CaltechAUTHORS
  A Caltech Library Service

Memory Activity of LIP Neurons for Sequential Eye Movements Simulated With Neural Networks

Xing, Jing and Andersen, Richard A. (2000) Memory Activity of LIP Neurons for Sequential Eye Movements Simulated With Neural Networks. Journal of Neurophysiology, 84 (2). pp. 651-665. ISSN 0022-3077. https://resolver.caltech.edu/CaltechAUTHORS:20200401-133809085

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200401-133809085

Abstract

Many neurons in macaque lateral intraparietal cortex (LIP) maintain elevated activity induced by visual or auditory targets during tasks in which monkeys are required to withhold one or more planned eye movements. We studied the mechanisms for such memory activity with neural network modeling. Recurrent connections among simulated LIP neurons were used to model memory responses of LIP neurons. The connection weights were computed using an optimization procedure to produce desired outputs in memory-saccade tasks. One constraint for the training process is the “single-purpose” rule, which mimics the fact that once LIP neurons hold the memory activity of a saccade, they are insensitive to further stimuli until the motor action is completed. After training, excitatory connections were developed between units with similar preferred saccade directions, while inhibitory connections were formed between units with dissimilar directions. This “push-pull” mechanism enables the network to encode the next intended eye movement and is essential for programming sequential saccades. In simulating double saccades, the push-pull connections locked the on-going activity in the network for the first saccade until the saccade was made, then a new population of units became active to prepare for the second saccade. The simulated LIP neurons exhibited sensory responses and memory activities similar to those recorded in LIP neurons. We propose that push-pull recurrent connections might be the basic structure mediating the memory activity of area LIP in planning sequential eye movements.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1152/jn.2000.84.2.651DOIArticle
ORCID:
AuthorORCID
Andersen, Richard A.0000-0002-7947-0472
Additional Information:© 2000 The American Physiological Society. Received 30 July 1999; Accepted 5 April 2000; Published online 1 August 2000; Published in print 1 August 2000. We thank P. Mazzoni for providing experimental data, C. Li for valuable discussions, and K. Shenoy for valuable comments on the manuscript. This work was supported by National Eye Institute Grant EY-05522. J. Xing was supported by the Del Webb Foundation fellowship. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Funders:
Funding AgencyGrant Number
NIHEY-05522
Del Webb FoundationUNSPECIFIED
National Eye InstituteUNSPECIFIED
Issue or Number:2
Record Number:CaltechAUTHORS:20200401-133809085
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20200401-133809085
Official Citation:Memory Activity of LIP Neurons for Sequential Eye Movements Simulated With Neural Networks. Jing Xing and Richard A. Andersen. Journal of Neurophysiology 2000 84:2, 651-665; doi: 10.1152/jn.2000.84.2.651
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:102245
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:01 Apr 2020 21:48
Last Modified:01 Apr 2020 21:48

Repository Staff Only: item control page