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Evaluation of cluster replicability with MetaNeighbor

Our paper, “An integrated multi-modal transcriptomic and epigenomic atlas of mouse primary motor
cortex cell types”, defines a census of transcriptomic cell types in the mouse primary motor cortex (MOp)
by integrating diverse single-cell RNA-sequencing protocols. We used MetaNeighbor to measure cluster
agreement across independent datasets.

In this vignette, we reproduce the MetaNeighbor analyses presented in the paper, and provide guidance for
users wishing to compare their own data to the BICCN MOp annotation. The vignette, associated scripts
and data can be downloaded from https://github.com/gillislab/MetaNeighbor-BICCN, MetaNeighbor is
available from https://github.com/gillislab/MetaNeighbor.

Installation and required libraries

All analyses rely on the development version of MetaNeighbor. To install the latest development version, run
devtools::install_github("gillislab/MetaNeighbor")

Once MetaNeighbor is successfully installed, we load it into R’s environment, along with the SingleCellExper-
iment package, which is used to store the transcriptomic datasets, and a script containing utility functions
for visualizing results (mn_heatmap and mn_heatmap_pretrained):
library(MetaNeighbor)
library(SingleCellExperiment)
source("scripts/utility.R")

Replicability of the independent clustering of transcriptomic datasets from
mouse primary cortex (MOp): applying MetaNeighbor to the full BICCN
mouse MOp dataset

In this section, we reproduce the first steps of the MetaNeighbor analysis presented in the BICCN mouse
MOp manuscript (“An integrated multi-modal transcriptomic and epigenomic atlas of mouse primary motor
cortex cell types”). In this analysis, we quantified the agreement of the clusters obtained when clustering the
seven single-cell RNA-seq datasets independently.

We start by loading a compact version of the full BICCN dataset. For memory efficiency, we reduced the
dataset to highly variable genes. Alternatively, we provide the code to generate the dataset with all genes.
The highly variable genes are a subset of genes that were consisently detected as variable across all datasets
(using MetaNeighbor::variableGenes):
hvg = readLines("data/hvg.txt")

# NOT RUN: scripts used to download and build datasets
if (FALSE) {

source("scripts/download_data.R")
source("scripts/make_sce.R")
dataset = readRDS("data/full_data.rds")
# restrict to HVGs to reduce memory usage from ~25GB to ~1GB
dataset = dataset[hvg,]
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saveRDS(dataset, "data/full_data_hvg.rds")
}

dataset = readRDS("data/full_data_hvg.rds")
dim(dataset)

## [1] 310 482712

To compute replicability of clusters at the subclass level, we run
aurocs = MetaNeighbor::MetaNeighborUS(

var_genes = hvg, dat = dataset,
study_id = dataset$study_id, cell_type = dataset$subclass_label,
fast_version = TRUE, node_degree_normalization = FALSE, one_vs_best = FALSE

)

This function requires the user to provide a number of inputs, which are fully described in Appendix B.
The basic inputs are a concatenated dataset, a set of variable genes, a set of study labels and a set of cell
type labels. One important option is one_vs_best, which toggles the use of two testing frameworks for
MetaNeighbor, one_vs_best or one_vs_all. One_vs_all testing computes similarity between all pairs of
clusters in all datasets, and calculates an AUROC for each test cluster based on all other cells in its dataset.
One_vs_best testing reports only the similarity between a training dataset and its two closest neighbors
in the test dataset, calculating the AUROC as a competitive test between these two neighbors. This is a
much more strict test of similarity, since the AUROC cannot be boosted by the inclusion of distant neighbors
among the negatives, as is the case with one_vs_all testing.

To compare the difference between one_vs_best and one_vs_all testing, in the following step we will perform
the same analysis as before, but toggle one_vs_best = TRUE.
aurocs_1v1 = MetaNeighbor::MetaNeighborUS(

var_genes = hvg, dat = dataset,
study_id = dataset$study_id, cell_type = dataset$subclass_label,
fast_version = TRUE, node_degree_normalization = FALSE, one_vs_best = TRUE

)

Results are best visualized using heatmaps:
mn_heatmap(aurocs)
mn_heatmap(aurocs_1v1)
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In these heatmaps, red indicates strong matching of clusters across datasests, blue indicates low matching,
gray indicates that this combination of clusters was not tested (in the one-vs-best scenario, we only test the
two best matching clusters against each other). The red blocks that appear along the diagonal indicate strong
evidence of replicability with all clusters from a given subclass matching to each other across all datasets.
Appendix A provides a more detailed explanation on how to read the heatmaps.

