CaltechAUTHORS
  A Caltech Library Service

Number-conserving analysis of measurement-based braiding with Majorana zero modes

Knapp, Christina and Väyrynen, Jukka I. and Lutchyn, Roman M. (2020) Number-conserving analysis of measurement-based braiding with Majorana zero modes. Physical Review B, 101 (12). Art. No. 125108. ISSN 2469-9950. https://resolver.caltech.edu/CaltechAUTHORS:20200312-081932810

[img] PDF - Published Version
See Usage Policy.

394Kb
[img] PDF - Submitted Version
See Usage Policy.

468Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200312-081932810

Abstract

Majorana-based quantum computation seeks to encode information nonlocally in pairs of Majorana zero modes, thereby isolating qubit states from a local noisy environment. In addition to long coherence times, the attractiveness of Majorana-based quantum computing relies on achieving topologically protected Clifford gates from braiding operations. Recent works have conjectured that mean-field BCS calculations may fail to account for nonuniversal corrections to the Majorana braiding operations. Such errors would be detrimental to Majorana-based topological quantum computing schemes. In this work, we develop a particle-number-conserving approach for measurement-based topological quantum computing and investigate the effect of quantum phase fluctuations. We demonstrate that braiding transformations are indeed topologically protected in charge-protected Majorana-based quantum computing schemes.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1103/physrevb.101.125108DOIArticle
https://arxiv.org/abs/1909.10521arXivDiscussion Paper
ORCID:
AuthorORCID
Knapp, Christina0000-0002-5982-8107
Väyrynen, Jukka I.0000-0002-7531-8764
Lutchyn, Roman M.0000-0002-0222-9728
Additional Information:© 2020 American Physical Society. Received 3 October 2019; revised manuscript received 29 December 2019; accepted 25 February 2020; published 11 March 2020. We are grateful to T. Karzig, C. Nayak, and D. Pikulin for stimulating discussions. C.K. acknowledges support from the NSF GRFP under Grant No. DGE 114085 and from the Walter Burke Institute for Theoretical Physics at Caltech. Part of this work was performed at the Aspen Center for Physics, which is supported by National Science Foundation Grant No. PHY-1607611.
Group:Walter Burke Institute for Theoretical Physics
Funders:
Funding AgencyGrant Number
NSF Graduate Research FellowshipDGE-114085
Walter Burke Institute for Theoretical Physics, CaltechUNSPECIFIED
NSFPHY-1607611
Issue or Number:12
Record Number:CaltechAUTHORS:20200312-081932810
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20200312-081932810
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:101891
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:12 Mar 2020 17:45
Last Modified:16 Mar 2020 18:37

Repository Staff Only: item control page