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SUMMARY

Determining cell types is critical for understanding neural circuits but remains elusive in the living 

human brain. Current approaches discriminate units into putative cell classes using features of the 

extracellular action potential (EAP); in absence of ground truth data, this remains a problematic 

procedure. We find that EAPs in deep structures of the brain exhibit robust and systematic 

variability during the cardiac cycle. These cardiac-related features refine neural classification. We 

use these features to link bio-realistic models generated from in vitro human whole-cell recordings 

of morphologically classified neurons to in vivo recordings. We differentiate aspiny inhibitory and 

spiny excitatory human hippocampal neurons and, in a second stage, demonstrate that cardiac-

motion features reveal two types of spiny neurons with distinct intrinsic electrophysiological 

properties and phase-locking characteristics to endogenous oscillations. This multi-modal 

*Correspondence: costasa@alleninstitute.org (C.A.A.), ueli.rutishauser@cshs.org (U.R.).
AUTHOR CONTRIBUTIONS
C.P.M., J.K., A.N.M., and U.R. designed in vivo experiments and collected in vivo extracellular data. A.N., Y.W., and C.A.A. 
constructed the all-active human single-neuron models and simulated data. A.N.M. performed surgery and provided patient care. 
C.P.M. and Y.W. performed data analysis with guidance from C.A.A. and U.R. J.K. first noticed the cardiac-related changes in the 
electrophysiology. C.P.M. wrote the initial draft of the manuscript. All authors discussed the results at all stages of the project and 
contributed to the final manuscript.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.02.027.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2020 April 15.

Published in final edited form as:
Cell Rep. 2020 March 10; 30(10): 3536–3551.e6. doi:10.1016/j.celrep.2020.02.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.celrep.2020.02.027


approach markedly improves cell classification in humans, offers interpretable cell classes, and is 

applicable to other brain areas and species.

In Brief

During the heartbeat, the brain pulsates and recording electrodes move. Mosher et al. show that, in 

the living human brain, such movement affects the spike waveform leading to enhanced separation 

between cell types. Single-cell models of human neurons reveal distinct properties of the cell types 

identified in vivo.

Graphical Abstract

INTRODUCTION

Complex behaviors depend on the recruitment and cooperation of many types of excitatory 

and inhibitory cells within and across brain circuits (Buzsáki, 2006; Klausberger and 

Somogyi, 2008). Advances in genetic sequencing offer an increasing ability to identify and 

separate between cell types, giving rise to a more elaborate view of the composition of brain 

circuits (e.g., Hodge et al., 2018; Soltesz and Losonczy, 2018; Tasic et al., 2018). How these 

cell types contribute to high-level functions in vivo remains largely unknown. This is 

particularly true in humans, where little is known about how genetically distinct neural 

classes differ in their electrophysiological or morphological properties, how they behave in 
vivo, and how they support cognition (Anastassiou and Shai, 2016; Buzsáki et al., 2012). 
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The primary means of monitoring the activity of brain circuits in vivo are extracellular 

recordings where putative excitatory and inhibitory cells are identified based on features of 

the extracellular action potential (EAP) waveform (Buzsáki, 2004; Buzsáki and Draguhn, 

2004). More recently, genetic markers and fluorescence imaging have been used to monitor 

specific types of neurons in rodents (Kohara et al., 2014; Senzai and Buzsáki, 2017) and 

monkeys (Stauffer et al., 2016). Such cell-type-specific resolution is lacking in humans 

because genetic manipulation in vivo remains infeasible.

In humans and nonhuman primates, the classification of putative inhibitory interneurons and 

excitatory pyramidal cells is often based on the width of the EAP waveform. Units with 

broad spiking (BS) waveforms are classified as pyramidal cells, while units with narrow 

spiking (NS) waveforms are classified as interneurons (Barthó et al., 2004; Connors and 

Gutnick, 1990; Markram et al., 2004; McCormick et al., 1985; Peyrache et al., 2012; Rao et 

al., 1999; Sirota et al., 2008; Wilson, 1994). NS and BS waveforms have been directly linked 

to these two classes in some instances using intra- or juxtacellular monitoring in rodents and 

monkeys (González-Burgos et al., 2019; Joshi and Hawken, 2006; Krimer et al., 2005; 

McCormick et al., 1985), cross-correlation of spike trains to reveal monosynaptic excitatory 

and inhibitory connections (Barthó et al., 2004; Mendoza et al., 2016; Peyrache et al., 2012; 

Tamura et al., 2004), and antidromic electrical stimulation to identify excitatory projection 

neurons (Johnston et al., 2009). Importantly, in vivo recordings throughout the brain reveal 

that groups of neurons with NS or BS EAPs play functionally distinct roles in behavior 

(Anastassiou et al., 2015; Ison et al., 2011; Mitchell et al., 2007; Oemisch et al., 2015; 

Peyrache et al., 2012; Peyrache and Destexhe, 2019; Rutishauser et al., 2015; Takahashi et 

al., 2015; Trainito et al., 2019; Viskontas et al., 2007). Nevertheless, the assumption that all 

NS cells are inhibitory and all BS cells are excitatory is not always true: some excitatory 

cells elicit narrow spikes and some inhibitory cells elicit wider spikes (Freund and Buzsáki, 

1996; Gray and McCormick, 1996; Onorato et al., 2020; Vigneswaran et al., 2011 Gouwens 

et al., 2019). Apart from the procedures outlined above (which are often impractical or 

impossible to perform in human recordings), we lack a method for relating EAPs to the 

spectrum of cell types identified and predicted by genetics, morphology, and 

electrophysiology in humans and in monkeys. While several studies have identified EAP 

clusters beyond NS and BS types in primates and have demonstrated distinct functional roles 

for these different classes (Ardid et al., 2015; Onorato et al., 2020; Trainito et al., 2019), as 

yet we are unable to link these putative cell classes to the cell types recognized based on 

slice electrophysiology and predicted by genetics.

One reason it is difficult to assign cellular identity using features of the average EAP is that 

the EAP does not directly reflect the intracellular action potential waveform (Anastassiou et 

al., 2015). In fact, the EAP waveform reflects details of the recording electrode (dimension, 

material; Nelson and Pouget, 2012), properties of the extracellular space (distance to neuron, 

conductance Logothetis et al., 2007; Anastassiou et al., 2015), the cellular morphology (e.g., 

Gold et al., 2006; Hunt et al., 2019), the ionic composition of the cell, and other aspects such 

as brain state (Buzsáki et al., 1996). As the recording electrode moves farther away from the 

cell body of a neuron, the EAP width increases (Gold et al., 2007), so that the same neuron, 

recorded at different distances, can appear to elicit a range of narrow and broad EAP widths 

(Pettersen and Einevoll, 2008). By considering how the EAP varies at multiple locations 
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around a cell with high-density electrodes in rodents, cell types beyond the NS versus BS 

distinction can be identified in the awake behaving animal (Jia et al., 2019). In the human 

brain, there is a disconnect between the number of morphological and genetically distinct 

neural subtypes (Aevermann et al., 2018; DeFelipe et al., 2013; Hodge et al., 2018) (the 

adult rodent neocortex is estimated to consist of more than 100; Tasic et al., 2018), and the 

types we are able to differentiate in vivo based on distinctive EAP properties. Moreover, it 

has been inherently difficult to interpret distinguishing EAP properties (beyond width) and 

link them to known intracellular features of neural types.

In many experimental paradigms, especially in humans with chronic implants, recordings 

are restricted to electrodes for which the activity of a neuron is detectable only on a single 

channel (e.g., on a microwire or a single shank of the Utah array). To improve the spatial 

sampling using only a single channel, one option in acute paradigms is to drive the electrode 

in small steps and record from the same neuron at several locations. Another possibility in 

both acute and chronic recordings is to take advantage of the motion produced through 

inherent physiological mechanisms, e.g., pulsatile motion of the brain caused by rhythmic 

changes in intracranial pressure during the heartbeat. While typically perceived as an 

unwanted effect that compromises data collection (Chen et al., 2012; Fee, 2000; Srivastava 

et al., 2005), here we propose that periodic, heartbeat-related motion improves the spatial 

sampling of the extracellular space. Just as high-density recordings improve unit 

classification compared to microwire recordings, this periodic sampling offers insights into 

the spatiotemporal variability of EAP features, which, in turn, can be linked to distinct, cell-

class-dependent properties.

RESULTS

The EAP Waveform Is Modulated by Cardiac Motion

During the heartbeat, the intracranial pressure changes. We hypothesize that this causes 

electrodes to move (Figure 1A). If an electrode moves during a cardiac pressure wave, then 

the EAP will be recorded at different locations around a cell (Figure 1B). In this study, we 

monitored the heartbeat (electrocardiogram [EKG]) and isolated 1,090 single units from 31 

awake behaving humans across 47 recording sessions. We recorded neurons from both 

subcortical (hippocampus [HIPP], amygdala [AMY], putamen [PUT], substantia nigra [SN], 

subthalamic nucleus [STN]) and cortical structures (orbitofrontal cortex [OFC], anterior 

cingulate cortex [ACC], pre-supplementary motor area [pre-SMA]) (Figures 1C and S1A; 

Tables S1 and S2).