We can extend our analysis down to even finer resolution, comparing all pairs of clusters identified in each
independent dataset:
aurocs_1v1 = MetaNeighbor::MetaNeighborUS(

var_genes = hvg, dat = dataset,
study_id = dataset$study_id, cell_type = dataset$cluster_label,
fast_version = TRUE, node_degree_normalization = FALSE, one_vs_best = TRUE

)

mn_heatmap(aurocs_1v1)
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However, with this much data, replicability patterns become more complicated to visualize. In the manuscript,
we quantified cluster-level replicability by counting the number of reciprocal best matches exceeding a
threshold of AUROC>0.7, yielding a total of 70 cross-dataset clusters (not shown).

The analysis presented in this section is fast (less than 30s) but very memory intensive (more than 50GB of
memory). How can we use this data as a reference in a more memory-efficient way?

How replicable are my clusters? Using pre-trained MetaNeighbor to compare
to reference BICCN data

The BICCN MOp data is the most comprehensive and robust reference for mouse cortex currently available.
Since annotation of clusters is a large bottleneck of single-cell RNA-seq analysis, users with novel brain-related
data may find it helpful to compare results to the BICCN data to infer cluster labels, or to determine whether
additional quality control is required. Alternatively, users with annotated clusters may wish to measure
replicability of their transcriptional profiles directly.

MetaNeighbor offers the possibility of pre-training a model, which lets users run quick comparisons against a
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low-memory reference dataset. These models were generated using the following code:
# NOT RUN: Code used to generate pre-trained MetaNeighbor models
# for the BICCN mouse MOp dataset
if (FALSE) {

dataset = readRDS("data/full_data.rds")
hvg = readLines("data/hvg.txt")

pretrained_model = MetaNeighbor::trainModel(
var_genes = hvg, dat = dataset,
study_id = dataset$study_id, cell_type = dataset$subclass_label

)
write.table(pretrained_model,

"pretrained_models/pretrained_biccn_mouse_mop_subclasses.txt")

pretrained_model = MetaNeighbor::trainModel(
var_genes = hvg, dat = dataset,
study_id = dataset$study_id, cell_type = dataset$cluster_label

)
write.table(pretrained_model,

"pretrained_models/pretrained_biccn_mouse_mop_clusters.txt")
}

Example 1: comparing an external dataset to the BICCN reference clusters

As a first example, we will compare the data from Paul et al. (2017) to the BICCN reference clusters. This is
a dataset of GABAergic neurons from the somatosensory and motor cortices of the adult mouse brain. Cells
were selected manually and RNAseq libraries were prepared using a modified Cel-seq approach, making it
very technically distinct from the BICCN MOp reference. We load the data and the pre-trained model:
paul_2017 = readRDS("data/paul.rds")

pretrained_biccn = as.matrix(read.table(
"pretrained_models/pretrained_biccn_mouse_mop_clusters.txt", check.names = FALSE

))

We run MetaNeighbor, similar to the full dataset, except that we provide the trained model instead of highly
variable genes - the HVG list is already contained in the trained model.
aurocs_1v1 = MetaNeighbor::MetaNeighborUS(

trained_model = pretrained_biccn, dat = paul_2017,
study_id = rep("paul_2017", ncol(paul_2017)), cell_type = paul_2017$Celltype,
one_vs_best = TRUE

)

Again we visualize the results with a heatmap.
mn_heatmap_pretrained(aurocs_1v1)
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The heatmap is different: columns are train clusters, rows are test clusters, but since training and testing
only occurs in one direction, the heatmap no longer has symmetrical dimensions.

To see how similar our test data is to the BICCN MOp reference in more detail, we can look at top hits for
every cluster:
head(sort(aurocs_1v1["paul_2017|ChC",], decreasing = TRUE), 10)

## snSS|Pvalb Vipr2 snCv3Z|Pvalb Vipr2 scCv2|Pvalb Vipr2 scSS|Pvalb Vipr2
## 0.9177885 0.9064904 0.8911058 0.8843750
## snCv2|Pvalb Vipr2 snCv3M|Pvalb Vipr2 scCv3|Pvalb Vipr2 snCv3M|Macrophage_2
## 0.8247596 0.8221154 0.8096154 0.7688492
## scCv3|L6 IT Sulf1_1 scSS|L5 IT Tcap_2
## 0.7256434 0.6997596

head(sort(aurocs_1v1["paul_2017|Som-Nos1",], decreasing = TRUE), 10)

## scSS|Sst Chodl snCv3M|Sst Chodl scCv3|Sst Chodl snCv2|Sst Chodl
## 0.9977467 0.9969165 0.9963235 0.9953748
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## scCv2|Sst Chodl snCv3Z|Sst Chodl snSS|Sst Chodl snCv3M|L5/6 NP_1
## 0.9951376 0.9951376 0.9949004 0.9773897
## scCv2|L6 NP Trh_2 snCv3M|L6b Rprm_2
## 0.9557675 0.9377298

We recover expected top hits for these two cell types (ChC = Chandelier, Som-Nos1 = Long projecting
interneurons). There are also “unexpected” hits due to imbalance in dataset composition which are normally
filtered out by swapping train and test (i.e., reciprocal testing), but they have lower AUROC values than the
true hits.

