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Evolution of a non-Abelian cosmic string network
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We describe a numerical simulation of the evolution ofSgrcosmic string network which takes fully into
account the noncommutative nature of the cosmic string fluxes and the topological obstructions which hinder
strings from moving past each other or intercommuting. The influence of initial conditions, string tensions, and
other parameters on the network’s evolution is explored. Contrary to some previous suggestions, we find no
strong evidence of the “freezing” required for a string-dominated cosmological scenario. Instead, the results
in a broad range of regimes are consistent with the familiar scaling law, i.e., a constant number of strings per
horizon volume. The size of this number, however, can vary quite a bit, as can other overall features. There is
a surprisingly strong dependence on the statistical properties of the initial conditions. We also observe a rich
variety of interesting new structures, such as light string webs stretched between heavier strings, which are not
seen in Abelian network$S0556-282(98)00304-X]

PACS numbds): 98.80.Cq

[. INTRODUCTION a2 while the length of each segment grows aslue to
stretching, and so the total energy density will scale as
A generic feature of many spontaneously broken gauge
theories is the existence of topological solitons, such as
strings (or flux tubeg, domain walls and monopoles. Many wherea is the scale parameter representing the size of the
grand unified models predict the formation of such defectainiverse. The energy density of nonrelativistic matter, on the
during a cosmological phase transitid. The defects could other hand, scales @ 3, and as the universe expands the
be interesting as a potentially observable signature of thénergy in strings will grow relative to that of matter until it
symmetry-breaking pattern, and could also have importan@ventuany dominates. As explained below, such a frozen
consequences for the evolution of the universe. Domaifetwork is not a typical outcome for the types of strings that
walls and monopoles, if they are stable and occur withouh@ve been studied to date. Instead, there are energy loss

cosmic strings, generally are not considered phenomenologmeCha”ismS that allow strings to be progressively destroyed,

cally viable. Domain walls tend to produce density perturba-Wh”e those that survive continue to move relativistically,

tions that are much too strori@], whereas monopoles, if their total energy scaling in the same way as that of matter. It

they exist at all, are predicted to form in great abundancegas been suggested, however, that non-Abelian strings might
which are incémpatible with current observatioris] ehave differently from Abelian ones, and might indeed lead

a3xal~a?

o . X ! minated phase with comparatively light strings has some
a model-building point of viewW4]. Among the potential ap-  yesjraple propertie?]. Strings could serve as an interesting
plications, it has been proposed that the gravitational effectg, .y, of dark matter: giving density paramet@r=1 as re-
of either infinite cosmic strings or closed loops of string Mayquired by inflation, whileQ) <1, and possibly resolving
serve as sources of density perturbations leading to galaxy ghe apparent discrepancy between estimates of the age of the
cluster formatior{5,6]. universe from the expansion rate and from stellar ages. By
A persistent string network could conceivably also havemodifying the equation of state of the universe, they could
profound effects on the evolution of the universe due to itsmimic some of the effects of a cosmological constant. There
bulk energy density, quite apart from the effects of fluctua-has been a recent revival of interest in such a sceriétjo
tions. If a network of strings becomes frozen so that stringsand testing its consistency is one of the chief motivations for
are fixed in comoving coordinates, then they will bethe work described in this paper.
stretched by the expansion of the universe. If the network is The evolution of Abelian cosmic strings has been studied
thought of as composed of a fixed number of segments, thextensively, and we review some of the salient points here in
number of segments per unit volume will be proportional toorder to point out contrasts with the non-Abelian case. The
simplest and best understood type of cosmic strings are those
which occur in the Abelian Higgs modgd] and are classi-
*Email address: mcgraw@physics.unc.edu fied by their integer winding numbéan element ofZ). We
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shall refer to these ag stringst Assuming that only the steadily reducing the number of nodes and strings. The an-
strings with unit winding number are staklgpe-Il strings, nihilation of vertices leads to a self-similar scaling behavior,
they can be formed either as infinite strings or closed loopsas long as the nodes are able to come close enough to each
Monte Carlo simulationf10] indicate that the infinite strings other to annihilate. The phenomenological consequences of
constitute a majority(63—-80% of the total length of the their model are rather similar to those dftrings: The num-
network initially formed by a phase transition, with the re- per of vertices and string segments per horizon volume re-
mainder comprising a “scale-invariant” distribution of mains roughly constant, and the energy density of the net-
closed loops. A very important dynamical process of thesgyork is a small constant fraction of the matter density. The
strings is intercommutatiofil, 11,12, the process in which gyings never relax to an equilibrium, but continue to move
two colliding strings reconnect so that a part of each string igyith relativistic transverse velocities, following a self-similar

is connected. to pa}rt of the other strlngs. T\_/vo |nf|n|.te S,t”ngsevolution pattern much as that &fstrings.

Intercommuting W'th each other twider a single string in- The purpose of this paper is to explore the consequences
tercommuting with itself can form new closed loops from of a network of non-Abelian strings. Such strings are known
%o exhibit a number of exotic types of interactiofib,16].
IIgarticularly significant is the fact that when two non-Abelian
[4,6] provide a plausible picture of the strings’ evolution: strings cross each other, they cannot gene_rallyintercpmmute,
Infinite strings are destroyed by intercommutation and thud!o" €@n they pass through one another without forming new
lose energy to the network of loops. Loops, in turn, shrink ay/ertices and becoming joined by a new segment of string
they lose their energy to gravitational radiation, and theyl17]- Linked loops of string cannot usually become unlinked,
may also split into smaller loops by intercommutation. Anyand vice versa. One might expect that this would inhibit the
loop will eventually contract to a point and be destroyed. Thedecay of a cosmic network by obstructing the removal of
system reaches a dynamical steady state, or self-similar evétring segments. If new strings are continually being formed
lution, characterized by a single evolving length scale whicithrough string collisions, their energy must come from the
is the size of the cosmological horizon. The rate at whichalready existing strings, and an equilibrium with the strings’
new strings appear within the growing horizon is balancedransverse velocity damped out might seem a more likely
by the rate at which they are destroyed. An approximatelffinal state. Some evidence for slowing down of the network’s
constant numbeforder unity of long strings stretch across a destruction was reported very recently by Pen and Spergel
Hubble volume at a given time, and intercommutations resulf8] in a class of models with non-Abelian global strings.

in the formation of a similar number of new closed Ioops per In this paper, we describe a numerical simulation of a
Hubble volume, which are destroyed within a Hubble time.network of S; strings. Unlike the authors of Ref8], we
While there is disagreement over details, numerical simulagonsider gauge strings, which have no mutual long-range
tions[13] have supported this general picture. All results areineractions. Our interest is in understanding the qualitative
consistent with a scaling behavior in which the energy den,o¢re of the fate of a non-Abelian string network. Do colli-
sity in strings remains a small, fixed fraction of the matterg; < result in a nondiminishing or rapidly increasing num-

density and the_:re IS no string dom'”?‘“or_‘- . .. ber of strings? A static equilibrium state which is expected to
We emphas_|ze that|nte_rcomn_1utat|on IS cru<_:|al o t.hls PChe conformally stretched with the universe’'s expansion?
ture of the strings’ evolution. Since non-Abelian strings in X

; . . Does the network instead decay rapidly into finite networks
general cannot intercommute, we might expect different be- X - .
havior for such strings and closed loops? Or does a dynamical self-similar evolution

Somewhat less attention has been devoted to the evolutidt'€"9€: 3S '@14]? Another question which we hope to |.|Iu-
of branched networks, in which several strings may join at dninate is: which processes play the most crucial roles in the
vertex. Branched networks occur when @)l Jgauge group is network’s gvoluuon? The importance of intercommutation to
spontaneously broken @, with N=3, or when the unbro- the evolution ofZ strings led to fundamental study of the
ken group is a non-Abelian discrete group. Among the workdynamics of intercommutation; likewise it is hoped that the
that has been done is that of Vachaspati and Vileriki] results obtained here will suggest which aspects of non-
who considered a network df; strings, which have the Abelian string dynamics are ripe for closer examination.
novel feature that three strings may intersect in a veigx. Our method of simulation is directly inspired by that of
strings tend to form an infinite network of vertices connectedRef.[14]: we generate initial conditions from a lattice Monte
by string segments, with very few closed loops. It had pre-Carlo simulation and then evolve the network according to a
viously been speculated that the nodes in a branched netwoHhighly simplified model of string dynamics which we hope
could settle to equilibrium positions, thus causing the netcaptures the essential features of a string network losing en-
work to freeze as a string-dominated universe requires, burgy. We find hints of some quite interesting physics in the
the simulations of14] indicated otherwise. Instead of reach- interplay between the two types of string in our model, and a
ing an equilibrium, the nodes pull together and annihilaterather surprising dependence of the network’s behavior on

the initial conditions. Concerning the string-dominated cos-
mological scenario, we reach somewhat different conclu-
These are often referred to in the literature @&)Wtrings since  Sions from[8]. For a wide range of conditions, the network’s
they result from the complete breaking of gﬁl[))gauge group, but density follows power laws very similar to the ones arising
it seems more logical to call them by their topological classification,in Abelian networks. Non-abelian effects can, indeed, slow
as is usual for other types of strings. down the network’s decay in the sense that they change the