We quantified four features of the EAP waveform: amplitude (AMP), half-width (HW), 

trough-to-peak width (TPW), and repolarization time (REP; Figure 1D). We calculated these 

“standard” EAP features for the mean EAP of each unit. We also aligned the single-unit 

spike times to the R-wave of the EKG, i.e., the prominent peak that denotes ventricular 

depolarization and muscular contraction that initiates the cardiac cycle. Through spike-R-

wave alignment, we observed that EAP features of the same unit varied consistently and 

periodically as a function of the cardiac cycle (Figure 1E). For example, some units 

exhibited an increase in EAP AMP toward the end of the cardiac cycle with a concomitant 
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decrease in EAP HW (Figure 1E, left panel) while others exhibited the inverse response 

(Figure 1E, middle panel)

To quantify the periodic variation of each feature during the cardiac cycle, we calculated a 

motion index (MI, see STAR Methods, e.g., an MI = 5.0 indicates that the feature increases 

by 5% during the cardiac cycle). On average, the EAP AMP varied 1.7% +/− 0.78% 

throughout the brain, with the strongest modulations in deep-brain structures (Figure 1F, 

AMP MI of deep subcortical structures: AMY = 2.6, HIPP = 2.3, PUT = 1.7, SN = 1.9, STN 

= 2.7 versus cortex: ACC = 0.9, OFC = 0.88, pre-SMA = 0.8). Across all neurons recorded 

in a brain area, the EAP was significantly modulated by the cardiac cycle in HIPP, AMY, 

PUT, STN, and SN (p = 1.9 3 10–12, 0, 0.031, 0.025, 0.0003) but not in ACC, OFC, or pre-

SMA (p = 0.147,0.269, 0.115). The average AMP MI in subcortical structures was 

significantly higher than in cortex, suggesting that brain motion associated with the cardiac 

R-wave is stronger in deep-brain structures (subcortical = 2.24 +/− 0.44, cortex = 0.87 +/− 

0.04; t test, t(6) = 5.189, p = 0.002).

EAP features covary with distance from the recording electrode, e.g., with increasing 

distance between electrode and cell body, dendritic currents give rise to an increase in EAP 

HW as the AMP decreases (Anastassiou et al., 2015; Gold et al., 2006; Pettersen and 

Einevoll, 2008). We captured these dependencies by calculating a motion correlation (MC) 

metric between each EAP feature and AMP (see STAR Methods). This metric shows, for 

example, that AMP and HW were often anticorrelated with an MC of [C0]0.15 ± 0.45 

HW/AMP across all cells (mean ± SD); i.e., if AMP decreases by 10%, HW increases by 

1.5%. Across the population, we found that HW negatively correlated with AMP (HW and 

AMP were linearly correlated for each neuron, and these correlation coefficients exceeded 

zero for the population; t test, t(1089) = [C0]11.6, p = < 0.0001).

Variability in EAP Features during Cardiac Motion Reveals Three Cell Classes in the 
Human HIPP: NS, BS1, and BS2

Given that the motion-related effect on EAP waveforms is abundant in deep-brain structures, 

we next focused our analyses on the HIPP, a deep-brain region where, in rodents, numerous 

excitatory and inhibitory neural classes have been identified (Freund and Buzsáki, 1996; 

Graves et al., 2012; Hunt et al., 2018; Klausberger et al., 2003; Harris et al., 2018). We 

applied our analysis to the 69 units exhibiting the strongest cardiac-related AMP MI (the 

subset of cells with the strongest AMP modulation during the cardiac cycle, mean AMP MI 

= 4.1 ± 3.1; this subset was selected by comparing the EAP of an individual cell to the 

bootstrap shuffled waveforms at p < 0.05, STAR Methods). Although the remaining 114 

hippocampal units had comparably weaker AMP MI (1.1 ± 0.7), these more weakly 

modulated units still exhibited statistically significant modulation as a group (t test, t(113) = 

2.14, p = 0.03). In later parts of the paper (Figure 7), we apply the methods developed from 

the robust group of modulated neurons to the entire group of hippocampal units.

We clustered the EAP features of these 69 units in two ways: using standard features and 

with the inclusion of motion features. Standard features delineated units with narrow and 

broad EAP widths (Figures 2A and 2B; Figures S2A and S2B), henceforth, referred to as NS 

and BS units (comparison of width between NS and BS cells, respectively: HW = 0.225 
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±0.020 ms versus 0.272 ± 0.025 ms, rank sum p = 1.02 × 10−7; TPW = 0.348 ± 0.150 ms 

versus 0.740 ± 0.127 ms, p = 1.8 × 10−8; REP = 0.226 ± 0.140 ms versus 0.447 ±0.070 ms, p 

= 1.5 × 10−7). Interestingly, a bimodal distribution of NS and BS cells was observed across 

different brain areas (see violin plots Figure S1B). The Hartigan’s dip test of multimodality 

indicates that TPW (the most common metric used to distinguish NS and BS cells in humans 

and nonhuman primates) is significantly multimodal in ACC (p = 0.048), pre-SMA (p = 

0.0001), and HIPP (p < 0.0001). Similarly, the distribution of TPW values is better explained 

by a mixture of two Gaussian distributions (bimodal) than a single Gaussian (unimodal) in 

ACC, AMY, HIPP, OFC, and pre-SMA.

While the standard EAP feature set identified two clusters of EAPs, the feature set including 

motion features (MI and MC) revealed three. Motion features split BS units into two groups: 

BS1 and BS2 (Figure 2C). While BS1 and BS2 units share standard features, their motion-

related features differ (Figures 2C and 2D; e.g., TPW is more strongly negatively correlated 

with AMP for BS2 cells than BS1 cells). Even though BS1 and BS2 units originate from the 

same BS population, BS1 versus BS2 cannot be distinguished from standard EAP features 

alone. The optimal number of clusters in the standard space is 2, indicated by minimizing 

the f(k) density function (Figure 2A). However, forcing these units to cluster into three 

groups in the absence of motion features did not result in the same BS1 and BS2 groups 

identified from the feature set accounting for motion (Figure S2C). Hierarchical clustering 

analysis illustrates that NS cells maintain their cluster labels in both the standard and motion 

feature sets, while BS units split into BS1 and BS2 only when utilizing motion features 

(Figure 2E). Of the 69 hippocampal units exhibiting the strongest EKG-related EAP 

variability, 18 were identified as NS (26%), 19 as BS1 (27%), and 32 as BS2 (46%).

It is possible that in some recording sessions the cardiac pulse is stronger, leading to greater 

electrode movement. We would expect this to be reflected in a greater EAP AMP MI. 

Among all three clusters, cardiac-related motion equally and significantly influenced the 

EAP AMP MI (t test of bootstrap Z-scored AMP MIs are different from zero, NS t(17) = 

4.53, p = 0.00029; BS1 t(18) = 5.77, p = 0.000018; BS2 (t(31) = 6.80, p = 1.28 × 10–7; 

comparison of EAP AMP MI among cell types: ANOVA, F(66,2) = 1.84, p = 0.168). As a 

control, we assessed whether units belonging to different clusters were recorded 

simultaneously. Of 39 unique pairs of cells recorded on the same wire, 14 pairs (36%) were 

of different cell types (probability of recording each cell type simultaneously: p(NS and 

BS1) = 5%, p(NS and BS2) = 10%, p(BS1 and BS2) = 21%)). Of 269 unique pairs of cells 

recorded on the same bundle of wires on a hybrid electrode, 616 (55%), were pairs of 

different cell types (p(NS and BS1) = 9%, p(NS and BS2) = 9% p(BS1 and BS2) = 28%)). 

As BS1 and BS2 units can be recorded simultaneously on the same wires, it is unlikely that 

these reflect cell types from different regions of HIPP and, instead, are more likely to 

represent homogeneously dispersed cell types within a region (albeit, different regions of 

HIPP could have these cell types in different proportions).

While we largely focus on the HIPP we also tested our methodology in the AMY and STN, 

two brain areas with units exhibiting significant modulation in EAP AMP during the cardiac 

cycle (Figure 1F). Clustering with motion features revealed additional groupings in the 

AMY (Figure S3), a structure known for its plethora of distinct cell types (Millhouse and 
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DeOlmos, 1983; Spampanato et al., 2011; Washburn and Moises, 1992). In contrast, we 

found no additional clusters in the STN (Figure S4), a structure that has a relatively 

homogeneous cytoarchitecture consisting largely of projection neurons (Yelnik and 

Percheron, 1979). Hence, large cardiac-related modulation in EAP features does not 

necessitate more unit clusters.

Biophysically Realistic Simulations Estimate the Cardiac-Related Motion at About 3 μm

We employed biophysically realistic single-neuron simulations of 10 spiny (SP) and 4 

aspiny (AP) human neurons to understand how cardiac-related motion influences EAPs 

(Figure 3A). The three-stage optimization workflow to fit the biophysical models (Figure 

3B) relies on two data modalities: the reconstructed morphology and the somatic 

electrophysiology responses from whole-cell patch-clamp experiments (Figure 3C; see 

STAR Methods). The multi-objective optimization procedure aims to minimize the sum of 

objectives (somatic electrophysiology features) resulting in the fit of a set of ionic 

conductances (free parameters; Figures 3D–3F). The outcome of this procedure are 

conductance-based single-neuron models reflecting in vitro, whole-cell patch-clamp 

recordings from cortical neurons obtained from tissue resected from the human temporal and 

frontal lobe of 11 patients (Table S3). The models capture the intracellular dynamics during 

spiking and offer the ability to simulate the EAP (Anastassiou et al., 2015; Gold et al., 2007, 

2006; Jun et al., 2017; Schomburg et al., 2012; Taxidis et al., 2015).

We simulated cardiac-related motion in these models through “virtual” extracellular 

recordings. We selected a location (“recording electrode”) within 100 μm from the soma of 

the model neuron and moved the location of this electrode to emulate the relative motion 

during the EKG period. Examples of simulations are shown for two models, one AP (Figure 

4A) and one SP (Figure 4B). The modulation of EAP features during the simulated motion 

is qualitatively similar to in vivo recordings (e.g., compare Figures 4A and 4B to Figure 1E). 

We calculated the standard and motion-related EAP features for each model for 1–20 μm of 

simulated electrode motion. Figure 4C illustrates the feature space for 3 μm of relative 

motion (range selected for EAPs AMP-matched to those observed in vivo; 43.4 ± 24.8 mV). 