Example 2: comparing one of the BICCN datasets to the BICCN reference subclasses

To further illustrate differences in memory consumption and the importance of swapping test and train, we
compare one of the BICCN datasets with the pre-trained model. We chose to use the 10X cells v2 dataset,
because it’s the largest dataset. We subset our compact dataset to 10Xv2 cells (the full version can be built
from the dowload_data.R and make_sce.R scripts), and load the pre-trained model:
tenx_cells = dataset[, dataset$study_id == "scCv2"]

pretrained_biccn = as.matrix(read.table(
"pretrained_models/pretrained_biccn_mouse_mop_subclasses.txt", check.names = FALSE

))

We run MetaNeighbor against the pre-trained BICCN subclasses:
aurocs_1v1 = MetaNeighbor::MetaNeighborUS(

trained_model = pretrained_biccn, dat = tenx_cells,
study_id = rep("scCv2", ncol(tenx_cells)),
cell_type = tenx_cells$subclass_label, one_vs_best = TRUE

)

mn_heatmap_pretrained(aurocs_1v1)
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We find almost perfect replicability structure, except for non-neurons, for example endothelial cells (Endo),
which map to training non-neuronal clusters not present in the 10X v2 dataset, such as vascular and
leptomeningeal cells (VLMC).

Again we can investigate top hits:
head(sort(aurocs_1v1["scCv2|L6 IT Car3",], decreasing = TRUE))

## scCv2|L6 IT Car3 snCv2|L6 IT Car3 scCv3|L6 IT Car3 scSS|L6 IT Car3
## 0.99998776 0.99996158 0.99992846 0.99864419
## scCv3|L6 IT snCv3M|L6 IT
## 0.10342055 0.08925864

If cell type composition is balanced across datasets, as in the example above, we find that replicability scores
are well captured by one-directional testing and training. Also, if the population is present in the test dataset
but is missing in some of the reference datasets we correctly find that there are no strong hits. However,
when there are populations in the training data that aren’t in the testing data, these can show up as incorrect
strong matches:
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head(sort(aurocs_1v1["scCv2|Endo",], decreasing = TRUE), 10)

## scCv2|Endo snCv3M|Endo scCv3|Endo snCv2|Endo snCv3M|VLMC scSS|Endo
## 0.9635843 0.9444217 0.9243138 0.9228041 0.9134615 0.9058920
## snCv3Z|Endo snCv3M|Peri scCv3|VLMC snSS|Endo
## 0.8740187 0.8636116 0.8327878 0.8320972

Directly comparing the output from the pretrained model to MetaNeighbor’s usual output can help identify
incorrect strong matches. We run MetaNeighbor using the full dataset below:
ref_aurocs = MetaNeighbor::MetaNeighborUS(

var_genes = hvg, dat = dataset,
study_id = dataset$study_id, cell_type = dataset$subclass_label,
fast_version = TRUE, one_vs_best = TRUE

)

ref_aurocs = ref_aurocs[rownames(aurocs_1v1), colnames(aurocs_1v1)]

We compare the two score matrices and look for outliers, in particular cluster comparisons that have high
scores in the pre-trained model but low scores with the full model:
comparison_names = expand.grid(MetaNeighbor::getCellType(rownames(ref_aurocs)),

colnames(ref_aurocs),
stringsAsFactors = FALSE)

comparison_names = paste(comparison_names[,1], comparison_names[,2], sep = " vs ")
is_outlier = aurocs_1v1 > 0.8 & ref_aurocs < 0.5

par(mfrow = c(1,2), mar=c(5,4,2,2)+0.1)
plot(ref_aurocs, aurocs_1v1, pch = 16,

xlab = "AUROC full model", ylab = "AUROC pretrained")
rect(0.3, 0.8, 0.6, 0.9, lty = "dashed")

plot(ref_aurocs, aurocs_1v1, xlim = c(0.3, 0.6), ylim = c(0.8, 0.9), pch=16, cex = 1,
xlab = "AUROC full model", ylab = "AUROC pretrained")

text(ref_aurocs[is_outlier], aurocs_1v1[is_outlier]-0.01, comparison_names[is_outlier],
cex = 1)

0.0 0.4 0.8

0.
0

0.
4

0.
8

AUROC full model

A
U

R
O

C
 p

re
tr

ai
ne

d

0.30 0.40 0.50 0.60

0.
80

0.
84

0.
88

AUROC full model

A
U

R
O

C
 p

re
tr

ai
ne

d

Endo vs scCv3|VLMC

Endo vs snCv3M|Peri

9



This shows that we overestimate AUROCs when populations are missing in the test dataset compared to the
reference (Peri and VLMC). There are two solutions to this problem: ignore “impossible hits” by filtering out
known missing populations from the training data, or by reverting to the reciprocal test-train framework
rather than using the pre-trained models, though we note that this requires more memory.