principal mechanism for the destruction of infinite strings.
Dimensional analysis and energy conservation argumen
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coefficients of the power laws, but it appears as if the slowgroupH such that there are noncontractible closed loops in
ing down to a stable equilibrium happens only under specialhe vacuum manifolds/H. These paths and the correspond-
circumstances, if at all. ing defects are formally classified by elements of the first
The remainder of this paper is organized as follows. Sechomotopy groupm(G/H)#1 [1,21]. For example, in the
tion 1l provides a brief summary of the properties of non-case of a (1) symmetry breaking completelghe Abelian-
Abelian strings which bear on this simulation. We discussHiggs model, 7 (G/H)=m,[U(1)]=Z, and strings are
some of the subtleties inherent in the description of noncomelassified by their integer winding number. In the remainder
muting magnetic fluxes, and the necessity ¢fauge fixing of this discussion, we will assume, unless otherwise stated,
convention to resolve these ambiguities and allow the comé is simply connected and that the unbroken subgrduis
parison of fluxes of strings. Most importantly, we explain discrete. In that case,(G/H)~ my(H)~H. No light propa-
why two colliding non-Abelian strings cannot, in general, gating fields then remain in the broken phase, and the gauge
cross or intercommute without forming a new segment ofconnection is locally pure gauge everywhere outside of de-
string. Section Il describes the particul@ model which  fect cores. Ifrry(H) is non-Abelian, then the composition of
we have chosen to simulat&;, the permutation group on paths depends on the order. Hence the fluxes of strings will
three elements, was chosen as the gauge group because ibis noncommuting group elements, and that is what is meant
a simple non-Abelian group which exhibits all of the impor- by non-Abelian strings.
tant general characteristics of non-Abelian strings. Another To describe the fluxes of cosmic strings, we consider
motivation for this choice is thaB; containsZ; as a sub- closed curved” which lie in the (nonsimply connectedre-
group, allowing instructive comparisons with tdg network  gion R=M—{D}, where{D} is the union of all defect
simulations of Ref[14]. Section Il also describes our pro- cores(regions of nonvacuujrand M is the spatial manifold
cedure for simulating the network’s dynamical evolution, on which the defects exist. Each string gives rise to a class of
giving enough details to allow an understanding of the renoncontractible closed paths it —{D} which encircle the
sults. Additional technicalities of the procedure are relegatedtring.
to the Appendix. Section IV describes our procedures for The flux enclosed by any closed lodp (e.g., one that
generating initial conditions, and summarizes features of theurrounds a stringis a group element defined as a path-
networks these procedures generate. We use two differestdered exponential of the gauge field
Monte Carlo algorithms which generate initial networks with
somewhat different statistical properties. The network’s evo-
lution turns out to have a surprisingly strong dependence on flux=P exp( iA' dl)'
the initial conditions. Section V presents results of the dy-

namical evolution simulation, exploring the influence of apFor anyT within R this must be an element ¢f. This is
number of different variables including the initial conditions pecause the Higgs field is covariantly constant througbut
of the network and the ratio of string tensions. These resultgng so the transformation that results from parallel transport
are compared with those forz network, which is Abelian.  around a loop must leave the Higgs field invariant.
In Sec. VI, we present our conclusions and suggest directions | a non-Abelian theory, this definition of the flux is not
for future work. _ _ gauge invariant, and may depend on the point at which the
The Appendix describes our procedure for keeping trackath begins and ends. However, the flux through any con-
of string fluxes during the simulation and for establishingtractible loop which does not enclose a string is necessarily
them from the lattice Monte Carlo procedure, covering de+yjyial, A corollary of this fact is that two closed loops which
tails not included in Sec. lll. The implementation of non- share the same beginning and ending paint and can be
Abelian fluxes in a simulation presents a rather difficult continuously deformed into each other, have the same flux.
problem in its own right. A careful gauge-fixing procedure is Thys the relevant structure for the description of the system
required, and some of the subtleties that arise are of interegf gefects is the fundamental group or first homotopy group
from a field-theoretic point of view. The algorithm has been . (A(—{D},x,), defined with respect to a base poy.
described in greater detail in R¢f.8]. _ Each string is associated with a generator of the fundamental
_ In thl_s dlscqssmn, the .strlngs will be considered as C|as'group. Oncex, has beerfarbitrarily) chosen, the fluxes of all
sical objects with well-defined fluxgafter a gauge has been (gseq pathgand of all stringsare specified by a homomor-
fixed). We will not consider quantum-mechanical effectsphism from ,(M—1{D},X) into H~,(G/H). The only
such as Cheshire charged)]. remaining gauge freedom is a global one. However, there is
a considerable amount of ambiguity in what we mean by
“the flux” of one particular string: an arbitrariness in how
exactly the set of generators is chosen for the homotopy
group(M—{D},Xg). In Fig. 1, for example, there are two
In this section, we review very briefly the definition of loops, both beginning and ending a, both enclosing the
non-Abelian vortices and strings and some of the propertiesame string without enclosing any others, which are nonethe-
which are important for the current simulation. The formal-less representatives of different homotopy clagses con-
ism used here was developed for vortice$dl] and applied sequently may be associated with different flyxés inter-
to strings in[16]. vening string prevents one path from being continuously
Generically, topological defects of codimensiorfvbrti-  deformed to the other. The fluxes associated with the two
ces in two space dimensions, strings in threecur when a  different paths may differ through conjugation by the flux of
gauge symmetry grou@ is spontaneously broken to a sub- the other string. In an Abelian theory, conjugation is trivial;

D)

Il. VORTICES AND STRINGS IN A NON-ABELIAN
DISCRETE GAUGE THEORY
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FIG. 1. The pathsr anda’ both enclose the same string and no 5
other strings, but they cannot be continuously deformed into eact /-\ « ¥ / \ «
other without crossing another string. Thus, they represent differen /
elements of the fundamental group(M—{D},xo), and so the / /\ / /\

fluxes associated with them may be different. Specifically, the ho-
motopy classes ofr and «’ are related through conjugation by
another generaton’ ~BaB 1. (We follow the usual convention
of composing paths from right to lefi8a~' means the path
formed by traversing first the reverse @f then «, then 8. The
relation~ represents homotopy equivaler)céhe associated fluxes
are analogously related: a nontrivial relation if the fluxes do not
commute.

C
®) ©

FIG. 2. Attempt to pass two strings through each otherAn
the flux of one string may be defined by either of the paths v,
and that of the other string . Let the fluxes associated with S,
and y be a, b, andc, respectively. In this cas&=bab 2. In
generalc#a. Now, if we attempt to pass the strings through each
other, no strings need cross the pathsnd y, so the associated
not so in a non-Abelian one. It follows that fluxes cannotfluxes will not change. But if the strings were to pass through each
meaningfully be comparetsay, to determine if they are the other freely, as ifB), « and y would be continuously deformable
samg if the paths used to define those fluxes pass on oppdnto each other. This is impossible if they have different fluxes. In
site sides of some other string. Comparisons must be madeder to conserve flux, the string must branch somewhere and be
using “nearby” paths. connected to the other by a new string whose flux as defined by
Since the flux of the same string may described, dependsathsin (C) is ca™'=bab *a™™.
ing on convention, by distinct conjugate elementsHf it

follows that strings whose fluxes are in the same conjugacys he three elements invariant and interchanging the other

class must be generate in tension. It is not true, however, thq—e‘;\,0 We may denote these, for convenience tbs{(123)
all fluxes in the same conjugacy class are the samee alfd _}('132)} tzf{(123),—>(321)} ,tsf{(123)

b belong to the same conjugacy class, it is by no means—>(213)}. In this notationjt; is the two-cycle which leaves

guaranteed tha&? and ab also are conjugate, or thatb . ; " s
7 S o . theith element in the same position. The two nontrivial even
=ba. Distinctions among elements within the same conju-

gacy class can have important consequences in any situa’[i(g)rir.mUtat'onS are the three-cycles, or cyclic permutations,
where the product or commutator of two fluxes is relevant, a&’ ich we denote here byS+E{(12_3)—>(312)}, s
is the case when two strings collide. ={(123)—(231)}. In the more conventional cycle notation
The path dependence of the flux of a string implies arl22), we havet;=(23), t,=(13), t3=(12), s, =(123), s_
important fact: two strings with noncommuting fluxes cannot= (132).
pass through each other without forming a new segment of The two-cycles form one of the two nontrivial conjugacy
string whose flux is the commutator of the fluxes of the twoclasses, and the three-cycles form another. Thus our model
original strings. Penetration without the formation of a newsupports two types of strings, which we shall refer to as odd
string would violate flux conservatidd 7]. This is illustrated and even strings, or alternately taands strings. The three-
in Fig. 2. Noncommuting strings also cannot intercommutecycles generate @5 subgroup, so that our model contains
We will be especially interested in the consequences of thithe Z; model as a subset. Three even strings may meet at a
entanglement process for the evolution of a string network: ityertex, just as in th&; model. Another type of junction is
might impede the collapse of the network. one where two two-cycléor odd strings merge to form a
three-cycle(even string. Figure 3 shows the two types of
junctions in our model.

Since each two-cycle is equal to its inverse, oppositely
S; strings. We consider here a model with unbroken oriented odd strings are topologically equivalent. An even
gauge groupd =S;, the permutation group on three objects. string, on the other hand, possesses a natural orientation: The

The spectrum of this model will include strings whose fluxesflux through a path encircling it with one orientationss ,

are elements 08;. S; has six elements in all. The identiey ~ while it is s_ for the opposite orientation. In subsequent
corresponds to the trivial permutation. There are three odfigures, even strings will often be denoted by oriented lines,
permutationgtwo-cycles or transpositiongach leaving one with the string carrying fluxs, in the direction of the arrow,

IIl. OUR MODEL AND ITS DYNAMICS
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FIG. 4. Doubly linked nodes. A pair like this can interrupt an
otherwise straight string or act as a kink.

w SX[SUR)XSU2)XU(D)gm]
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whereD is a discrete factor divided out so that the mono-
poles at string junctions may carry electromagneticl)U
charge. Their magnetic charges should then result in radia-
tion damping?