We compared the AMP and AMP MI modulation of our in vivo recordings to the model 

predictions and estimate that the microwires in our in vivo recordings are about 31.2 ± 15.6 

μm away from the cell body (Figure 4D top) and transverse a relative distance of 3.45 ± 3.07 

μm during the cardiac cycle (Figure 4D bottom).

Classifiers Indicate that NS Cells Are AP Neurons, while BS Cells Are SP

It remains unknown whether and how the recorded hippocampal units map onto cells of 

distinct types at the morphological or genetic level. We hypothesized that the properties of 

cells recorded in vivo could be predicted by mapping their EAP data into the model feature 

space, where we know both the morphological and electrophysiological cell type and can 

produce a simulated EAP signature. These models offer an ideal tool to test whether EAP 

features alone can differentiate between distinct (and known) cell types – if successful, these 

classifiers can be then applied on experimental EAP waveforms. To do so we implemented 

two aproaches: (1) an experiment-based approach, and (2) a simulation-based approach.
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In the experiment-based approach, we trained classifiers using the experimental EAP data 

and their associated EAP cluster labels, NS and BS (Figure 2). We then used these classifiers 

to predict the morphological type of the model neurons, AP and SP, solely based on EAP 

properties (see STAR Methods). We compared classifiers trained on different combinations 

of EAP features: (1) only standard EAP features, (2) standard + MI features, (3) standard + 

MI + MC features, and (4) only MI + MC features. Figure 5A shows the performance 

accuracy on experimental data left out in training. Confusion matrices indicate that standard 

features are required and sufficient to differentiate NS from BS units. Indeed, classifiers with 

standard features (S) perform as well as classifiers with motion features included (S + MI + 

MC) (cf. Figure 5A, S to S + MI + MC). Confirming this result, the beta coefficients of the 

dividing plane used by the classifier are high for standard EAP features, indicating their 

significant contribution to the separation between NS and BS units (i.e., TPW, HW, REP; 

Figure 5B). When applying this classifier (trained on the standard experimental feature 

space) to the EAP feature space of the single-cell models, AP units were robustly classified 

as NS cells and SP units as BS cells, respectively (Figure 5C). This shows that a classifier 

trained on experimental data generalizes successfully to the model data.

In the simulation-based approach, we trained classifiers on the model EAP data using the 

ground truth label determined from the reconstructed morphologies of the human neurons 

(SP or AP; label based on morphological presence or absence of dendritic spines). The 

classifier that used standard features discriminated model AP and SP neurons with 84% 

accuracy (Figure 5D). We tested this simulation-based classifier on the experimentally 

recorded, hippocampal EAP waveforms. The majority (17/18, 94%) of neurons labeled 

experimentally as NS were classified as model AP neurons, while the majority (46/51, 90%) 

of neurons labeled BS were classified as SP. Thus, the simulation-based classifier, like the 

experiment-based classifier, robustly generalizes across feature spaces and attributes NS 

waveforms to AP neurons and BS waveforms to SP neurons.

Intrinsic Electrophysiological Properties of BS1 versus BS2 Neurons

Our analysis of motion-related EAP features indicates the presence of two BS classes, BS1 

and BS2 (Figure 2C). What differentiates BS1 from BS2 units? To characterize the 

properties of BS1 versus BS2, we used simulation- and experiment-based approaches as 

above.

In the simulation-based approach, we “recorded” the EAP at 25 random locations around 

each human neuron model, simulating 3 μm of motion (i.e., the average motion estimated in 

Figure 4D; 10 model SP neurons were used from 8 patients). Cluster analysis on the EAP 

features of the SP models resulted in two groups: SP1 and SP2 (Figures 6A and 6B). The 

motion-related features of the two clusters shared many similarities with those of BS1 and 

BS2 units recorded in vivo, e.g., B2 and SP2 exhibit strong negative correlations between 

HW/TPW and AMP (cf. Figures 2D and 6B, HW MC or TPW MC). While some model 

neurons (e.g., model #5, Figure 6C) exclusively gave rise to EAPs belonging to a single SP 

waveform cluster (in this case SP1), most models had EAPs in both clusters (e.g., 70% of 

the EAPs for model #1 belong to the SP1 cluster and 30% belong to the SP2 cluster). This 

lack of one-to-one mapping of EAP cluster-labels to each model occurs because the same 
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neuron can elicit a spectrum of EAP waveforms, depending on the proximity of the 

recording electrode to the soma and dendrites (Gold et al., 2006). Mirroring the random 

location of extracellular recording locations in humans, we chose to label a model neuron as 

SP1 (or SP2) if the majority of its EAPs (>13/25 EAPs) belonged to the SP1 (or SP2) 

cluster. We identified 4 neurons as SP1 and the remaining 6 as SP2. We trained classifiers 

with these labels to identify model EAP waveforms as SP1 or SP2 (Figure S5). The 

classifier that utilized motion-based features performed with 20% higher accuracy on left-

out test data than the classifier based on standard features alone (41% versus 62% 

respectively, Figure S5). These data illustrate that relative motion can uncover EAP features 

unique to individual classes and thereby facilitate classification of model cells.

In the experiment-based approach, we trained classifiers on the in vivo data using the BS1 

versus BS2 cluster labels (Figure 2C) and a variety of EAP feature sets. Motion-related 

features supported the separation of BS1 and BS2 classes: classifiers using these features 

performed better (84% accuracy) compared to the classifier solely trained on standard 

features (60% accuracy; Figure 6D). Can classifiers trained exclusively on experimental 

EAP data predict the label of single-cell models? We applied the experimental-based BS1-

BS2 classifier (including MC and MI features) to the SP-BS simulated EAP data and 

revealed that six model SP neurons are robustly identified as BS2, while the remaining four 

are classified as BS1 (Figure 6E).

Both the model- and experiment-based approach converge on the same result: BS1 and BS2 

EAPs originate from two classes of neurons, namely, SP1 and SP2 (Figure 6F; the majority 

of BS1 and BS2 neurons are labeled as SP1 and SP2 both by the model- and experiment-

based classifier). Yet, what is unique about the cellular properties of BS1-SP1 versus BS2-

SP2 neurons that leads to such EAP feature- and motion-based separation? We analyzed 

multiple intracellular electrophysiological features (e.g., input resistance, firing rate) from 

the in vitro patch-clamp experiments each single-cell model was generated on. We found 

that SP2-BS2 cells exhibit a higher mean rheobase current, a lower input resistance, a longer 

spike ramp time, and lower membrane time constant compared to their SP1-BS1 

counterparts (Figure 6G). Intriguingly, these 4 features account for the largest variance in the 

intrinsic feature space and together map onto the first component in PCA space (Figure 6H, 

scores of PC1 are significantly different for BS1-SP1 and BS2-SP2 cell types, t test, p = 

0.01). This shows that the split of the BS class into BS1 and BS2 sub-classes is not arbitrary 

but maps onto neural classes with distinct intracellular features. Importantly, these intrinsic 

cellular properties cannot be measured directly in vivo in humans and are only accessible by 

bridging across data modalities, in our case via biophysically detailed modeling.

NS, BS1, and BS2 Cells Have Distinct In Vivo Properties during Endogenous Oscillations

Functionally distinct cell types uniquely coordinate their spikes to other classes and/or with 

respect to endogenous rhythms measured by the local field potential (LFP) (e.g., 

Klausberger et al., 2003; Klausberger and Somogyi, 2008). To pursue functional 

classification of human hippocampal NS, BS1, and BS2 neurons, we compared their in vivo 
spiking characteristics. We classified the entire population of 183 recorded hippocampal 

cells (i.e., this analysis is not restricted to only the strongly modulated cells) in a hierarchical 
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fashion: by first applying the NS versus BS experiment-based classifier (Figure 5A) and then 

the BS1 versus BS2 model-based classifier (Figure 6D) to units identified as BS. Of the total 

population of 183 recorded hippocampal neurons, 49 were identified by the experimental 

classifier as NS (27%), 53 as BS1 (29%), and 81 as BS2 (44%). As with the original subset 

of 69 strongly modulated units, in this expanded set units of different cell classes were 

recorded by the same wire or wire bundle suggesting they are members of truly distinct cell 

types (72/145, 49%, unique pairs on same wire are of different cell types; 616/1,112, 55%, 

of pairs on same bundle are from different cell types; percentage of unique pairs that are 

BS1 and BS2 pairs, p(BS1 and BS2 same wire) = 27%, p(BS1 and BS2 same bundle) = 

33%). NS, BS1, and BS2 units in the human HIPP exhibited similar low spike rates (NS: 1.6 

± 1.1 Hz, BS1: 1.2 ± 0.31 Hz, BS2: 1.4 ± 1.1 Hz, mean ± SD, ANOVA F(2,176) = 0.47, p = 

0.625) with only 13/183 hippocampal cells (7%, 3 NS, 2 BS1, 8 BS2) having a mean rate 

that exceeded 10 Hz. Low spike rates are typical for human hippocampal (Rutishauser et al., 

2008; Viskontas et al., 2007) and neocortical cells (Peyrache et al., 2012). BS1 and BS2 cells 

exhibit higher variability in their spike rates than NS cells (Figure 7A). Autocorrelograms 

indicate that this variability in spike rate is due in part to transient bursts of increased spiking 

activity of, on average, relatively quiescent cells (Figure 7A, burst index, Figure 7B). As a 

population, BS1 and BS2 cells are burstier than NS cells, which, in turn, exhibit uniform 

spike times (Figure 7B, bar plot; 57% of BS1 and BS2 cells are bursty compared to 35% of 

NS cells [bursty/not bursty × NS/BS, chi-square(1) = 6.56, p = 0.0104]; 22% of BS1 and 

BS2 cells fire with uniform rates compared to 51% of NS cells [uniform/not uniform × 

NS/BS, chi-square(1) = 12.66, p = 0.0004]).

