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Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms
and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin,
Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith,
Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed
through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak
detection algorithm with user-defined parameters that can be readily applied to the application of
any spectral data. Particular attention is given to the algorithm’s resolution of overlapping peaks.
The algorithm is implemented for the analysis of powder diffraction data, and successful detection
of Bragg peaks is demonstrated for both low signal-to-noise data from theta–theta diffraction of
nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These
datasets have different types of background signals which are effectively removed in the wavelet-
based method, and the results demonstrate that the algorithm provides a robust method for automated
peak detection. © 2011 American Institute of Physics. [doi:10.1063/1.3505103]

I. INTRODUCTION

The wavelet transform is a broadly applicable analysis
tool that is analogous to the more familiar Fourier transform.
Fourier analysis is commonly used to express spectral data in
terms of frequency components and associated phases. While
transformation into this frequency-phase space is useful for
many data analysis practices, the most intuitive transforma-
tion space for peak identification is a peak width-position
space. In the formalism of wavelet analysis, this type of trans-
form can be built by appropriate choice of a mother wavelet
w(x) such that peak width and position are accessed through
dilation and translation of this wavelet,

wa,b(x) = a−1/2 w

(
x − b

a

)
. (1)

As indicated in Eq. (1), dilation and translation are de-
scribed by the wavelet scale parameter a and wavelet position
parameter b, respectively. Given a 1D function (e.g., spectral
data) f (x) and assuming both w and f are real-valued func-
tions, the wavelet transformation of f is given by

T (a, b) =
∫

wa,b(x) f (x) dx . (2)

A common choice of mother wavelet is the Lorentzian of
Gaussian (LoG) wavelet,

w1,0(x) ∝ (1 − x2) exp[−x2/2], (3)

which is illustrated in Fig. 1. The LoG wavelet transform of
example data with Gaussian and Lorentzian peaks is depicted
in Figs. 2 and 6.

a)Current address: School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, USA.

Wavelet analysis has been employed in data process-
ing algorithms for several branches of the physical sciences,
including x-ray crystallography. Wavelet-based data compres-
sion and filtering algorithms are analogous to their counter-
parts built upon Fourier transformations. In x-ray diffraction
analysis, wavelet-based data compression has been applied
to powder patterns to both improve computation efficiency1

and identify crystalline phases via comparison with wavelet
transforms of pure phase patterns.2 Wavelet denoising algo-
rithms have been implemented in data processing algorithms
for several varieties of spectral data, including powder x-ray
diffraction.3 As in Fourier-based filtering, the denoised data
are typically transformed back into their original (1D) coordi-
nate space for further analysis.

Important properties of the data f can also be acquired
through direct analysis of its wavelet transform. For example,
the variation in T (a, b) as a function of the wavelet scale a
provides “multiresolution” analysis, which has been incorpo-
rated into analysis of x-ray differential correlation functions
by Ding et al.4 In this work, LoG wavelets with different
widths probe ordering on different length scales, and analy-
sis of the wavelet transformed data provides insights into the
structure of silica glass vis-a-vis crystalline counterparts.

Algorithms for the identification of peaks in 1D data
through analysis of the 2D wavelet transform surface have
recently been developed. These algorithms demonstrate high
sensitivity and low false detection rate for peak identification
in low signal-to-noise spectra.5–7 Du et al.5 developed such
an algorithm for analysis of mass spectrometry data using the
LoG wavelet transform. A similar algorithm has been imple-
mented using the derivative-of-Gaussian (or Ridger) wavelet
to analyze low signal-to-noise data from contactless elec-
trophoresis measurements.6 These algorithms exhibit some
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FIG. 1. The Lorentzian of Gaussian wavelet plotted in terms of its scale pa-
rameter a and position parameter b.

limitations in the analysis of powder x-ray diffraction data,
particularly in the identification of overlapping peaks.

In the present work, we develop an algorithm based
on that of Ref. 5. The wavelet-based peak detection algorithm
is broadly applicable, and we describe an implementation
of the algorithm that is well suited for peak identification in
noisy x-ray powder patterns. In particular, we demonstrate the
utility of the algorithm in analysis of datasets with different
types of noise. In a dataset obtained with a conventional
powder diffractometer, we identify low signal-to-noise
Bragg peaks in powder patterns of Pt–Zn nanoparticles. In
addition, we demonstrate successful analysis of diffraction
patterns of a Pt–Ru composition spread thin film that were
acquired using a recently developed high energy diffraction
experiment. In these powder patterns, the background signal
is not amenable to filtering by conventional algorithms, but
the Bragg peaks are efficiently analyzed via the algorithms
described in this paper.

In both cases, we demonstrate that noise filtering and
background subtraction are inherent in the wavelet-based

FIG. 2. (Color online) Peak identification of data (top, black) consisting of
strongly overlapping Lorentzian peaks (top, dashed). The LoG wavelet trans-
form at four scale parameters (bottom) is shown along with the local maxima
and ridges, as defined in Sec. III B.

peak detection algorithm. With the parameters of the algo-
rithm appropriately defined for the given noise level and an-
ticipated range of peak widths, the peak detection algorithm
comprises an automated, noninteractive method for the robust
extraction of peak properties from any spectral data.