Our simulation proceeds in discrete time steps. During
each time step, each node is moved by a displacement pro-
portional to the vector sum of all tensions acting on it. This
type of evolution corresponds to damped motion force

(B) «velocity. The constant of proportionality is a parameter
which may be absorbed into the size of the time step. Thus,

FIG. 3. String junctions in th&, model.(A) Two possiblesss  in appropriate units,
junctions: three strings with the same fls, or s_, emanate from
the node(Or two s, strings merge into a singke_, etc) (B) One
of the class oftt junctions: Twot-strings merge into as string.
Fluxes are defined with respect to a base paintby the paths

shown. Here, as in many subsequent figures stning is drawn as  \yhare At is the time stepn, is the unit vector along the
an oriented line. The string carries flgx in the direction of the direction of therth string connected to the node, afd is
arrow; i.e., a counterclockwise path around the arrow encloses fIUﬁ,]e maghnitude of that string’s tensianruns from 1’ to 3 for
St - the three strings that meet at each node. Since our model has
_ ) ) ] _ two types of string with possibly different tensions, the ratio
while odd strings have no arrow, reflecting their lack of ori- o these two tensions is a variable parameter of the simula-
entation. o o tion. When we present the results in Sec. VI, we use units
Note that the parity is conserved at any junction: i.e., ansych that the lattice spacing of the initial-condition Monte
odd string entering a junction must be matched by anothegarlo algorithm is 1 and the tensions are of order unity.
odd string leaving. In this sense, odd strings can never endiore specifically, thet-string tension is normalized to 1
even if they change their flux at a junction. Even strings, onyhile the other tension is varied.
the other hand, may end at a junction. It is.helpfulito VieW  Each node is moved in turn. During the motion of a node,
the network as being composed of two interacting Subthe strings attached to it may collide with other strings. The
systems. One subsystem consists of infinite or closed apnihilation of two nodes is allowed if they approach each
strings_(as withZ strings, they_ have no free _er)dihe other  other more closely than a certain distarttg,. The proce-
comprises a branched Abelian web ®fstrings, some of qyres for handling collisions of strings or nodes are as
which end ort strings. The simulation results presented laterfg|ows 2
in this paper exhibit an interesting interplay between these (i) intercommutation. If, in the process of moving a node

two subsystems. ) ) from its initial to final position, one of its string segments
String dynamics.The system we simulate consists of

three-way junctions, or nodes, joined byndt strings. The

strings are approximated as straight segments between junc; _ _ ) _

tions. In effect, we are averaging over transverse oscillations A model has been constructed in which topologiza! strings

of the strings. However, it is possible for a string segment td?€come attached to monopoles which also carry other chi2gks

be interrupted by a pair of nodes doubly linked to each othefOnStructing a model witt; strings joined at monopoles might be

as in Fig. 4. Doubly linked nodes tend to annihilate fairly slightly harder, but it is not our main concern here. For a hint of
how such a model could arise, consider the monopoles that form

Ei%llgls(l)gn?;ﬂe?‘\?v?:e(;(:P;;gﬁ:i[:a%nnieﬂssy the role of tranSIentWhen an SWb) group is broken in the familiar way to

. UR)XSU(2)XU(1)/Zg. This transition is known to yield stable
As in [14], the nodes are assumed to undergo dampe onopoles with S(8), SU2), and U1) flux [24,25. We could

motion under the influen'ce of str_ing tensions. The energymagine a second symmetry-breaking stage in which the3g,
loss leads to the shortening of strings. As an approximatiofactor is broken down & in such a way that the resulting strings
for the energy loss of a real string network, the model ofgiso carry nontrivial flux in the, center of SW2). Whenever three
damped motion of the nodes is most realistic if one supposesych strings join, the resulting n&, flux can unwind through a
that the string junctions are monopoles which carry somenonopole, which has both $2) and U1) flux.

unconfined magnetic flux, as in a model with the symmetry- 3Some of these procedures differ in minor details from those de-
breaking pattern scribed in[18].

Ax=AtY, T.n,, 2
r
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(a)

(Ay  "Bridge" B) “Zipper”
@, [ ]
\/ FIG. 6. The intersection of two strings whose fluxes do not
_ commute causes them to become linked by a new segment in the
® ® o /\ “bridge” configuration(A). Alternatively, they may coalesce along
/ ® ® part of their length, forming a “zipper'(B).
/ ever, there are two possible rearrangements of the ends, ow-
@ . . . .
® o ° ing to the fact that a two-cycle is equal to its own inverse and

two-cycle or t strings consequently have no preferred
orientatiorf [Fig. 5b)]. In the absence of a reason to prefer
one of these rearrangements over the other, the choice is
(b) ® ° made randomly.
When an intercommutation occurs, we join the segments
FIG. 5. (8) When two three-cycle os strings intercommute, With a pair of “kinks” (doubly linked nodes as in Fig.) 4
there is a unique rearrangement which is compatible with the oriwhich will later annihilate and allow the segments to
entations of the stringgb) Sincet strings(two-cycle stringshave  straighten. By delaying the straightening of the rejoined seg-
no orientation, an intercommutation can result in either of two posiments, we prevent the highly noncausal cascades of inter-
sible rejoinings of the ends. commutations which might otherwise occasionally occur
within a single time step and lead to computational infinite
loops and other unpleasant consequences.
intersects some other segment, then the fluxes of those two (ii) Noncommuting collisiongNCC). If two noncommut-
segments are compared at the point where the crossing oittg strings intersect, then it is assumed that they form a new
curs. If the fluxes commute, then the two segments may eipair of nodes and thus become linked by a new segment.
ther pass through each other unaltered, or intercommute. THEnis may happen in two possible ways. The two strings may
probabilities of these two outcomes may in principle bepass through each other and become linked by a new seg-
taken as an adjustable parameter of the simulation, but waent which stretches between them, as shown in Fig. 6
have chosen to let the probability of intercommutation be 1We refer to this outcome as the “bridge” configuration. The
in all cases. It is widely believed that intercommutation isflux of the intervening string segment is uniquely determined
generically the more common outcome whenever two cosby the requirement of flux conservatiofiThe intervening
mic strings cross. In the self-dual limit, it can be shown thatflux of the bridge must always be a three-cycle, as the com-
Nielsen-Oleson strings always intercommute. Therefore thenutator subgroup o8; is Z;.) Another possible outcome,
choice to set the intercommutation probability to 1 seems @onsistent with the topology, is that the two colliding seg-
natural one.
Intercommutation may occur in two possible situations:

either both sirings are three-cycls) (strings, or both are 4strictly speaking, we can only say that there is topological
tWO'C_yCleS' In the latter case, the fluxes _Of the tWO_ StNGSeason for a string to have a preferred orientation. It is possible
must in fact be equal. In an intercommutation, the string endg,,; the field equations could have two distinct solutions, corre-
are rearranged in such a way as to conserve flux. In the caggonding to differently oriented strings, which are topologically
of two s strings, there is always only one way to rearrangeequivalent but can be deformed into one another only by surmount-
the ends, as shown in Fig(&. A string end carrying flus,. ing a finite energy barrier. A situation of this sort occurs in the
to the point of intersection may not be joined to one carryingglobal vortices of nematic liquid crystals. This was pointed out to
the inverse fluxss_ . When twot strings intercommute, how- me by Preskill.
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FIG. 8. Annihilation of twosssnodes joined by a single string.
\ There are two possible ways to reconnect the strings consistent with

their orientation.

side be matched with one on the other side carryingstme
) . ) o flux. Figure 9 shows an example of a pair of nodes which
FIG. 7. A pair of nodes linked by two strings may annihilate, cannot annihilate because there is no consistent rejoining of
leaving a single string. the string ends.
If two stt-type nodes do annihilate, it is easily seen that
there can never be more than one consistent rearrangement
f string ends. If two of the outgoing ends agestrings and

ments stick together in the “zipper” configuration shown in
Fig. 6b). The possibility of collisions resulting in zipper
formation have recently been mentioned in the context o

. ) . . ~two aret strings, then there cannot be more than one rear-
type-| Abehqn str|ng{261. Which Of these'tw'o outcomes Is rangement because each string can only be joined with one
more likely is a dynamical and kinematic issue to be ad

; . .in the same conjugacy class. If all outgoing strings are of odd
dressed in future work. It may depend on the relative veloci iugacy going 9

. o . type, then all four cannot have the same flux—if they did,
ties and angles of the colliding strings. Short-range force§hen the total flux of any pair would be trivial and they

) ; .Y e Svould not be connected by a segment. Nor may any three
cially for low-angle, low-velocity collisions. Attractive inter- have the same flux. It follows that, at best, each string end

actions make zipper growth more likely and more rapid thar}nay reconnect with a unique partner. When a singly linked
otherwise expected. In the present simulation, we con5|d%