We quantified spike-LFP synchrony with two measures: spike field coherence (SFC) and the 

Von Mises kappa value, an estimate of spike phase concentration. Human HIPP neurons 

exhibit a high propensity to synchronize their spiking to local theta (Figures 7C–7E; 34% of 

the n = 992 unit-LFP pairs show significant phase concentrations as assessed by their kappa 

values; Figure 7E average of three bars with theta label). BS2 neurons are more likely to 

synchronize to local theta than BS1 or NS neurons (BS2 = 42%, NS = 28% and BS1 = 29%; 

Figure 7E), while BS1 cells exhibit enhanced coupling with low and high gamma 

oscillations (i.e., 43% BS1 cells fire at high gamma versus 19% BS2 and 18% NS). 

Furthermore, BS1 and BS2 are more likely to entrain to beta than NS (Figure 7E). Note that 

for the spike-field analysis we chose pairs of units and LFPs recorded on different 

neighboring electrodes; this ensures that the observed spike-field relationships remain 

unaffected by the EAP of a recorded unit contaminating low-frequency currents in the LFP 

(Anastassiou et al., 2015; Schomburg et al., 2012; Zanos et al., 2012). As an additional 

control, we repeated the analysis using only the subset of units from microwire bundles in 

which all three types were simultaneously recorded (n = 8 recording sessions, 115 cells) and 

observed similar effects (Figure S6). The differences in spike-field synchronization between 

cell types cannot be explained by differences in LFP. Indeed, across the population, the 

spike-triggered power is similar among different neuron types (Figure S6C).

We conclude that NS, BS1, and BS2 are distinct cell classes in the human HIPP that differ in 

their EAP waveform, their putative intrinsic properties, and their unique coupling 

characteristics to ongoing and functionally relevant hippocampal LFP oscillations. 

Importantly, the functional characteristics were not a priori included in the identification of 
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these classes. Instead, they resulted as an unbiased prediction of the waveform-based 

classification that linked in vivo recordings to models with known intrinsic cellular 

properties.

DISCUSSION

We found that the EAP waveforms of neurons recorded with extracellular wires in the 

human brain in vivo exhibit small but robust and temporally periodic feature modulation 

during the cardiac cycle. This modulation occurs throughout the brain, with the strongest 

effects in deep-brain structures. These deep structures may be more susceptible to cardiac 

motion because of the dense bed of arteries at the base of the brain (Terem et al., 2018). 

While changes in EAP features due to cardiac-related motion have not been systematically 

documented in the human brain, cardioballistic motion effects are prominent in other 

electrophysiological and imaging techniques (e.g., EEG, [Srivastava et al., 2005], calcium 

imaging [Chen et al., 2012], functional imaging [Terem et al., 2018]). We show through 

biophysical simulations of human cortical neurons that a relative displacement of ~3 μm can 

account for the experimentally observed EAP waveform jitter. This estimate complements 

predictions of functional imaging in humans that estimate cardiac motion to be ~50 μm or 

less (Terem et al., 2018). The simulations also indicate that the distance between a neuron 

and a recording electrode is approximately 20–30 μm, an estimate in agreement with in vitro 
experiments (Anastassiou et al., 2015) and computational modeling (Gold et al., 2007, 2006; 

Taxidis et al., 2015). Although the estimated recording distance suggests a relatively narrow 

radius for isolating single units in vivo (~30 μm radius around the soma, scarcely twice the 

radius of most microwires), within this region the features of the EAP vary substantially. For 

example, within the 30 μm radius of a soma, the majority of EAPs exhibit an inverse 

relationship between EAP AMP and width features, an observation predicted by modeling 

data that can be explained by the active propagation of action potentials (Pettersen and 

Einevoll, 2008; Anastassiou et al., 2015; Gold et al., 2007, 2006).

We identified BS1 and BS2 cells by capitalizing on motion features caused by the heartbeat, 

but in principle the same classification could be achieved by intentionally introducing small 

amounts of motion in the brains of humans or other species (e.g., by micro-manipulating 

acute recording electrodes in cortex of rats or the archistriatum of zebra finches; Fee, 2000). 

We further predict that other bodily rhythms modulating intracranial pressure (e.g., the 

respiratory cycle) could be used to quantify motion-related changes in the EAP to identify 

novel cell classes. Given the recent interest in how rhythms of the body (respiratory, gastric, 

cardiac, circadian) modulate neural activity and cognition (e.g., Heck et al., 2017; Tort et al., 

2018; Zelano et al., 2016; Kern et al., 2013; Kim et al., 2019; Pedemonte et al., 2003), a 

future set of experiments will need to carefully characterize how bodily rhythms influence 

EAP waveforms, spike detection, spike sorting, and the resulting cell classification.

We defined three classes based on EAP features, NS, BS1, and BS2, that also differ in their 

in vivo spike characteristics as well as their predicted intrinsic cellular properties. The 

narrow-width EAP waveform and decreased spike rate variability of NS units (robustly 

classified in our analysis as AP neurons) is strongly reminiscent of inhibitory interneurons 

and basket cells (e.g., Barthó et al., 2004, Joshi and Hawken, 2006; Krimer et al., 2005; 
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McCormick et al., 1985; Gouwens et al., 2019; Anastassiou et al., 2015). But what about the 

differences between BS classes, BS1 versus BS2? The inverse relationship between rheobase 

versus input resistance and ramp time points to BS1 neurons being electrotonically more 

compact than BS2. BS1 neurons also possess a considerably increased (i.e., roughly double) 

membrane time constant over their BS2 counterparts, suggesting they are more responsive to 

fast oscillatory input (Eyal et al., 2016; Koch, 2004), an observation also supported by the 

spike-field analysis (see below). The lower membrane time constant of BS2 neurons allows 

their membrane potential to be more easily entrained by slower synaptic input. BS1 versus 

BS2 EAP waveforms are indistinguishable when considering standard EAP features (but, 

crucially, are separable by their motion-related EAP features) suggesting that their short-

term spike dynamics are supported by similar mechanisms (i.e., transient Na+ and K+ 

currents that shape the AP waveform in the ~2 ms window discernable by extracellular 

recordings are indistinguishable in the two BS classes). Slower K+ and Ca2+-dependent 

conductances affect slower components of the EAP waveform and contribute to slower 

spike-related mechanisms such as adaptation (Anastassiou et al., 2015).

We find that AP NS units are entrained to a broad range of frequencies (from theta to high 

gamma), indicative of general inhibition (Fellous et al., 2001; Hasenstaub et al., 2005), 

whereas BS2 cells phase lock preferably to slower theta and alpha rhythms and BS1 cells 

preferably entrain to faster gamma oscillations. Such cell-class-specific entrainment is 

consistent with the intrinsic properties of the two classes. While the electrotonic 

compactness of BS1 cells renders them ideal for integrating faster synaptic drive, the 

increased membrane time constant of BS2 cells makes them more susceptible to slower 

synaptic drive (notably, in our work the intrinsic properties of BS classes are determined 

independently from phase-locking characteristics). Continuous rhythmic firing units versus 

clustered rhythmically firing units covering the theta band have been reported in human 

HIPP and are reminiscent of BS1-versus BS2-type activity (Isokawa-Akesson et al., 1987).

A possible limitation in ascribing specific intrinsic properties to BS1 versus BS2 neurons 

such as input resistance and rheobase is the use of neuron models derived from human 

neocortex rather than HIPP. The main challenge is the lack of morphological and 

electrophysiological single-neuron data from human single neurons from identified brain 

regions beyond human neocortex to allow the development of biophysically faithful and 

region-specific single-neuron models. Even so, we assess this limitation as relatively 

inconsequential toward our conclusions. Specifically, separation of BS in vivo units into BS1 

versus BS2 in our work can be solely achieved based on feature modulation and does not 

depend on identifying intrinsic properties of each cell type. Yet, the fact that conclusions 

derived separately from the experimental- and simulation-based approach such as BS1 

versus BS2 and SP1 versus SP2 cluster compositions are in such close agreement offers 

confidence in the model-based predictions. Regarding the estimation of intrinsic properties, 

while in rodents pyramidal neurons can exhibit differences, they also share many properties 

like an extended dendritic morphology, spike generation, and support mechanisms along 

their cables (Spruston, 2008), and distinct molecular markers (e.g., calcium/calmodulin-

dependent protein kinase, which is present in both hippocampal and neocortical pyramidal 

cells ([Erondu and Kennedy, 1985]). We expect EAP features captured by the human 

neocortical models to be a reflection of these shared commonalities, while dissection of even 
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finer, region-specific cell-type-differences requires a dedicated set of in vitro experiments 

and effort toward specific model development.

Our analysis focuses on four EAP waveform metrics (AMP, HW, TPW, and REP), because 

(1) they are general standards for cell classification in the in vivo literature, and (2) the use 

of these features allows for a common feature space between the model and in vivo data. We 

encountered several challenges in relating the model and experimental-feature spaces, e.g., 

matching the recording filters in the model with those of the in vivo hardware and software, 

applying the same feature detection methods to both model and in vivo data, accounting for 

the impact of inherent background noise in the in vivo data that is absent in the modeling 

data. Because our models are based on reconstructions of in vitro recordings, we optimized 

not only the spiking properties of the cell model (spike timing, spike rate) given a particular 

morphology but also the intracellular action potential waveform, especially the EAP AMP 

and HW. Indeed, because HW is included in the optimization workflow and strongly 

matches the in vitro recordings, it is a major feature in discriminating cell classes in both the 

model and experimental space (Figure 5E).

