Francois0000-0003-4617-4738
Hotokezaka, Kenta0000-0002-2502-3730
Raaijmakers, Geert0000-0002-9397-786X
Hinderer, Tanja0000-0002-3394-6105
Additional Information:© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model). Accepted 2019 December 5. Received 2019 December 4; in original form 2019 October 24. Published: 10 December 2019. Michael Coughlin is supported by the David and Ellen Lee Postdoctoral Fellowship at the California Institute of Technology. Tim Dietrich acknowledges support by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 749145, BNSmergers. Sarah Antier is supported by the CNES Postdoctoral Fellowship at Laboratoire Astroparticle et Cosmologie. MB acknowledges support from the G.R.E.A.T research environment funded by the Swedish National Science Foundation. Francois Foucart gratefully acknowledges support from NASA through grant no. 80NSSC18K0565 and from the NSF through grant no. PHY-1806278. The light-curve fitting/upper limits code used here is available at https://github.com/mcoughlin/gwemlightcurves.
Group:LIGO
Funders:
Funding AgencyGrant Number
David and Ellen Lee Postdoctoral ScholarshipUNSPECIFIED
European Research Council (ERC)749145
Centre National d'Études Spatiales (CNES)UNSPECIFIED
Swedish Research CouncilUNSPECIFIED
NASA80NSSC18K0565
NSFPHY-1806278
Subject Keywords:gravitational waves – methods: statistic
Issue or Number:1
Record Number:CaltechAUTHORS:20200227-130326807
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20200227-130326807
Official Citation:Michael W Coughlin, Tim Dietrich, Sarah Antier, Mattia Bulla, Francois Foucart, Kenta Hotokezaka, Geert Raaijmakers, Tanja Hinderer, Samaya Nissanke, Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties, Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 1, February 2020, Pages 863–876, https://doi.org/10.1093/mnras/stz3457
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:101620
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:27 Feb 2020 21:12
Last Modified:09 Mar 2020 13:19

Repository Staff Only: item control page