L . ; air of nodes annihilates, the segments are first rejoined in a
both possibilities separately and examine their consequenc hk configuration, which may straighten later
some ru_Fhs W?r? perforxnfed W'tt.h onlly f brtldge f.Ng%S’t S}nd Another type of annihilation process, which is the inverse
some with only ~zippér—formation. In fact, we, Ind that the process of bridge formation, is not included explicitly in the
choice makes little difference for the network’s evolution. simulation but may occur through a multistep process in-
Wheneyer two new nodes are qrgz_;\ted_by aNCC, we Sep%Iving several string intersection and annihilation events
rate them immediately by a small initial distance comparabl?Fig 10. We expect that such a process probabily occur
to the time step .and subsequeptly aIIov_v them t0 MOVe NOIypanever the geometry is appropriate for the unlinking of
mally under the llnﬂuence Of. string tensions. String tensiong, strings, so that it is not necessary to perform the unlink-
may cause a zipper or bridge to grow longer after it 'Sing “by hand” in a single step within the simulation.
fO”T?_EdA ihilation. When t d h h oth (iv) Rearrangement. If two nodes approach each other
'tg!l) gn; |a€|gn. h_err:_wo nodes tfippr;)tic _eacl t(') erclosely but are prevented from annihilation by flux conser-
V;’]' na 'i ancd ann W I?h'lls 6Il pahr_ame eli 3 Eg'g;g“ ation, yation requirements, several outcomes are conceivable. They
they are_lz_ahowe to anni r'].atf-.”_t |shwor ’ a“fa_ - v;/_ag may stick together and form a stable junction of more than
c os(;an). dehsegrpems) which join the two ?0 esr:s elIM- three strings. They may bounce back and move apart again
E?te.  an dt e ot (_ar.segments (ke‘mar?atmg rom the two anfiy,ger the influence of string tensions. It is also plausible that
llating nodes are joined to cac other, . . . the nodes could rearrange their connections and undergo a
Two nodes are able to a””'h"@‘e only if there is a CoNSIS5ort of quasi-intercommutation, as shown in Fig. 11. In this
tent way_to rearrange thg free string ertie., ea_ch sftrlng_ 'S" simulation, we allow the nodes to bounce by introducing a
able to find a partner with the same f}u>Anr_1|h|Iat|on IS small repulsion at distances shorter thigp,. We also allow
always possible if the two nodes are doubly linked as Show'?earrangement with some probability, and examine the con-

N Fig. .7' In the case OT double link gnnlhllauon, the S?gmengequences of setting that probability either to zero or to some
is straightenedor straightened until an obstruction is en-

countered, such as a collision with another styidgnihila-
tion is also always possible if both junctions are of gws

@
type, even if they are only singly linked. In this case, there . {_{
are two possible rearrangements of the free string €Rigs /"'"""\
8). One of these two is chosen at random. When $itetype o 1 g "‘"T"‘X"’T’"

junctions approach each other, on the other hand, there ca
be at most one consistent rearrangement of the free ends, ana
it may not be possible for the nodes to annihilate at all. FIG. 9. The two nodes shown here cannot annihilate, because
Annihilation requires thaeachof the two segments on one there is no consistent way to reconnect the string ends.
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Monte Carlo procedure to generate an initial string network.
The lattice spacing is to be identified with the correlation
length of the Higgs field at the time of string formation. The
Higgs vacuum expectation valy¥¢EV) is thus uncorrelated
over distances longer than a lattice spacing, and at each site
of the lattice, it takes a random value within the vacuum
manifold. With a suitable interpolation along the length of
each link, any plaquette of the lattice is mapped to some
closed loop on the vacuum manifold. If this path is one of the
noncontractible loops, then a string must pierce the
plaguette. Each link of the plaquette is associated with an
element ofG which relates the Higgs values at the two ends
of the link. The product of these elements around a closed
plaguette must lie within the unbroken groby and can be
taken as the flux of the string which pierces that plaquette.
Strings which pierce the faces of a given unit cube must be
joined together inside the cube in some way. If only two
faces of the cube have nontrivial flux, then we interpret this
as a single string segment passing through the cube. If three
faces are nontrivial, we infer that there is a single vertex
inside the cube. Cubes pierced by more than three ends re-
quire a more complicated arrangement of nodes and strings
inside the cube. There may be more than one consistent way
FIG. 10. Unlinking of two strings—the inverse of the process to join th? string ends, and one must be clhosen arbitrarily.
shown in Fig. 6—can occur in several steps if the string tensions Two different lattice Monte Carlo algorithms have been

pull in the right direction to unlink the strings. A linking followed used for the current simulation to generate different initial

by two annihilations has the net result of removing the short inter-diStributions of strings. The first, very simple way to gener-

vening segment and unlinking the two longer strings. In this figure 8t€ @ random network of strings is to use an infinite tempera-
the base point is assumed to lie behind the page, so that the defirfiire lattice gauge theory: simply assign a random element of

tion of an's string's flux changes when it passes in front of any the unbroken groupi=S; to each link of the lattice, and
string. evaluate the product of links on the plaquette to find the flux

through the plaquette. We refer to this as the lattice gauge
nonzero value. The results presented in Sec. VI indicate thaflonte Carlo. There is no direct reference to a Higgs field in
rearrangement speeds up the network’s decay. this technique.

We do not include nodes of more than three strings as The other method we use is a discrete Higgs simulation
fundamental objects, but it is quite possible for a pair toanalogous to that of Refd27,28. The essence of this
become stuck together very close to each other. The stringiethod is that a discretized vacuum manifold is used. The
tension and short distance repulsion allow them to oscillatdreaking of continuous grou@ is modeled by using some
at a short distance, and such a configuration can behave likliscrete subgrougC G which contains the unbroken group
a single junction of four strings. Such adhesion becomes imH. Each lattice site is then assigned randomly to one of the
portant under certain conditions, as we will see in Sec. VI. discrete cosets in the spagéH, corresponding to a choice

of vacuum. With each link of the lattice there is associated an
IV. INITIAL CONDITIONS element ofG which transforms the Higgs field value at one
end of the link to the value at the other. The element relating

In order to perform our dynamical simulation, we mustone coset to another is not unique; the possible elements
start with an initial configuration. The generation of initial themselves form a coset. The convention in this discrete
conditions models the symmetry-breaking transition whichHiggs method is to choose the “smallest” possible element
produces the strings. As is frequently done, we use a latticéor each link variable. “Small” is defined with reference to a
metric on the continuous group: if all elements are written
in the formg=exp({aT), whereT is a normalized element of
the Lie algebra ofG, then the smallest element is the one
with the smallest numbed. In this way the Higgs field is
effectively interpolated in the smoothest possible way be-
tween lattice points.

A suitable gauge transformation can be performed so that
all Higgs field values lie in the same coset, and all link vari-
ables lie withinH, allowing all subsequent computations to
be performed in terms of onlid link variables. This is a
lattice implementation of unitary gauge.

FIG. 11. Rearranging the connections of two nodes which can- For the present simulation, we takkto be one of the
not annihilate. discrete subgroups of $B8). The simplest choice is the 24-

(E)
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element “dihedral-like” subgroup of S(3) known asA(24)
[29]. This group is generated by the matrices

Lattice Gauge

-1 0 O 010
7= 0 0o -1|, s,={0 0 1],
0 -1 0 100

and
A(1,0=diag1,—1,—1).

A(24) is the smallest subgroup of $8) that containsS;,
and in fact it is isomorphic t&,, the permutation group on
4 elements: an isomorphism may be defined which maps

T1-1=(23), S;<s,=(123);

these generate the subgradp=S; of permutations on ele-
ments 1-3.H, may be viewed as the little group of a
“Higgs” VEV which has the formhy=(0,0,0,1): permuta-
tions of the first three positions leabg invariant. The ele-
ments A(1,0)=diag(1—-1,—1), A(0,1)=diag(—1,—1,1),
andA(1,1)=diag(—1,1,—1) may be mapped t8, by

A(1,00-(14)(23), A(0,1)«(24)(13),

A(1,0) < (34)(12).

These act nontrivially ofng, and together with the identity

they generate the four distinct left cosets, A(1,0)Hg, T8 string

A(0,1)H,, and A(1,1)H,. Each of the three nontrivial T st

cosets consists of the set of elements which transtfogro o ] )

one of three other possible VEV's. For example, elements of FIG. 12. Sample Monte Carlo initial configuratioriactually

A(1,0)H, take (0,0,0, to (1,0,0,0. shhrown aftler atilggle trlmehste[;]Qrf]?k)]/na:jmlrckalrevcl)h:llgmleneqvenr,] or .
To generate a network of strings, the discretized Higg 3?5 Ig)t/t(i:cee‘ jniltsgsa € shown In the darker color. Volume shown IS

VEV is randomly assigned to one of its four values at each

lattice site. For a smooth interpolation, the link between two

neighboring sites is chosen to be the smallest within the apand theZ; lattice gauge data are based on the author’s simu-

propriate coset. In the cosa(1,0)H,, for example, the two lations (see also[30]). For each method, the fraction of

smallest  elements are A(1,0)T,(14)(23)(13)and Pplaquettes pierced by strings of each type is repofleche

A(1,0)T5(14)(23)(12). Both of these have equal measure; &3 case, of course, there is only one typiiote that in the

random choice may be made between them. In the identitiattice gauge method, each group element is weighted

coset, of course, the identity element is the smallest. Eachqually; thereforé of all plaquettes are pierced by strings in

other coset has two smallest elements of the farfip where  the Z; lattice gauge case, argdfor S;. Below this are the

Ae{A(1,0),A(0,1),A(1,1)} andT is one of the two transpo- fractions of cubic lattice cells with 0, 2, 3, 4, 5, and 6 of their

sitions inS; that fail to commute withA. faces pierced by strings, the number densities of the different
After assigning vacuua and group elements, one can theliypes of nodes per unit volume, the average length between

transform to the unitary gauge in which the Higgs VEV isjunctions and the branching lengtbbtained from the expo-

the same at each site, and all flux information is encoded ifiéntial _decay of the length distributiprfor each string