While here we focus on the human HIPP, our overall approach is applicable to other brain 

areas and other species where EAPs are jittered by relative motion; in the case of cardiac 

motion we showed evidence in other deep structures like the AMY and STN. Furthermore, 

we showed how biophysical models can be used to link to seemingly dissociated datasets (in 
vitro physiology and morphology reconstructions with in vivo recordings of unit activity and 

LFPs) to offer insights into the identity and unique properties of recorded neurons. We view 

this approach as a promising means toward data reconciliation, cell classification, and 

functional interpretation particularly in human brain circuits where most of the multi-modal 

experimentation attainable in animal models remains unfeasible.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Ueli Rutishauser (ueli.rutishauser@cshs.org). The spike-time data from 

the in-vivo recordings in epilepsy patients, the EAP waveform classifiers, the in vitro 
recordings used to generate the single-neuron models, and the all active human single 

neuron models are available publicly for download (see Key Resources Table). This study 

did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 31patients volunteered to participate in the in vivo experimental recordings (see 

Tables S1 and S2 for age and gender). All subjects gave informed consent and all protocols 

were approved by the Institutional Review Board of Cedars-Sinai Medical Center. Eleven 

patients were implanted with hybrid depth electrodes for monitoring the source of 

intractable epilepsy (for details, see Carlson et al., 2018; Rutishauser et al., 2010). In 

addition to these recordings, we recorded electrophysiological signals intraoperatively from 
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20 patients with motor disorders being implanted with deep brain stimulation (DBS) 

electrodes (for details, see Kamiński et al., 2018).

Model neurons were based on human neurons obtained from cortical tissue resected from 11 

patients for the purpose of removing epileptogentic tissue (Table S3). Surgical specimens 

were obtained from local hospitals in collaboration with a network of neurosurgeons. All 

patients provided informed consent for tissue donation, and all experimental uses were 

approved by the respective hospital Institutional Review Board before commencing the 

study (for more details, see http://celltypes.brain-map.org/donors).

METHOD DETAILS

In vivo neural recordings with cardiac monitoring—Eleven patients were implanted 

with hybrid electrodes for monitoring the source of intractable epilepsy (for details, see 

Rutishauser et al., 2010). Each electrode contained a bundle of 8 microwires for recording 

single unit activity and local field potentials. Electrodes targeted, bilaterally, the amygdala, 

hippocampus, anterior cingulate cortex, orbitofrontal cortex, and pre-supplementary motor 

area. The location of the electrodes was verified with post-operative T1-weighted structural 

MRI scans registered to an atlas in MNI152 space (Kamiński et al., 2017). Broadband (0.1 

Hz to 9 kHz) electrophysiological signals were recorded postoperatively at a 32 kHz 

sampling rate using a 256-channel ATLAS system (Neuralynx, Bozeman MT). Signals were 

locally referenced to one of the eight microwires in the bundle.

In addition to these recordings, we recorded electrophysiological signals intraoperatively 

from 20 patients with motor disorders being implanted with DBS electrodes (for details, see 

Kamiński et al., 2018). During each intraoperative session, two microelectrodes were placed 

to map the transitions through different brain regions and to identify the target for the DBS 

electrode. Microelectrode recordings targeted the subthalamic nucleus, the substantia nigra, 

or the putamen. Target locations were determined stereotaxically based on preoperative 3T 

T1- and T2-weighted MRI scans co-registered with preoperative CT scans (Kamiński et al., 

2018). Broadband (0.1 Hz to 32 kHz) electrophysiological signals were recorded 

intraoperatively at a 40 kHz sampling rate using a NeuroOmega system (Alpha Omega, 

Nazareth Il.). Signals were referenced to the cannula that delivered the microwire.

During neurophysiological recordings we simultaneously recorded the electrocardiogram 

(EKG) from two surface electrodes placed on the chest and referenced to the neck. EKG was 

sampled at 1 kHz and recorded and amplified through the headstages used to record LFP 

from the macro-contacts on the neurophysiological recording electrodes. EKG was filtered 

offline (3rd order FIR filter, 3–30 Hz bandpass) and the peak of the QRS wave was detected 

using the open-source software QRSTool (Allen et al., 2007). Interbeat intervals (IBIs) 

measured the time between subsequent R-waves in milliseconds.

All-active single-neuron models with motion simulation—In this paper, we 

constructed model neurons and simulated motion for 4 biophysically-realistic human 

cortical aspiny (AP) neurons and 10 spiny (SP) neurons obtained from cortical tissue 

resected from 11 patients for the purpose of removing epileptogentic tissue (Table S3). Each 

in vitro experiment resulted in a set of electrophysiology responses to standardized current 
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injection protocols as well as a reconstructed morphology (both available online via https://

celltypes.brain-map.org/).

Each human single-neuron model was generated based on a set of electrophysiological 

features (Figure 3). Moreover, since dendritic and somatic features of cell morphology affect 

various spatiotemporal characteristics of the EAP waveform, we accounted for the full 

dendritic reconstruction available for each neuron (Anastassiou et al., 2015; Gold et al., 

2007, 2006; Holt and Koch, 1999; Jia et al., 2019; Pettersen and Einevoll, 2008). To capture 

the intricacies of the electrophysiological behavior of single-neurons and allow better 

convergence of the parameters, the model generation workflow was divided into three 

stages. At each stage, a new set of conductances (Na, K, and Ca dependent) were added to 

the reconstructed morphology and the relevant electrophysiological features were calculated 

from the experimental voltage traces using eFEL (https://github.com/BlueBrain/eFEL) - the 

conductance density for each conductance of a model is then fitted to replicate the 

experimental electrophysical features within a python based evolution algorithm toolbox 

BluePyOpt (Van Geit et al., 2016). This involves optimizing passive conductances along 

with capacitance, reversal potential and axial resistance in the initial stage with target 

features e.g., voltage deflection, steady state voltage being added to the multi-objective 

optimization program, followed by Ih conductances with features related to the voltage sag 

under hyperpolarizing current. Finally, the rest of the active conductances were added to the 

model to minimize errors between experimental and model spiking features such as action 

potential amplitude and width, interspike interval, spike adaptation index (see Figure 3 for 

illustration of optimization procedure).

After a single neuron model was optimized, we simulated the EAP using NEURON 7.5 

simulator (https://www.neuron.yale.edu/neuron/) in combination with the Brain Modeling 

Toolkit (https://github.com/AllenInstitute/bmtk). This toolkit (Gratiy et al., 2018) is capable 

of simulating a variety of observables directly supported by NEURON (e.g., spikes, and 

membrane voltages), as well as plugging in modules for computing additional observations 

(e.g., the extracellular potential). The EAP traces were computed using the line-source 

approximation, which assumes that membrane current is uniformly distributed within 

individual computational compartments and that the medium is homogeneous and isotropic 

(Gratiy et al., 2018). The model was simulated at a sampling rate at 30kHz. The stimulation 

was a 23.44 ± 1.27 Hz Poisson-like synaptic input at 44 locations on the cell to elicit an 

average of 108+/− 52 SD spikes per model.

To account for the spatial extent of the recording electrode, we recorded the extracellular 

potential via the line-source approximation in a dense grid (1 μm spacing) consisting of 32 

columns and 480 rows (total 14,400 recording channels). To faithfully account for the EAP 

waveform of an electrode spanning 32 × 32 μm2, we simulated the EAP in every location of 

the discretized mesh within this surface area. The final EAP waveform for the location at the 

center of the recording surface area was the average from the EAP waveform mesh. To 

mimic cardiac motion, we used a similar approach. Specifically, we simulated cardiac 

motion as a sinusoidal movement among adjacent recording channels during a 1Hz cycle. 

Figure 4A and 4B illustrate examples of 3 μm motion, in which the movement was among 4 

recording channels sites during each cycle. At each recording site we simulated a variety of 
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motion amounts (from 1 to 20 μm) to identify which amount of motion best estimated the 

motion observed experimentally. We estimated the motion and recording distance in our in 
vivo recordings by comparing in vivo values to the model data. For each EAP from an in 
vivo recorded unit we calculated the AMP and identify the location around every model with 

the same EAP AMP. In Figure 4D, therefore, each circle is one distance estimate (n = 69 in 
vivo hippocampal neurons × 14 models = 966 distance estimates total).

It follows that each single-cell model is linked to different datasets: on the one hand, the in 
vitro electrophysiology and reconstructed morphology datasets used to generate the 

conductance-based models in the first place and, on the other hand, the simulated EAP 

dataset, used to link a specific model to in vivo recorded units from human hippocampus. 

This link becomes particularly important as it allows EAP properties recorded from 

hippocampal units in vivo to be associated to morphological (aspiny versus spiny, Figure 5) 

and electrophysiological (Figures 6F–6H) in vitro properties of human single cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike detection and sorting of single units—The broadband signals from the in vivo 
recordings and the model neurons were filtered in the 300–3,000 Hz band using a zero-phase 

lag filter (four-pole Butterworth filter, see code release). The intracellular spiking activity of 

model neurons provided the spike times for the model EAP data. Spikes from in vivo 
recordings were detected and sorted using the semi-automated template-matching algorithm 

OSort (Rutishauser et al., 2006). We excluded channels with interictal epileptic activity. 

Each single unit was manually evaluated and verified based on a variety of features: (1) the 

spike waveform, (2) the percentage of interspike intervals (ISIs) less than 3 ms,(3) the ratio 

of the waveform extremum and the standard deviation of the noise, (4) the pairwise 

projection distance in the clustering space between all isolated neurons on the same 

microwire, (5) the coefficient of variation of the ISI and (6) the cluster isolation distance 

(Rutishauser et al., 2008). Of the 11 waveform features we used to cluster, three features 

(HW, TPW, and HW MC) were weakly but significantly correlated with isolation distance 

(R2 = 0.02, 0.11. 0.11, p = 0.016, 0.016, 0.16 respectively). The NS, BS1, and BS2 cells all 

had similar isolation distance, signal-to-noise ratio, and inter-spike interval (Figures S7A–

S7C).