Performance summary

Below we list the amount of memory needed and the run times for each of the analyses presented in this
vignette.

Full
BICCN

Full BICCN
(HVG only)

Pretrained BICCN -
Paul 2017

Pretrained BICCN - BICCN
10X V2 cells

Dataset memory
usage

25 GB < 1 GB 0.1 GB 7 GB

MetaNeighbor
memory usage

+10-15
GB

+10-15 GB + 0.1 GB + 4 GB

MetaNeighbor run
time

30-40s 20-25s < 1s 10s

Run times are low overall and should not be a concern. Reducing the BICCN data to HVGs makes
MetaNeighbor analyses tractable to machines with a medium amount of memory (MetaNeighbor memory
usage is overestimated due to R’s tendency to not use garbage collection when memory is available). When
using the pre-trained model, the amount of memory depends on the size of the testing data.

Appendices

Appendix A: Interpretation of one_vs_best heatmaps

The heatmap above shows the results of MetaNeighbor tests for human, marmoset and mouse GABAergic
subclasses from the BICCN Non-Human Primate working group. Dark red 3x3 blocks along the diagonal
indicate high similarity among the three datasets. We discuss how to interpret this figure in more detail in
the following.

MetaNeighbor measures the similarity between groups of cells based on gene expression patterns. It is
formalized as a supervised learning task by treating one group of cells as a training set, and reporting test
performance for other cell groups as the area under the receiver operating characteristic curve (AUROC).
In the heatmap, each column shows the performance for a single training group across three test datasets.
Colors indicate the train-test performance, where red is high, yellow is random, and blue is low. AUROCs
are computed between the two closest neighbors in the test dataset, where the closer neighbor will have the
higher score. All others are test groups shown in gray (NA). Thus, each column contains 6 non-NA values.

The first column contains test results for human Lamp5, indicated by the colored bars along the outside of
the heatmap. Here we’ve labeled the results for all tests with a number and a letter: numbers indicate the
test dataset, where 1 is human, 2 is marmoset and 3 is mouse; letters indicate closest (a) and second-closest
(b) neighboring groups.

The first test is circular: if we look within the human dataset (1) we find that Lamp5 is its own closest
neighbor (1a), with Sncg as the next-closest neighbor (1b) and that these two groups are very distinct from
one another (AUROC>0.95). The results are identical in marmoset, where the closest neighbor is Lamp5
(2a), and the second closest is Sncg (2b). Mouse results (3) are slightly different: while mouse Lamp5 is the
closest neighbor (3a) the second-closest is mouse Vip (3b). Overall, the high AUROCs for these corresponding
types suggests that there is a conserved Lamp5 gene expression signature.
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Figure 1: Heatmap interpretation
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Appendix B: MetaNeighbor parameters

Below we provide a detailed description of MetaNeighbor’s parameters:

• var_genes: A vector of genes.

• dat: A SingleCellExperiment object where expression data for all datasets can be found as a merged
matrix in the first assay slot.

• study_id: A vector of labels indicating the study of origin for each cell.

• cell_type: A vector of labels indicating the transcriptomic identity of each cell.

There are also three optional parameters to specify:

• fast_version: This parameter toggles the use of the legacy MetaNeighborUS function, which is not
advised for datasets with >10K cells. The fast version of MetaNeighbor approximates the legacy
function, but fully parallelizes and vectorizes neighbor voting using matrix multiplication of ranked cell
profile vectors.

• node_degree_normalization: This parameter toggles the use of node degree normalization. This
parameter was initially designed to mitigate the impact of differential transcriptome coverage across cell
clusters, such that those with a greater number of non-zero genes would not be universally ‘loved’ by
all others. However, we have since found that good variable gene selection and paired testing/training
is sufficient to avoid this issue. We advise setting this to FALSE for most applications, as it can create
artifacts associated with cell composition differences between datasets.

• one_vs_best: This parameter toggles the use of two testing frameworks for MetaNeighbor, one_vs_best
or one_vs_all, and is currently only compatible with the fast version of MetaNeighborUS. One_vs_all
testing is equivalent to the legacy function of MetaNeighborUS, which computes similarity between all
pairs of clusters in all datasets, and calculates an AUROC for each test cluster based on all other cells
in its dataset. One_vs_best testing reports only the similarity between a training dataset and its two
closest neighbors in the test dataset, calculating the AUROC as a competitive test between these two
neighbors. This is a much more strict test of similarity, since the AUROC cannot be boosted by the
inclusion of distant neighbors among the negatives, as is the case with one_vs_all testing.
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