S, variables on the links, just as it is in the lattice gaugeSpeCleSS-

Monte Carlo. Pictures of typical initial string networkg=ig. 12 illus-
Properties of the initial networkBoth of the Monte Carlo trate qualitatively the comparison between the differgpt

algorithms described above create infinite branched neihitial conditions. It is evident that for botd; and S; sys-

works. The lengths of string segments between branching atéms, the lattice gauge method produces a denser network:

distributed exponentially, reflecting a constant probability ofmore cube faces are pierced by strings and more cells have

branching per unit length. In this respect, the two methods

are similar, but the resulting networks differ in other statis-

tical properties. In Table |, we summarize some of these snjtially, string lengths are naturally clustered near integer mul-

features. For comparison, we also include the correspondingpjes of the lattice spacing. The distribution looks smooth and ex-

information for theZ; system(including both aZ; lattice-  ponential only when string lengths are placed in bins of at least one

gauge method and the tetrahedral discrete-Higgs simulatiottice spacing. For this reason, the decay length is not necessarily

of [28]). The Z5 discrete-Higgs numbers are from REZ8]  identical to the average segment length.
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TABLE |. Statistics of initial conditions. otal Length
Method Z3;L.G. ZzHiggs $S;L.G. S;Higgs
15000
Faces with
S string 0.67 0.52 0.33 0.14 L0000
t string 0.50 0.37
Cubes with 5000
0 ends 0.01 0.04 0.00 0.06
2 ends 0.12 0.34 0.01 0.32 - - = tine
3 ends 0.17 0.20 0.05 0.21
4 ends 0.38 0.32 0.21 0.31
5 ends 0.24 0.09 0.20 0.02 Number of Nodes
6 ends 0.09 0.02 0.55 0.08 6000
Density of 5000
sssnodes 0.56 0.28 0.22 0.03
stt nodes 1.36 0.67 000
3000
Av. length
bet. junctions 2000
s string 2.38 3.71 1.02 1.27 1000
t string 1.05 1.59 )
10 15 20 time
Branching length
S str!ng 1.65 333 0.69 083 FIG. 13. Number of nodes and total string length as a function
t string 0.78 153 of time for Z5 strings on a 3dvolume.

sults. We describe the dependence of these results on param-

high numbers of strings emerging through their faces. Coreters of the simulation, focusing especially on two
respondingly, in the lattice gauge method, fewer strings coneontrasting regimes of string tensions, and then discussing
tinue through more than one lattice cell without branching.other important factors. Finally, we make a few comments
Regardless of the initial conditionstt junctions outhumber about fluctuations and the effect of the finite simulation vol-
sssjunctions in theS; network, and we can infer that a ume.
majority of thes strings end on & string at at least one end. The Z network and power-law evolutiotgince S; con-

Although we have not extracted detailed statistics on theainsZ; as a subgroup, our program can easily be modified
presence of disconnected loops and finite networks in théo simulate aZ5 network by generating onlg strings in the
initial distributions, they do not appear to form a significantinitial conditions. Figure 13 shows the total string length and
part of the system. In this respect tBgnetworks are similar  total number of nodes as a function of time for a typical run
to theZ; ones. The results presented in the next section shown a 3§ simulation volume. The initial conditions were gen-
that in theS; model, unlike theZ, differences in the statis- erated with aZ; lattice gauge method, rather than the dis-
tical properties of the initial networks can have a very pro-crete Higgs method dfL4]. (In fact, these data were obtained
nounced effect on the network’s evolution. in a simulation without any intercommutations—strings were
allowed to pass through each other. There is no topological
obstruction to prevent this in an Abelian network, and the
inclusion of intercommutations makes only a small differ-

In this section, we present results from the dynamicalence in the resultsThe units used for this plot are the ones
simulation. The aim is to give a qualitative picture of thein which the initial lattice spacing is 1 and the string tension
evolution and to determine which factors are most importants T=1.
in determining the fate of the network. The qualitative nature The time variable plotted on the axis in the figure is
of the evolution depends on the ratio of the different stringiAt, wherei is the number of elapsed time ste@Ehis will
tensions. Two contrasting regimes are of interest: one ie our convention for all remaining plotsAll distances and
which the even strings are light, and another in which theylengths are measured in units of the original lattice spacing.
are heavy. We also examine the influences of other factors. A transformation of the data shows more clearly the
The results show a surprisingly marked dependence on stéscaling” behavior of the network. The scaling hypothesis is
tistical properties of the initial network. that the gross properties of the network are described by a

This section is organized as follows: First, we reviewsingle length scale’, which grows with time as the network
some features of the behavior of Abeliaf; strings, for  relaxes. If/ is the typical distance between nodes, then the
comparison with theS; results. TheZ; results are taken in  number of nodes per unit volume is~/ 2. In a scaling
part from[14] and in part from simulations by the author. solution, the average length of a string segment between
The self-similar scaling evolution and the associated powernodes is also-//, while the number of segments per unit
law behavior are demonstrated. After this come $3ere-  volume is proportional to the node density 3. Hence the

V. DYNAMICAL RESULTS
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FIG. 14. Scaling behavior df; strings on a 3 volume. The
typical distance between nodBs, grows linearly with time, and so
does the inverse square root of the string energy debgity

total string length per unit voluméor the energy stored in
string9 scales ag’~2. In Fig. 14, we plot two scale variables
with the dimensions of length: The inverse cube root of the
number of nodes per unit volume, which we denbtg and

the inverse square root of the string length per unit volume
D,. From Fig. 14, we can see that both of these length scales
are approximately equal and grow linearly with time. The
slope of approximately 0.3 is close to that observed in Ref.
[14]. Although the results plotted in Fig. 14 and those 1f]
were obtained from different initial conditions, the results
agree very closely. Evidently, all noticeable differences dis-
appear after just a few time steps. As withstrings, the
late-time evolution is essentially independent of the initial
conditions.

Evolution of theZ; network is self-similar in the sense
that network looks statistically the same at all times except
for the increase in scale. The distribution of string segment
lengths, for example, is exponential at all times, with only
the scale changing. This can be seen in the semilogarithmic
histograms of Fig. 25. Qualitatively, a portrait of part of the
network at a given time is indistinguishable from a suitably
magnified portrait of an earlier time.

S; network: general commentfn the remainder of this
section we describe results of tBg simulation, which was
run using a variety of different combinations of initial con-
ditions, string tensions, and other parameter choices. Net-
works generated by lattice-gauge initial conditions were run
on an & simulation volume, while the less dense discrete-
Higgs-generated networks were evolved on a volume 812 g, 15, (a) A series of snapshots showing the evolution of an
Statistical variables were obtained from averages over se\s, network with light strings. The heavier, odd strings are shown in
eral runs. Computation time constraints made it unfeasible t@arker color. We can observe long strings straightening and loops
run many times on larger volumes, but a few runs were perof t string contracting. The initial network was generated by the
formed on both larger and smaller volumes in order to ex4attice gauge Monte Carlo algorithm: it is the one shown in Fig. 12.
amine the effects of finite size. The full 8% simulation volume is shown. In the first frame, tat

Key results are displayed graphically in Figs. 15-25 and=2, the odd strings are quite crumpled and are connected by a
Table Il. Some results for an Abelia@g network are also dense web of even stringéh) t=4. (c) t=6. (d) t=8.
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FIG. 17. (a) Evolution of a network from Higgs initial condi-
tions with heavyS strings. The qualitative behavior is rather similar
to that of the denser lattice gauge network, except that the network
disappears much more rapidly, with large voids opening up very
quickly. This figure:t=1.0. (b) t=2.0.(c) t=3.0.

conditions. Pictures of &; network are provided as well.
The plots in Figs. 20—22 show the evolution of some length-
scale variables as functions of time. These variables include
or even strings, are shown in thicker lines. The ful? mulation Dy, the inverse cube root of Fhe d.enSIty of nodes, the av_er-
volume is shown. Notice the rapid shrinking of even segments,age segment Iength.betweenjunctlons for each type of string,
which leads to the formation of clusters that are slow to untangle.and the two qgantltleﬁ)s and D, B The last two are analo-
The first frame shown here is & 1.5. (b) t=3.0. () t=4.5. (d) gous to D, defined _above; the inverse square root of the
t=6.0. string length per unit volume, computed separately for each
type of string.(Some of these variables may be redundant.
shown for comparison. Figures 15-19 show threeWith some exceptions discussed below, these length scale
dimensional pictures of simulated cosmic string networksvariables exhibit(after some transients at early timeke
during their evolutior]31]. The pictures show several of the linear increase characteristic of self-similar evolution. Such
different patterns of evolution that can occur under differentplots were made for simulations run under a wide variety of

(d) .
FIG. 16. (a) Snapshots from the evolution of & network with
heavys strings, from lattice gauge initial conditions. TBestrings,
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FIG. 19. Snapshots from the evolution of a putg network,
included for comparison with the non-Abelian netwotk) t=0.
(b) t=2.0.(c) t=4.0.(d) t=6.0.

conditions giving a survey of the simulation’s parameter
space. A few representative plots are shown here in order to
show their typical shapes. The remainder are summarized in
FIG. 18. Evolution of a network with equal string tensions, from Table II, which gives their slopes. The last set of figures in
lattice gauge initial conditionga) t=2.0.(b) t=4.0.(c) t=6.0.(d)  this section, Figs. 23—25, consists of a series of histograms
t=8.0. which show how the distribution of string segment lengths

(d
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FIG. 20. Scaling-law variables as a function of time 8y network with Ts=2, lattice gauge initial conditions, bridge NCC and no
rearrangement. The top two plots are the curved gf D, andD,, shown at two different magnifications. All three variables are plotted on
the same axes, color coded as indicated. The bottom plot shows the average segment length for each of the two string types.

evolves with time. Distributions are shown for two contrast-which cannot end, and in none of the cases simulated did
ing cases discussed below, and corresponding data is alsiwey show a tendency to become extinct. Even strings, on the
provided for theZ; network for the sake of comparison. other hand, disappear almost completely under certain con-
The parameter space surveyed in Table Il includes twalitions) The tensionT of the even strings was varied rela-
different initial condition simulations, several different ratios tive to this fixed value.
of the string tensions, and two other binary choices affecting One salient feature of the results is hardly unexpected: the
string collisions and close encounters between nodes. Thatio of the tensions of different string species has a strong
choice between “bridge” and “zipper” configurations for effect on the behavior of the network. The case of heavy
colliding non-Abelian strings is one choidebbreviated B  strings, in particular, is an exceptional one which will be
and Z in Table I). The other choice determines what hap- discussed further below. Much more surprising is the strong
pens when two neighboring nodes are within distadgg,  difference in behavior between networks with different ini-
but are topologically unable to annihilate. In the cases latial conditions. Evidently, different initial conditions lead to
beled R, such nodes undergo a rearrangement of connectioguite different trajectories which appear self-similar.