We recorded a total of 1,090 well-isolated neurons: 183 in hippocampus, 256 in amygdala, 

148 in anterior cingulate, 145 in orbitofrontal cortex, 278 in pre-supplementary motor area, 

14 in putamen, 35 in subthalamic nucleus, and 32 in substantia nigra.

Single unit firing properties and coherence with LFPs—Mean firing rate was 

calculated as the inverse of the mean of the interspike intervals during the recording session. 

Coefficient of variation (CV) is a measure of spike train variability and has a value equal to 

1 for a Poisson process. CV was calculated as the standard deviation of the interspike 

interval divided by mean of the interspike interval. The local variation (LV) is similar to CV 

but measures variation in adjacent ISIs and was calculated according to Shinomoto et al., 

2003.
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Some neurons appear to have rate modulations during the cardiac cycle because the 

electrode motion influences spike detection and spike sorting. To quantify the degree of 

spike rate modulation we constructed raster plots and PSTHs of each cell aligned to the 

heartbeat (Figures S8A and S8B). The window began 20 ms before the heartbeat and ended 

when the median of that session’s interbeat interval had elapsed (median IBI, 804 ± 156 SD 

ms or 75 ± 15 beats per minute). We interpolated from 0 to 2π over this window to calculate 

the “phase” that each spike occurred relative to the heartbeat. The Rayleigh test of 

nonuniformity was applied to these spike-phases to determine if a cell’s firing rate was 

significantly modulated during the heartbeat (p < 0.01). In addition, we calculated 1,000 

bootstrapped values for each neuron by randomly jittering the hearbeat times by up to 5 s 

and recalculating the spike rate at these jittered times. A cell was said to be significantly 

modulated by the heartbeat if the Rayleigh test-statistic was greater than 99% of these 

shuffled data and had a p value less than 0.01. In addition to calculating rate changes we also 

designed a metric to ascertain how well-isolated the spike sorting was at different time 

points in the cardiac cycle. First, we performed PCA on the EAP waveforms and calculated 

the Euclidean distance between each spike waveform and all other spikes in principal 

component space (using the components that explained 95% of the variance). Then, for each 

spike at a given time point in the cardiac cycle, we identified the 10 spike waveforms that 

were closest to it in EAP-PCA space and asked how many of these spikes were inside the 

same unit cluster and how many were outside the cluster. A value of 0 indicates the cell is 

well-isolated from other waveforms, while a value of 100% indicates that all of the nearest 

waveforms are outside the unit cluster (Figure S8E). We show that changes in spike rate 

during the cardiac cycle are likely due to missed detection of spikes outside the cluster, 

either because these spikes are assigned to a different cluster or fall into the background 

noise (Figure S8).

For each neuron we also calculated the autocorrelation function. Each spike train was 

represented as a binary vector and the autocorrelation was calculated with 500 ms lag using 

the xcorr function in MATLAB (functions available from MATLAB, all custom scripts for 

calculating EAP features and classifiers available for download in code release). Values were 

normalized to the zero lag value and are reported as spike rates. Similar to reports in the 

rodent hippocampus (e.g., Barthó et al., 2004 and other reports in the human hippocampus, 

e.g., Viskontas et al., 2007) we observed that the autocorrelation function could be 

characterized as three types of responses: regular-spiking cells that had a late peak > 20 ms, 

bursty cells with low-latency peaks < 20 ms, and cells that had a uniform distribution with 

no clear peak (Figure 7B). To quantify these three types of responses we first measured the 

median of the autocorrelation function and calculated the residuals of the autocorrelation 

function at 3–150 ms lag. If the residuals in this time window were homoscedastic (p > 0.05 

Engle’s Arch test), the cell was identified as having a uniform autocorrelation with a rate 

equal to the median. If, however, the autocorrelation function failed the test of 

homoscedasticity then the maximum local peak in the autocorrelation function was detected. 

Cells with peaks that occurred at less than 20 ms were labeled as bursty cells, in line with 

other reports that cells in the human hippocampus burst with ISIs up to 20 ms in duration 

(Staba et al., 2002; illustrated as light shaded bars in Figure 7B). Because this metric does 

not account for the amount of time spent bursting, we also calculated an additional, stricter, 
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burst metric: the summed magnitude in the 0–20 ms window of the time zero-scaled 

autocorrelogram, i.e., the probability that a spike will be followed by other spikes at a burst 

ISI latency. For the subset of neurons with a peak < 20 ms we also report the percent where 

this metric is greater than 0.05 (i.e., bursts more than 5% of the time, Figure 7B dark shaded 

bars). All other cells with peaks > 20 ms were labeled as regular spiking.

To determine if hippocampal cells entrained to local oscillations, we analyzed the LFP on 

each microwire relative to the spike time of each neuron. Broadband signals were first 

locally referenced to one of the 8 microwires that did not contain spiking activity and then 

low-pass filtered for frequencies < 300 Hz using a zero-lag FIR filter and down sampled to 1 

kHz. Because the waveform of the EAP is known to significantly contaminate low-

frequencies of the LFP (Anastassiou et al., 2015) we never compared LFPs and units 

recorded on the same microwire. We only compared LFPs to single units on different wires 

in the same bundle.

For each cell-LFP pair we first extracted 500 ms of the LFP signal before and after each 

spike. We chose such long windows because we were interested in frequencies as low as 3 

Hz. Averaging these segments gives the spike triggered average (STA). We then estimated 

the frequency spectrum of the STA and of each spike-LFP segment using multitaper analysis 

with a time-band-width product of 7 and 3 tapers resulting in a frequency resolution of 3.5 

Hz (Chronux toolbox). Spike filed coherence was then calculated by dividing the frequency 

spectrum of the STA by of the average frequency spectrum around each spike (Fries et al., 

2001). We calculated the SFC for each neuron-LFP pair and observed a strong peak in the 

spike field coherence in the theta frequency band (3–8 Hz, Figure 7D) that appeared to differ 

for different cell classes. We then filtered the LFP in several frequency bands (theta = 3–8 

Hz, alpha = 8–12.5 Hz, beta = 12.5–30 Hz, low gamma = 30–50 Hz, and high gamma 50–90 

Hz) and estimated the phase of the analytic signal at each spike time using the Hilbert 

transform. To determine if a neuron exhibited a significant phase preference we applied the 

Rayleigh test for non-uniformity (p < 0.01) and also compared our phase-concentration 

metrics bootstrap shuffled data (see next paragraph). To quantify how strongly a neuron’s 

spikes were concentrated around a specific oscillatory phase, we estimated the kappa value 

of the Von Mises distribution (Circular Statistics Toolbox [Berens, 2009]). Kappa values 

range from 0 to 1 (though we have z-scored the values to shuffled data, see paragraph 

below). The reciprocal of Kappa is analogous to the variance of the normal distribution, i.e., 

higher kappa indicates a smaller variance in spike phase.

As previously noted, some cells appear to change their firing rate throughout the cardiac 

cycle because motion compromises spike sorting and detection (Figure S8). Since these 

rhythmic fluctuations in spike rate could potentially affect the SFC metric at low-frequencies 

near the heart rate (heart rate is about 1–2 Hz), we performed a necessary control: we 

compared all SFC and Kappa values to bootstrap shuffled data (Figure S9). For each neuron-

LFP pair we extracted the LFP and spikes around each heartbeat. We then randomly 

mismatched these beat-locked LFP-traces with beat-locked spike trains. This shuffling 

procedure preserves beat-related changes in spikes and LFP but will disrupt any spike-LFP 

relationships that are not tied to the heart. We performed 200 bootstraps and recalculated the 

SFC and Kappa values. We then z-scored the SFC and Kappa data to these bootstrapped 
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values to effectively subtract off any spurious cardiac-related spike-LFP relationships. For 

example, the neuron-LFP pair in Figure S9A has high spike-field coherence and Kappa 

values at low frequencies < 2 Hz due to the changes in firing rate and the LFP signal around 

the heartbeat due to electrode motion (Figure S9C). After z-scoring to shuffled data, this 

spurious coherence is removed without affecting underlying spike-field relationships (Figure 

S9D).

Statistical comparisons of spike and spike-LFP values were performed using nonparametric 

statistics, Kruskal-Wallis for multiple groups, Wilcoxon rank-sum for two groups (p < 0.05, 

corrected for multiple comparisons). Chi-square and Fishers-exact tests were used for 

comparisons of cell counts among groups and types of responses, e.g., comparing the 

number of BS1 and BS2 cells that synchronize to local theta.

Quantification of EAP waveform features—For each in vivo and model neuron we 

extracted from the high pass filtered 32 kHz signal, 32 samples (1 ms) before and 50 

samples (1.56 ms) after the EAP extremum. We then upsampled this signal to 100 kHz and 

realigned all waveforms to the extremum.

We calculated four standard features of the average EAP waveform: extremum amplitude 

(AMP), half-width time (HW), trough-to-peak time (TPW), and repolarization time (REP) 

(Figure 1D). These EAP features are often used to delineate functional classes in vivo and in 

slice recordings (e.g., Anastassiou et al., 2015; Barthó et al., 2004; Ison et al., 2011; 

McCormick et al., 1985; Mitchell et al., 2007; Peyrache et al., 2012; Rutishauser et al., 

2015; Trainito et al., 2019). AMP is the magnitude of the extremum of the EAP in 

microvolts. HW is the total time in milliseconds that the EAP trough dips below half the 

AMP value. TPW measures the time in milliseconds that elapses from the EAP trough to the 

EAP peak, the first local maximum after the trough. REP measures the amount of time 

required for the EAP to reach half of the peak value and is an estimate of the EAP 

repolarization time. In some brain regions, the EAP width features appeared to be bimodally 

distributed. To assess bimodality, we calculated the Hartigan’s Dip Test of multimodality. In 

addition, we assessed whether a single Gaussian distribution or a mixture of two Gaussian 

distributions better fit the distributions (assessed by minimizing Aikake Information 

Criterion for Gaussian mixture models with 1 or 2 distributions).