(see previous sectigpnvith a probability of 0.2 per time step. We will address the issues in the following order. First,
In the cases labeled N, no rearrangements are allowed, amee discuss the different evolution patterns that occur with
the nodes simply bounce. different choices of string tension, focusing on the contrast-

As a rough measure of the importance of intercommutaing limits of heavy and light even strings. Then we comment
tions and NCC's, Table Il also gives, in the last two col- on other effects, including the effects of different initial con-
umns, the ratio of the total number of NCC events to theditions. Finally, at the very end of the section, we will make
number of intercommutations, and the ratio of the number of few remarks about uncertainties and finite-size effects.
NCC's to the cumulative net number of nodes annihilated. S; network with light even string€onsider a network in
(For theZ; network, there are no NCC’s and the number ofwhich the even, or three-cycle, strings have a much lower
intercommutations is shown instead. tension than the odd strings. In this case, the odd strings may

Unless otherwise specified, all numerical quantities argpass through each other with comparative ease by forming
given in units such that the initial lattice spacing is 1, thenew segments of the lighter even string. The odd strings may
displacement of each node during a time step is given bghrink with comparatively little energy cost in the creation of
Ax=ZX,T,At, and the magnitude of the tensidpof theodd  new strings. Furthermore, a zipper-type collision of two odd
strings is normalized to 1(This normalization was chosen strings may have a result which, from the point of view of
because the special status of odd strings: they are the ond® odd string subsystem, resembles an intercommutation
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FIG. 22. Length scales foB; network with equal string ten-
FIG. 21. Length scales foB; network with lightS strings. T sions, Higgs initial conditions, bridge NCC, rearrangement allowed.
=0.5, lattice gauge initial conditions, bridge NCC, no rearrange-

ments. string becomes entirely dominant over the other. Instead, the
evolution appears self-similar, with an approximately con-
(see Fig. 2& The newly formed light string offers compara- Stant ratio between the amounts of the two different string
tively little resistance to the straightening of the rejoinedspecies. This constant ratio is evident in Fig. 21 from the
heavy strings. We might expect that in this limit, the oddlinear evolution of both length scale variablBg andD; .
strings might behave as a network @k-like (i.e., un- Apparently, after some transient behavior at very early times,
branched and unorientedtrings moving through a viscous @ sort of dynamical equilibrium is established, with energy
medium formed by the branch&j network of even strings. being transferred in a steady cascade fromtthetwork tos
The odd strings can shorten and cut themselves into decayiritetwork and then lost to damping. Interestingly, decreasing
loops while transferring part of their energy to the eventhe even string tension still further to 0.25 does not allow the
string network. The even network, in turn, can dissipate it92dd strings to contract more quicklysee Table NM—
energy in much the same way aZ g network. evidently they are impeded by the larger population of even
Simulation results seem consistent with the above picturestrings.
Figure 15 shows a series of portraits of the evolution of a S; network with heavy even stringé. situation which
network with tensiond ,=0.5, T,=1.0, beginning from lat- contrasts with the case of liglststrings is one in which the
tice gauge initial conditions. The configuration at time0 s strings have a large tension. In this subsection, we discuss
is in fact the one shown shown in Fig. 12. In the early stagesimulation results for the case wilhi=2, T,=1. A glance at
of evolution, we see a large number of highly crumpled,Figs. 16 and 20 reveals that this leads to quite different re-
apparently Browniart strings with thick webs of string ~ sults. Thes, or even, strings are in this case only marginally
stretched between them. As time progresses, the odd stringéable against decay into pairstadtrings. If a heavys string
begin to straighten and some closed loops shrink away anends on & string, then the twé segments pulling against the
vanish. However, even though the odd strings are shortening string at the junction cannot prevent teesegment from
at the expense of stretching the even ones, the population shrinking unless the angle between theegments is suffi-
even strings is at the same time being reduced through th&ently small; in this marginal case df;=2 they must be
annihilation of nodes, with the result that neither species otollinear in order for the tensions to balance. In either lattice
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FIG. 23. Evolution of the distribution of length of eveB)(and odd {) string segments between junctions, for a network with heavy
strings (Ts=2).

gauge or discrete Higgs initial networks, the majoritysof different manner by Fig. 23, which shows semilogarithmic
strings end ont strings, and so there is very little to prevent histograms of the distribution of segment lengths at a se-
these heavy strings from shrinking rapidly. quence of times. The length distributions for the two string
The shrinking of an individuals segment frequently types evolve in different ways. For lengths larger than one
brings together a pair of nodes which are topologically undattice spacing, thé¢ segments follow an exponential distri-
able to annihilate. The nodes stick together because to sepBution (which appears linear on semilogarithmic axaith a
rate them again would require stretching thesegment. steadily increasing decay length. While the few langeg-
Similar adhesion happens whenever two noncommuting ments that remain are also exponentially distributed, there is
strings collide. Soon the network consists predominantly oho clear tendency for the decay length of this distribution to
odd strings stretched between small tangled clusters, and nacrease with time, and the number of long segments quickly
further annihilation can occur until separate clusters meet, oshrinks into insignificance compared with the large popula-
the geometry changes sufficiently to allow some strings taion of very short segments in the lowest bin of the histo-
pull free. Figure 20 shows the scaling variables as functiongram. The presence of so many short segments is associated
of time. The rapid disappearance ®ttring is evident from  with the adhesion of many pairs of nodes.
the extremely fast increase in the varialle in the upper Compare Fig. 23 with the length distributions in the
plot, and from the lower plot which shows that the averageT = 0.5 case, shown in Fig. 24. In the latter, we see that both
length of ans segment quickly drops to near zero. This is andistributions develop a peak at short lengtimlicating that
exceptional case: in all other cases besitlgs 2, the aver- some clusters do occyrbut the peaks are less pronounced
age segment length for both string types increases with timeand the number of such short segments decreases at a rate
Even though thes strings do not obey the usual standard commensurate with the remaining population of strings. The
scaling behavior, it appears that the averagegment length  exponential decay lengths for both distributions increase

does increase linearly with time, as d¥, and D,. Evi-  with time, as expected in a self-similar evolution. Evidently,
dently, the overall system obeys scaling once most ofsthe the pile-up of clusters is less significant in the lighstring
strings have shrunk. case. Length distributions for the Abelian netwdgkg. 25

The prevalence of clusters connected by skatgments show no excess at all at short distances.
is apparent in the snapshots of Fig. 16 and is illustrated in a Other effectsThe non-Abelian simulation has been run
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FIG. 24. Segment length distributions for network with lighstrings (Ts=0.5).

under a variety of conditions. For the most part, the resultglence on parameters other than the string tensions. Most sur-
are consistent with some type of self-similar evolution. Vari-prising is the very strong dependence on the statistics of the
ables having the dimensions of length all increase linearlynitial conditions. When the Higgs initial conditions are used,
with time. The exception is for networks with heaw the network decays much faster, especially in the case of
strings, in which the average segment length decreases. heavys strings. Not only the absolute sizes, but the ratios of
This is the only case for which one type of string dominatescoefficients can have quite different values depending on
completely over the other. In all other cases, the amounts okhich initial conditions are used. This dependence is some-
the two string types approach a constant ratio. what mysterious. The lattice gauge initial conditions are
The evolution of the network has some interesting depenmuch more dense than the Higgs initial conditions, but the
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3 3
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.
Length Length
1 2 3 4 4 e *7* 8

FIG. 25. Segment length distributions for the Abelidnnetwork, included here for comparison with Figs. 23 and 24.
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TABLE Il. Coefficients for network’s evolution: rates of change g, D,, D,, and average segment length of each type, ratio of
NCC's to intercommutation events, and cumulative number of NCC’s per node, reported for different conditions. The final r&y gives
results. Uncertaintiegstimated by analyzing subsets of the gat@ approximately- 2 in the last decimal place, ar0.02 for most of the
values given. Abbreviations: Lé&lattice gauge initial conditions, HHiggs initial conditions, B-=bridge NCC, Zzipper NCC,
R=rearrangements allowed,=hho rearrangements, Kintercommutation, NC&noncommutative collision.

Conditions dDg/dt dD,/dt dD,/dt d(avgS)/dt d(avgT)/dt NCCI/IC NCC/node
T.=2.0, LG
B N 0.9 0.10 0.11 <0 0.15 5.9 0.83
Z N 0.7 0.10 0.11 <0 0.15 8.6 0.93
B R 14 0.25 0.40 <0 0.37 5.6 0.64
Z R 15 0.29 0.35 <0 0.63 8.1 0.91
Te=2.0,H
B N 2.7 0.55 0.69 <0 1.2 4.2 0.23
Z N 2.8 0.46 0.59 <0 1.1 4.5 0.25
B R 3.0 0.71 0.91 <0 2.0 2.9 0.17
Z R 3.7 0.82 1.1 <0 1.9 4.0 0.22
T.=1.0, LG
B N 0.15 0.15 0.11 0.08 0.09 5.3 0.33
Z N 0.16 0.12 0.10 0.05 0.08 5.8 0.23
B R 0.30 0.20 0.18 0.11 0.17 6.3 0.06
Z R 0.34 0.22 0.17 0.09 0.11 3.8 0.06
T,=1.0, H
B N 1.0 0.56 0.50 0.19 0.41 3.9 0.17
Z N 1.0 0.53 0.43 0.12 0.33 3.0 0.10
B R 1.1 0.65 0.54 0.18 0.35 2.8 0.05
Z R 1.2 0.72 0.61 0.21 0.33 3.1 0.04
T,=0.5, LG
B N 0.10 0.10 0.07 0.05 2.9 2.9 0.37
Z N 0.09 0.13 0.07 0.03 0.03 24 0.23
B R 0.17 0.20 0.13 0.07 0.07 2.5 0.09
Z R 0.17 0.26 0.13 0.07 0.07 2.3 0.07
T.=05, H
B N 0.19 0.15 0.10 0.04 0.05 2.1 0.17
Z N 0.20 0.20 0.13 0.07 0.11 6.3 0.02
B R 0.47 0.43 0.30 0.18 0.20 25 0.06
Z R 0.44 0.39 0.29 0.16 0.17 2.0 0.05
T,=0.5, LG
Z R 0.09 0.17 0.08 0.04 0.06 1.9 0.13
Ts=1,27;
(with intercommutations 0.37 0.38 0.25 0.12

overall density of nodes decreases during the evolution, soations of neighboring nodes evidently increase the mobility of
reaching a density comparable to that of the initial Higgs-flux, and increase the likelihood that eventually some neigh-
initial-condition-generated network, yet the two continueboring pairs of nodes will be able to annihilate. As is appar-
evolving at very different rates. Evidently, some statisticalent from Table II, the inclusion of rearrangements almost
property other than the total density is important, such as, foinvariably speeds up the decay of the network, often by
example, the distribution of voids, or even correlations of theroughly a factor of 2. The choice of either zipper or bridge
fluxes. A better understanding of this phenomenon should beonfigurations for colliding noncommuting strings generally
the goal of future work. makes a smaller difference, if any.

Notice that the details of the behavior of closely ap- Finite-size effects, fluctuations, and uncertainti@sfew
proaching nodes makes some difference in the evolutiorremarks are in order concerning the interpretation of results
The inability of some pairs of nodes to annihilate is appar-and the effects of simulating on a finite volume. The size of
ently an important impediment to the network’s destruction.our simulation volume is limited in practice by computation
Rearrangements$quasi-intercommutationsof the connec- time; the flux computationéee Appendixare computation-
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finite-size effect and not indicative of the behavior of an
\ infinite network for the following reasons: It occurs when
\ only a few nodes are left in the simulation volume, and it
occurs at later times as the simulation volume is increased. In
fact, one run performed on a larger’@lume did not level
off at all, but collapsed entirely instead. Higgs-initial-
condition-generated networks tend to evolve more smoothly
and to be more likely to undergo total collapse at the end of
the simulation.

VI. CONCLUSIONS AND DISCUSSION

One of the motivations for undertaking a simulation of
non-Abelian string dynamics was to test for deviations from
the familiar power-law behavior of the network’s energy
density as a function of time, and especially to look for evi-

FIG. 26. Two collidingt strings form ars-string zipper. If thes ~ dence for or against the conjecture that the tangling of strings
string is ignored, this event looks very similar to an intercommuta-would cause a non-Abelian network to freeze into a static
tion. (fixed in comoving coordinateequilibrium. The results we

have found suggest that such a scenario, if it can occur at all,
ally intensive. Typical plots of scale variables like those inrequires very special conditions. Over a range of different
Figs. 20—22 exhibit some transient behavior at early timestegimes, the results found here are consistent with some
followed by a period of linear increase. As the typical dis-form of self-similar evolution, and with a density decaying at
tance between nodes increases, however, a point is eventarate commensurate with that of matter; Ct~2. The co-
ally reached where only a few nodes remain within the simuefficientC, however, can vary in quite interesting ways due
lation volume. At this point, both systematic and randomto non-Abelian effects. In a cosmological scenario, this co-
deviations from linear scale growth begin to occur. With efficient controls the fractional contribution of strings to the
fewer nodes, curves become bumpy due to lower statisticenergy of the universe.
Many strings wind all the way around cycles of the periodic The interplay between the different string species causes
boundary, so that the simulated network can no longer béhe self-similar evolution to be realized in some novel ways
expected to mimic an infinite one. A typical run meets one ofwhich can be quite different under different conditions. Fea-
two distinct fates at the end of its period of self-similar evo-tures such as the ratio of the populations of different string
lution. It may undergo a very sudden collapse as the lasspecies may depend in rather complicated ways on various
remaining nodes annihilate, leaving either no strings at all ofactors. Particularly striking and new is the strong influence
a few strings stretched across the entire volume. This suddesf the initial distribution of strings on the subsequent evolu-
collapse is visible as a sharp upward turn in the plots otion. Evidently, different self-similar evolutionary trajecto-
length scale versus time. Alternatively, the network mayries are possible, and initial conditions may be attracted to
reach a stable or metastable configuration with a small numene trajectory or another depending on some statistical fea-
ber of nodegtypically of order 10 or fewej.The character- ture other than the network’s overall density. This behavior
istic length scale ceases its linear increase and reaches a pteeems almost paradoxical, going against the notion that a
teau. Needless to say, we cannot make reliable inferencessaling evolution is one which has no memory of its initial
about an infinite network once the scale of our simulationstate.
volume becomes the important one, and we can only extract There are interesting questions to investigate at both the
information on scaling behavior from the linear part of the “microscopic” and “macroscopic” level. By microscopic
curve. The conclusion that our data are consistent with scaguestions, we mean those concerning the dynamics of indi-
ing is based on the existence of a linear stretch which typividual strings and individual collisions. Our results indicate
cally continues until at least one of the length scale variablethat the behavior of nodes in the network as they encounter
has grown to one half the width of the simulation volume.each other has a controlling influence on the network’s evo-
We cannot rule out slowe.g., logarithmi¢ deviations from  lution. The inability of non-Abelian nodes to annihilate is an
scaling. important impediment to the removal of strings, and configu-

With respect to fluctuations, not all simulation runs arerations with nodes close together or coalescing into compos-
alike. Runs with lattice gauge initial conditions afig=2  ites appear to be especially important in the interesting case
seemed to undergo quite a bumpy evolution characterized byf heavys strings. The process we have called “rearrange-
periods of temporary freezing alternating with cascades ofment” of two nearby nodes seems to increase the mobility of
annihilation. The bumpiness was smoothed out only by avstrings and allow the network to decay more quickly. This
eraging over multiple runs. Runs wifhiyz=2 without rear- simulation was run with rathead hoc assumptions about
rangement almost always end with a few nodes remainingode collisions. A better microscopic understanding of
rather than with complete collapse. This is reflected in Fignodes’ behavior and that of multinode tangles will help pro-
20, where the curves @, andD,, versus time begin leveling vide input for improved simulations and understanding of
off as the average segment length approachéshich is  macroscopic questions.
half the width of the volumpe This leveling is probably a At the macroscopic level, it would be desirable to obtain a
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better understanding of the principles governing the interplay
between different string types and the strong influence of
initial conditions. The types of network behavior seen here
may open up new possibilities for cosmological model build-
ing, aside from the string domination scenario. Some of the
types of structures seen here, such as webs of light strings
stretched between heavier on@s in the lights-string sce-
nario of this simulatioh or the tangled clusters seen in the
T,=2 simulation might have interesting cosmological ef-
fects. We have seen hints that the strength of fluctuations in
string density is different under different circumstances, be-
ing especially strong foll ;=2. Might these fluctuations be
interesting sources of structure formation? Along with ana-
lytical study, more refined simulations of branched and non-
Abelian networks may well prove worthwhile.
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. . . flux through a path which leaves the base poeintlong a straight
thanks J. Preskill, T. Vachaspati, A. de Laix, C. Thompson"ne toward the node, then encircles the string in a counterclockwise

and P. Sikivie for helpful discussions and encouragement. direction as seen from the far end of the string and returns to the
base point.
APPENDIX: SIMULATION OF NON-ABELIAN
ELUXES tail to a point which is taken to be vanishingly close to the
) . o the node. The path then encircles the string in a counter-
The subtle nature of non-Abelian magnetic flux in discreteg|ockwise direction and returns to the base point along the
gauge theories has been the subject of quite Interesting repde’s tail. This is illustrated in Fig. 27. This will be our
search(15,16,20,32,3B and presented algorithmic and com- conyention for defining the fluxes of the strings which join at
putational challenges for this simulation. Ambiguities in the 5 given junction.
definitions of non-Abelian fluxes, mentioned in Sec. Il, re- “ag jllustrated in Fig. 28, flux conservation requires that
quire that we design a very careful procedure to fix consisihe product of all three fluxes emanating from a node be