In addition to these features of the mean EAP waveform, we measured how these features 

change throughout the duration of the cardiac cycle. For in vivo data we binned the spikes in 

100 ms bins that began 20 ms before each heartbeat ended at the median interbeat interval 

duration (804 ± 156 SD ms). We then averaged the EAP waveform of all the spikes that 

occurred in each bin to provide an average EAP waveform at each time during the cardiac 

cycle. We used these binned EAPs to calculate features at each time point in the cardiac 

cycle. For model data we calculated the average EAP at every location around the cell. We 

then selected a random location around the cell and sampled the average EAP sinusoidally 

from this fixed location to simulate cardiac motion (see model generation method).

For each average EAP during each cardiac bin, we calculated AMP, HW, TPW, and REP as 

above. Plotting these features against the phase of the cardiac cycle (as in Figure 1E) 
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highlights how these features change as a function of cardiac motion. We divided each of 

these traces by their mean to give a percent change from mean. To quantify the strength of 

these changes we fit a cosine function to each trace using circular-linear regression. The 

amplitude of this cosine fit estimates the percent change in the feature during the cardiac 

cycle and is termed the Modulation Index (MI). For example, a value of 5 indicates that the 

feature increased up to 5% of its mean value throughout the duration of the cardiac cycle. 

AMP MI was said to be strongly modulated by the cardiac cycle if the amplitude of this 

sinusoidal fit was significantly different from zero (p < 0.05) and it was greater than 95% of 

bootstrap shuffled data. Bootstrapping was performed by shuffling the EAP waveforms 

associated with each spike time for 200 iterations.

In addition, we quantified the extent to which each width features covaried with AMP during 

the cardiac cycle using linear regression. We refer to the slope of this linear regression as the 

Motion Correlation (MC). A value of 0 indicates that the width feature did not vary with 

AMP. A value of [C0]2 for TPW MC, for example indicates that TPW decreases by 2% for 

every 1% increase in AMP.

Identification of EAP waveform clusters using PCA and k-means clustering—
To identify clusters of cell types in the experimental data, we performed principal 

component analysis on the normalized EAP features of the hippocampal neurons (Figure S2; 

Figures 2A and 2C). We only selected neurons with significant strongly modulated AMP MI 

for this analysis because we were interested in cells with EAP waveforms that were most 

affected by cardiac motion. We performed k-means clustering (k = 1–9 clusters, 1000 

iterations with random starting locations) on the principal components that explained 90% of 

the variance of the EAP features (Figures S2A and S2B, 3 components in standard feature 

space, 7 components in standard + motion feature space). The optimal number of clusters 

was identified by minimizing the density function f(K) (Pham et al., 2005 as in Jia et al., 

2019). f(K) is the ratio of the real distortion to the estimated distortion and has a value of 1 

for uniformly distributed data. In the standard feature space (Figure 2A), f(k) is lowest for k 

= 2, indicating that 2 clusters is the optimal number of clusters. In addition to k-means 

clustering we performed hierarchical clustering with Ward linkage and present dendrograms 

(Figure 2E). Both approaches yield highly overlapping results. When only using standard 

features, we identified two cell classes, one with narrow spike (NS) and one with broad 

spike waveforms (BS). With the addition of motion features, BS cells clustered into two 

separate groups labeled BS1 and BS2. Clusters are shown with t-distributed stochastic 

neighbor embedding (tSNE) for visualization purposes only (van der Maaten and Hinton, 

2008).

We used a similar PCA-kmeans approach to identify SP1 and SP2 model neuron types. First, 

we randomly selected 25 EAPs from different sites around each of the SP model neurons. 

We then applied PCA specifically to the motion features (MI and MC) of the SP waveforms 

and performed k-means clustering to identify 2 groups of EAPs: SP1 and SP2. These groups 

differed in multiple features, e.g., SP2 has more negative HW MC and TPW MC than SP1 

(Figure 6B). We then tabulated the number of EAPs of each model that were assigned to 

either the SP1 or SP2 EAP cluster. A model neuron was labeled SP1 (or SP2) if the majority 

of its EAPs (> 13/25 EAPs) belonged to the SP1 (or SP2) cell cluster.
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SVM Classification of EAPS—We trained several linear SVM classifiers to discriminate 

between different types of experimental EAPs (NS versus BS, BS1 versus BS2) and EAPs 

derived from model neurons (AP versus SP, SP1 versus SP2). For experimental-based 

classifiers, we trained and tested using random subsets of the experimentally-recorded EAPs 

and used the labels NS, BS1, and BS2 derived from the k-means clusters in Figure 2C. For 

the model-based classifiers, we randomly selected 25 EAPs with AMP 40 ± 20 microvolts 

(the distribution of EAP AMPs recorded in vivo). We then trained on the EAPs from a 

subset of models and tested on the EAPs from the remaining models. The model neurons 

were constructed from in vitro patch clamp recordings of human neurons and the AP and SP 

labels were determined by the morphological reconstructions of these neurons and their 

associated spines (see also section above on model generation). The SP1 and SP2 labels 

were derived from the EAP-feature k-means clustering described in the preceding section.

In all cases, each reported classifier is a “bootstrap composite” of 1,000 individual SVM 

classifiers each trained and tested on a different subset of EAPs to ensure robustness and 

generality to new data. The result of each composite classifier therefore gives both a 

classification label and a percent indicating the fraction of individual bootstrapped classifiers 

that assigned the same label. For example, the Standard Experiment-based Classifier (Figure 

5A), assigned the neuron in Figure 1E middle panel the label BS with 99% agreement (i.e., 

99% of the individual classifiers in this composite classifier gave the label BS). For each 

application of a classifier, labels were assigned based on more than 50% agreement of the 

individual classifiers, though most cells had much higher values (mean agreement = 96% ± 

10% for the Standard Experiment-Based classifier in Figure 5A). Confusion matrices and 

accuracy bar-plots show the performance on left out data (e.g., Figure 5A). The SVM Beta 

coefficients estimate the contribution of each feature to the SVM plane that divides the 

classification space with higher values indicating a larger contribution to the classification 

model (e.g., Figure 5B).

The primary motivation for constructing classifiers was to cross-validate the experimental 

and model-based results. We applied experimental-based classifiers to model EAPs to 

identify model neurons in the experimental space (NS or BS, BS1 or BS2) (Figures 5C and 

6F right). Similarly, we applied model-based classifiers to the experimental EAPs to identify 

experimental neurons in the model space (AP or SP, SP1 or SP2; Figures 5F and 6F left).

DATA CODE AND AVAILABILITY

Code for calculating EAP features and classifying cell types was custom-written in 

MATLAB and is available on GitHub (https://github.com/rutishauserlab/cellclassifier). The 

all-active human single-neuron models were constructed in Python and are also available on 

GitHub (https://github.com/AllenInstitute/Human_all_active_models_EAP).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• When the heart beats, recording electrodes inside the human brain move

• Movement elicits features of the action potential that improve cell typing in 
vivo

• Human single-cell modeling infers cellular properties of identified cell types

• Newly detected cell types exhibit differential coupling to local oscillations
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Figure 1. Extracellular Action Potential Waveforms in the Human Brain Are Modulated by the 
Cardiac Cycle
(A) Schematic showing the heartbeat monitored by electrocardiogram (EKG), the cardiac 

phase, the intracranial pressure (ICP), and the electrode position.

(B) The EAP at different locations for different cell types.

(C) Brain areas recorded in vivo.

(D) EAP waveform features.

(E) Three example units with cardiac-related EAP variability. Top: heatmaps show the 

change in EAP voltage relative to the mean EAP during the cardiac cycle (y axis). Mean 

EAP is overlaid in black (arbitrary position along the y axis). Bottom: black traces depict 

EAP features as a function of the cardiac cycle. Gray depicts the SD of 100 randomly 

shuffled bootstrapped samples (i.e., chance). Blue shows the fit of the circular linear 

regression used to derive the motion index (MI).

(F) Histograms show distributions of EAP AMP MI for all units in each recorded brain 

region (red lines: mean). Boxplots illustrate distribution (horizontal line = mean, box = first 

and third quartile, whisker = range) of AMP MI after Z scoring to shuffled waveforms. Brain 

areas with Z score >0 (t test) show significant AMP MI. *p < 0.05, **p < 0.01, ***p < 0.001
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Figure 2. Motion Features Identify Three EAP Clusters in Human HIPP (NS, BS1, and BS2)
(A) K-means clustering of the standard features (HW, TPW, and REP of mean EAP). Left: 

density function f(k) identifies 2 clusters. Right: Features of NS (yellow) and BS cells (blue) 

plotted in t-distributed stochastic neighbor embedding (t-sne) feature space (van der Maaten 

and Hinton, 2008). Inset shows mean EAPs.

(B) EAP features for the clusters in A (each circle is a unit). Rows show the EAP features; 

columns show these features using standard methods (S), motion indices (MI), and motion 

correlations (MC). Only S features were used to cluster in (A) and (B), but we also plot MI 

and MC (black, mean; red, SEM; Wilcoxon rank sum tests).

(C) Including cardiac-related motion features (MI and MC) to the feature space reveals a 

third cluster, splitting the BS cells into BS1 (light blue) and BS2 (dark blue) sub-classes.

(D) Distribution of EAP features for the three clusters in (C).

(E) Dendrograms from hierarchical clustering on S features (left) and with the inclusion of 

MI and MC features (right). When the BS cells are forced into two groups in the S feature 

space (indicated by light versus dark blue color coding of the two BS branches on left side), 

these groups are not the same groups as those determined by the motion feature space (light 

and dark blue branches at right). Thick lines indicate relabeling of cells between the two 

feature-spaces. Venn Diagrams show percentage of cells that maintain labels in both feature 

sets. *p < 0.05, **p < 0.01, ***p < 0.001
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Figure 3. Optimization Workflow for Single-Cell All-Active Models of Human Cortical Neurons
(A) Reconstructed morphology of SP (blue) and AP (yellow) neurons.

(B) Three-stage optimization workflow.

(C) Optimization example (cell #571654895) extracted from human middle temporal gyrus. 

Left: neuron morphology (box indicates the cell in A). Right: results from each stage of 

optimization for different intracellular somatic stimulation (black, experiment trace; blue, 

model; left-to-right, increasing current amplitude).

(D) Comparison of current input versus spike rate (left) and somatic action potential 

waveform (right) between the experiment and model for the cell shown in C).

(E) Single-cell models become significantly better (i.e., capture the intracellular 

electrophysiology features of each experiment more faithfully) with increasing generation # 

following the genetic optimization used in stage 2 (mean ± SD across models).

(F) Training error (mean ± 95% confidence interval) for each electrophysiological feature 

(Z-scored difference between the average experimental and model electrophysiology 

features referenced to the experimental SD) for SP and AP models.
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Figure 4. Simulated Electrode Motion in All-Active, Biophysically Realistic Models of Human 
Neurons
(A) Example model AP neuron. Cardiac-motion was simulated as a periodic change in the 

relative distance between soma and recording electrode. Left: simulated trace with 3 μm of 

cardiac-motion (red circle: recording location, arrows: direction of movement). Right: 

heatmap shows how the EAP varies as a function of the cardiac cycle (as in Figure 1E). 

Bottom: black traces show the variation in each feature during the simulated cardiac cycle; 

blue traces show the fit of a circular linear regression resulting in the modulation index (MI).

(B) Same as (A) for an example spiny neuron.
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(C) Distribution of EAP features at 10 randomly selected locations around each AP (n = 4) 

and SP (n = 10) model neuron (black lines: mean, red lines: SEM; Wilcoxon rank sum tests). 

Each point indicates the EAP features at one spatial location.

(D) Estimated recording distance and motion of in vivo recordings. Mean distance and 

motion estimates do not significantly differ for AP or SP models (paired t test: distance p = 

0.485, motion p = 0.346) (error bars = SD). *p < 0.05, **p < 0.01, ***p < 0.001
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Figure 5. In Vivo NS and BS Units Map onto Single-Cell SP and AP Models
(A) Classifiers trained on in vivo data to discriminate between NS and BS units using 

combinations of S, MI, and MC features. Classifier performance was tested on a subset of 

left-out data and is depicted in confusion matrices and bar plots (box, mean; error: SD; blue 

line, chance).

(B) Beta coefficients of the S + MI + MC classifier (box, mean; error bar, SEM). Colors 

indicate whether the beta coefficient is larger for SP (blue) or AP (yellow) cells for a 

particular EAP feature.

(C) The classifier based on S features was applied to the simulated model-EAPs. Small 

circles (top) indicate model neurons (color-coded for SP, blue; or AP, yellow). Lines connect 

the circles to the labels given by the classifier. The width of the lines indicates the strength 

of the classification (i.e., how often the classifier converged on the same label for each 

EAP).

(D) Classifiers trained on EAP features to discriminate model AP and SP neurons.

(E) Beta coefficients of the model-based classifier.

(F) Same plotting conventions as in (C) but for applying the S-based model classifier to the 

in vivo experimental data.

Mosher et al. Page 34

Cell Rep. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Two Types of Hippocampal Broad-Spike Waveform Cells (BS1 and BS2) Are Identified 
In Vivo
(A) K-means clustering on EAP features of model SP cells identifies two clusters: SP1 (light 

blue) and SP2 (dark blue). Density f(k) function, mean waveforms and t-sne plots of clusters 

as in Figure 2A.

(B) Distribution of EAP-features. (black line = mean, red line = SEM; Wilcoxon rank sum 

tests)

(C) Pie charts indicate the percentage of EAPs from each of the 10 SP models (25 EAPs 

sampled at different locations for each model) classified as SP1 (light blue) or SP2 (dark 

blue).

(D) S, MC, and MI features of in vivo EAPs were used to classify the experimental BS1 and 

BS2 clusters identified in Figure 2C. Same plotting conventions as Figure 5. Motion features 
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(MI and MC) support classification of BS1 and BS2 experimental clusters; standard features 

alone (S) discriminate poorly between BS1 and BS2. (box: mean; error bar: SEM).

(E) The experiment-based classifier was applied to the EAPs from model SP neurons to 

provide BS1 and BS2 labels. Illustration conventions as in Figure 5C. 4 SP models are 

labeled BS1 and the remaining 6 are identified as BS2. The classifier was applied to the 

EAPs at 25 locations around each model (% of EAPs classified as BS1 or BS2 for each 

model is shown).

(F) Left: model-based classifier that identifies SP1 versus SP2 neurons classifies most 

experimental BS1 units as SP1 and most BS2 units as SP2. Right: the majority of EAPs 

originating from models identified as SP1 and SP2 in (A) are identified as BS1 and BS2 

cells, respectively.

(G) Electrophysiological features of the model SP1-BS1 and SP2-BS2 neurons as 

determined from whole-cell patch-clamp experiments with human cortical neurons (black 

lines, mean; red lines, SEM; t tests).

(H) PCA applied to slice electrophysiological features depicted in (G). Colored matrix 

indicates feature weight for each component, and values at top show percentage of explained 

variance (t test, p < 0.05) (black lines = mean, red lines = SEM). *p < 0.05, **p < 0.01, ***p 

< 0.001
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Figure 7. NS, BS1, and BS2 Cells in the Human HIPP Exhibit Distinct Spike Patterns and Phase 
Coupling Properties In Vivo
(A) Spike rate, coefficient of variation (CV), local variation (LV) (Shinomoto et al., 2003), 

and burst index of in vivo recorded NS (yellow), BS1 (light blue), and BS2 (dark blue) 

hippocampal neurons (black lines: mean; red lines: SEM, t tests).

(B) Example spike-train autocorrelograms of three units that represent three spiking profiles. 

Bar plots show percentage of NS, BS1, and BS2 cells identified as each type (scaled by total 

number of each cell type; bars of same color sum to 100%). The light and dark shading for 

bursty neurons indicates the percent of bursty cells using a lenient and strict burst criterion 

(STAR Methods) (chi-squared comparison of counts).

(C) Example spike triggered averages of theta-band filtered LFP signal for two 

simultaneously recorded cells: a BS2 cell (left) and a BS1 cell (right). Polar plots show the 

distribution of the LFP theta phase with arrow indicating the direction of phase 
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concentration (lines, STA; shaded area, SEM) Kappa of phase concentration given as Z-

scored values relative to shuffled data (raw values in parentheses).

(D) Population average spike-field coherence (SFC) and SEM across all neuron-LFP pairs. 

NS (yellow), BS1 (light blue), and BS2 cells (dark blue) (n = 41, 49, and 75 units, 

respectively).

(E) Line plot of mean ± SEM indicates the kappa value of the distribution of phases in each 

frequency band. Color of the center and encompassing circle indicates statistically 

significant comparison (t tests) between groups, e.g., a yellow center surrounded by a dark 

blue circle indicates that NS (yellow) and BS2 (dark blue) cells have different spike-LFP 

concentrations in an LFP frequency band. Bottom: percentage of single-unit LFP pairs for 

each cell class with significant spike-field phase concentrations in each frequency band (bar: 

percentage of significant pairs; error bar: 95% confidence interval for binomial random 

variable) (comparison of percent significant pairs between cell types, chi-squared). For 

example, the dark blue bar in theta indicates that 42% of BS2 unit-LFP pairs are 

synchronous in that band. *p < 0.05, **p < 0.01, ***p < 0.001
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB 2017b MathWorks RRID: SCR_001622

Python Python.org RRID: SCR_008394

Neuron 7.5 Simulator NEURON RRID: SCR_005393

OSort cell sorting algorithm Rutishauser et al., 2006 RRID: SCR_015869 https://rutishauserlab.org/osort/

Allen Institute Brain Modeling kit Allen Institute for Brain 
Science

https://github.com/AllenInstitute/bmtk

Human cells for in vitro recordings Allen Institute for Brain 
Science

https://celltypes.brain-map.org/

Blue Brain optimization (BluePyOpt) Blue Brain Project https://github.com/BlueBrain/eFEL

QRS Tool Allen et al., 2007 https://jallen.faculty.arizona.edu/content/qrstool-
andcmetx-software-calculating-metrics-cardiac-
variability

Dataset of human medial temporal lobe single 
neuron activity during declarative memory 
encoding and recognition

Faraut et al., 2018 https://datadryad.org/stash/dataset/doi:10.5061/
dryad.46st5

Cardiac-motion EAP Cell Classifier This manuscript https://github.com/rutishauserlab/cellclassifier

Human all active models This manuscript https://github.com/AllenInstitute/
Human_all_active_models_EAP

Other

Neuralynx Neurophysiology System Neuralynx Cat# ATLAS 128

Spencer SEEG electrodes Ad-Tech Medical RD06R-SP05X-000

Behnke-Fried Hybrid electrodes Ad-Tech Medical BF08R-SP05X- WB09R-SP00X-0B6

Alpha Omega MicroGuide System Alpha Omega Cat# STR-000021

Alpha Omege Hybrid Microelectrodes Alpha Omega Cat#IS08RSP10X-0T1
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