tent definitions and maintain their consistency as the stringgjyial when the fluxes are multiplied in a clockwise order

move. This must be done in order to allow us to make the . o = L . .
: . ; . Wwith respect to the directioBN. That is, if the strings in
appropriate comparisons of fluxes when two strings Comdeclockwise order ar@. b. andc. then
or two nodes attempt to annihilate. Additional subtleties oc- T '
cur as a result of our using periodic boundary conditions: we cha=e. (A1)

are dealing with a discrete gauge theory on a nonsimply con-

nggted space manifolq, and holonomies associated with nofy oyr algorithm, a record is maintained of the geometry of
trivial cycles become important. o each node: the strings carry labels indicating the appropriate
This appendix describes our procedure for defining ang|qckwise orientation.
comparing the ]‘ques of n_on—AbeIian strings. Further d.etails In the case of a doubly linked pair of nodé&g. 4) two
may be found in18]. As in Sec. Il, we use the formalism gegments are collinear, and the order is therefore ill defined.
developed i 16,20. _ . . In such a case we allow the order to be arbitrary, but the
Gauge fixing conventionsn our algorithm, the strings flyxes of the two strings must be defined in a way consistent
and nodes exist inside a rectangular volume with opposit§yith that order, such that the product of all three fluxes is as
sides identified: a three-torus. The subtleties associated witfis,a trivial. The ordering must also be compatible between
the periodic boundary conditions will be discussed later: folihe two nodes which the segments join, so that the flux of a
now we simply consider a network inside a rectangular voliven segment is consistent at its two end@e consistency
ume with boundaries. We choose a cubic volume with ongy segments from one end to another will be discussed be-
corner at(0,0,0 and with side lengtih.. As explained in Sec. |ow,)
Il, it is necessary to define fluxes using paths that begin and The collection of standard paths defined above represents
end at some base point. We choose a base pairt the 5 set of generators forry(M—{D}). The flux state of a
center of our simulation volumex,=(L/2L/2L/2). Let  network of strings is fully specified when we know the fluxes
each node be associated with a straight line segni@nt enclosed by all of these standard paths. The conditidr)
“tail” ) along the directiorBN from the base point to the supplies one set of relations among these generators. For
node’s location. Then let the flux of each outgoing string beeach string segment, there is also a relation involving the
defined with respect to a path which runs outward along thigluxes defined at its two end points, as discussed below.
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FIG. 28. The compositionBa of all three paths can be continu- FIG. 30. Crossing of a node’s tail by a string. This can happen
ously deformed to a point. Therefooda, the product of all three  either when the moving node drags its tail across the st#ngor
fluxes taken in a clockwise direction as seen from above the nodeyhen the string is dragged across the tail due to the motion of
must be trivial. another nodé€B). In both cases, the fluxes of all strings attached to

the node whose tail is crossed must be conjugated by the flux of the

("\ AL ~ 7/ crossing string.
\ i \ NS . . -
' s “Sliding” flux from the end point.By the conventions
® above, the flux of each string is defined at its two end points.

But for the purposes of this simulation it is necessary to
make comparisons of the fluxes of strings at arbitrary points
along their lengths. For example, if two strings cross each
other, their fluxes must be compared at the crossing point in
" . ® . order to determine whether they commute. A meaningful
comparison of the fluxes of nearby string segments can be
obtained only if the paths used to define those two fluxes
remain close to each other everywhere except in the imme-
diate vicinity of the strings to be compared. In particular, the
“tails” of the paths must not pass on opposite sides of any
string, because such paths would give different flux measure-
ments for the same string. It is possible to define the flux of
a string at an arbitrary point along its length by sliding the
standard path to the one which encircles the string at the
point we wish to measure, as illustrated in Fig. 29. If another
string with flux b pierces the triangle which is swept out by
the sliding path, then the flux at the new position is conju-
FIG. 29. When the flwa of a string has been defined according gated byb. If multiple strings occur, then the new fla is
to a path which encircles it near one end, the #xof that string  given byfaf~!, wheref, the total flux inside the triangle, is
at another point along its length can be defined by “sliding” the defined as the product of the fluxes of all enclosed strings,

standard pathr to a’ as shown. If no other strings pierce the tri- taken in order of increasing angle from the initial rB_})D
angle which is swept out, then this merely represents a continuo . . . :
deformation ofa, and thusa’=a (A). However, if the triangle is he flux of ea(_:h other Strlng_ at the pom'g W_here !t _plerces the
pierced by string with flusb as measured by pah then the flux is triangle must in turn be def'“e‘?' by a similar S“d'r,]g proce-
conjugated by: a’ =bab~ (B). More generally, if the trianglEor d_ure from one of |t§ ends. This procedqre, applied recur-
the oriented pathh shown in(C)] encloses fluxt, thena is conju-  Sively, can thus define the flux of any string at an arbitrary
gated by the total fluf, i.e.,a’=faf L. The total flux is given by ~Point P along its length, as measured by a path which fol-
the product of individual string fluxes, taken in order of increasing/OWs a straight line fromx, towardsP and encircles the
angle from the initial tail(This can be seen by deforming a product String nearP.

of loops to a single loop enclosing all strings. If one slides the path all the way to the far end of the

©)
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(A)

FIG. 31. Example of a holonomy interaction between strings
attached to the same node. When the string carryingdlisxlifted
over the other string carrying flul, its flux must be redefined as r
a’'=bab™!, and the conventional clockwise order of the three
strings changes, with andb exchanging places. The flux conser-
vation condition is maintained: itba=e originally, then also
ca'b=e.

Xo

(B)

FIG. 33. Interaction between a string and one of the large loops
of the three-torus. As a string with flux as defined by the path
crosses to the right of, as shown in(A), the pathal’, wherel is
a straight-line path which wraps around the three-torus, can be con-
tinuously deformed to the new straight-line path. Thus the flux
C associated withl' must be multiplied from the right by the
string’s flux, C’' =Ca. If the string crosses to the left as (B), al’

: is deformed td’ and so the multiplication is from the other side:
*) ‘ C'=aC.

Xo

string, the resulting value of the flux must be consistent with
the value measured by the standard path at the other end.
This specifies an additional set of relations among the gen-
erators ofr(M—{D}) and furnishes one way of testing for
errors in the simulation, as well as being necessary in order
to define the fluxes of strings at the newly created nodes that
result from string collisions.

A modified version of this sliding procedure is used to
define all fluxes initially from the original lattice. Paths com-
posed of lattice links are deformed by a series of steps to
i straight-line paths from the base point to the location of each
® : node.

Holonomy interactionsAs the network evolves dynami-

. - cally and nodes change their position, the fluxes defined by
FIG. 32. Transformation from one description of a flux to an- these conventions may change in several different ways.

other at the boundary. Here a string is shown intersecting the pIanE. . .
. - First, as a node moves, its tail may be dragged across another
of the page precisely where it intersects the boundary of the cubic

simulation volume(dotted ling. Under periodic boundary condi- Ztrlng ;egment. hCon\(/jer’ser.,l t(;i ?]trlng .Segmfenth mayd be
tions, the two points labelex} are identified. The flux of the string ragged across the node’s tail by the motion of other nodes.

may be described in terms of a path whose tail extends to the ring‘ b_Oth cases, the fluxes.of gll strings at the nodg m_ust be
of X, () or to the left @'). If no other strings are present, then conjugated by the flux which is crossed, as shown in Fig. 30.

is homotopically equivalent t§~a'T". In the more general situa- N @ddition, the geometry of the strings at a given junction
tion shown in(B), a~(#.I'¢g) ta' (¢ Tég), and so the two May change, resulting in holonomy interactions among the
descriptions of the flux are related through conjugatiorf g@fz,  three strings joined at that node. Such a process is shown in
whereC is the flux associated with the pafhandf,_ andfg are the ~ Fig. 31: The motion of string@ causes its standard flux to
overall fluxes enclosed by, and ¢y, respectively. The latter can change, and also changes the clockwise ordering of the
be defined in terms of paths lying entirely on one side or the othestringsa, b, andc. This requires both an adjustment of the
of the boundary. flux definitions and of the order labels.
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Periodic boundary conditionsBecause of the periodic dinate axes, which we will refer to d3,, I'y, andT’,. I',,
boundary conditions, our simulation volume has the topolfor instance, leaves the base point along the direction,
ogy of a three-toru§ ;. The nontrivial topology introduces wraps around the boundary from=L to x=0, and then
three additional classes of noncontractible closed loops oth@eturns to the base point from theX side. Along with val-
than the ones associated with strings, namely, those whiches of the fluxes for all strings, our algorithm maintains a

wrap around one of the boundaries. These loops may bgycord of theS, holonomiesC,, Cy, andC, associated with

associated with nontrivial flux. As in the case of vortices on 1 sndr respectively. These values must be known
. X y H Z .

a Riemann surfac84], the fluxes of these loops may have ;" 51ger to make consistent comparisons of string fluxes

holonomy interactions with the fluxes of strings, and there-

fore a full descrintion of Strind fluxes reduire o ma.nta.nacross the boundaryThe procedure for doing so is illus-
u script string Tluxes requires us NN ated by Fig. 32. The values of theC; may change if a
a record of these large loops.

As representatives of the three “wrap around” classes,smng crosses one of the curvEs (see Fig. 33

we choose canonical straight-line paths parallel to the coor-
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