II. EXPERIMENTAL

The synthesis and diffraction measurements of Pt–Zn
nanoparticles were carried out as described by Muira et al.8

and employed a Scintag theta–theta diffractometer. The
Pt–Ru metal thin film was sputter deposited in a combinatorial
magnetron sputter deposition system described elsewhere.9

Diffraction images of the thin film on single crystalline sil-
icon substrate were acquired in transmission geometry using
a 60 keV x-ray source. The details of the experiment and of
the algorithm for processing the diffraction images into pow-
der patterns are described in Ref. 10.

III. WAVELET PEAK IDENTIFICATION ALGORITHM

While a variety of mother wavelets could be used to
identify peaks in diffraction spectra, the current work only
involves the use of LoG family of functions wa,b given by
Eqs. (3) and (1). The data f are assumed to be a 1D set of
measurements performed on a grid of positions X with regu-
lar spacing δx in the measurement coordinate x . The wavelet
transform is essentially a discrete convolution of data f with
wa,b, and we note that artifacts may arise in the wavelet
transform calculation when the wavelet scale approaches the
measurement interval (a � 10 δx) or the wavelet position ap-
proaches the edge of the dataset (e.g., b < min{X} + 5a). In
the Appendix, we outline a simple algorithm for making ro-
bust wavelet transform calculations under these conditions.

The algorithm for extracting peak positions from the
wavelet transform surface T (a, b) is based on that of Ref. 5.
The guiding principle of the algorithm is that given a peak
in f with position xpeak and width σpeak, the wavelet trans-
form T (a, b) will have two important properties. At fixed
a ≈ σpeak, T (a, b) will have a peak-shaped profile with lo-
cal maximum near b = xpeak. At fixed b ≈ xpeak, T (a, b) will
be a slowly varying function with appreciable intensity when
a ≈ σpeak. Peaks are identified by finding the local maxima in
T (a, b) with respect to b, clustering these local maxima by
their proximity with respect to b, and examining the cumula-
tive magnitude of T (a, b) at these local maxima with respect
to a (see Sec. III B).

A. Design parameters of transformation

Given a mother wavelet, the only design parameters of
a wavelet transform are the choices of a and b. For conve-
nience, the set B of values for the position parameter is taken
to be a subset of X . Transformations that use an equal spacing
in the set A of scale parameters are loosely defined as contin-
uous wavelet transforms and are used in the peak searching
algorithms of Refs. 5 and 6.

We find that equal spacing in A results in oversampling
of the large scale features of the data. The variation in T (a, b)
with respect to both parameters generally increases with
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decreasing a, and thus logarithmic spacing in the set A is more
suitable for both data interpretation and computational effi-
ciency. Lossless data compression algorithms based on dis-
crete wavelet transforms commonly employ dyadic spacing
in the scale parameter.11 While this log2 spacing is adequate
for wavelet-based peak detection in some datasets, we find
that a finer spacing enables more straightforward identifica-
tion of peaks. For peak identification in diffraction patterns,
we employed log1.18 spacing in A (4.2 cycles per octave).

While this spacing in the set A is an important wavelet
transform design parameter, one must also choose the appro-
priate range of A. The minimum value of A must be at least
as big as the measurement spacing δx , has important implica-
tions for peaks splitting, and is an upper limit on the resolution
of the position of identified peaks (see the Appendix). The
maximum value of A is practically chosen to be larger than
the value of a that maximizes the wavelet transform of the
widest data peaks of interest. The maximum LoG wavelet
transform for a peak with a half-width at half maximum equal
to 1 is achieved with scale parameter of 2.9 for a Lorentzian
peak and 1.9 for a Gaussian peak. For powder diffraction anal-
ysis, a suitable maximum value of A can be determined by
considering the maximum anticipated peak width due to both
Debye–Scherrer and instrument broadening.

Given the set A that is appropriately chosen for the
widths of the peaks in f , we introduce a weighting function
g(a) for the mother wavelet. The coefficient a1/2 in Eq. (1)
ensures energy conservation of the wavelet for any a, an im-
portant property for many wavelet-based algorithms such as
data compression. For peak detection algorithms, the energy
conservation constraint can be lifted, allowing the wavelet to
be modified and thus tailored for the shape of the data peaks
and the desired sensitivity to the detection of overlapping
peaks (the Appendix, Sec. II). That is, the weighting function
allows the wavelet transform calculation to be customized for
a particular type of data. For the LoG wavelet employed in
the present work, the modified wavelet is given by

wa,b(x) = g(a)a−1/2

[
1 −

(
x − b

a

)2
]

× exp

[
−

(
x − b

a

)2 /
2

]
, (4)

and for our analysis of powder diffraction data, we use
g(a) = 1/a. We note that the weighting function could
equivalently be applied to the wavelet transform, which
may be useful when a user is exploring different choices for
g(a). Regardless, using Eqs. (4) and (2), a discrete wavelet
transform T (a, b) is calculated and used in the following
peak identification algorithm.

B. Ridge and peak identification algorithm

The following algorithm provides identification of data
peaks by identifying the local maxima in the LoG wavelet
transform and grouping the local maxima into ridges. Using
the formalism of this algorithm, Fig. 2 depicts the analysis of
the wavelet transform for a pair of overlapping peaks.

a. Calculate T (a, b) over the grid of parameters a ∈ A
= {a1, a2, . . . , an}, b ∈ B = {b1, b2, . . .} where A is
strictly decreasing.

b. For each ai ∈ A, find the set Mi of local max-
ima of T (a, b) with respect to b. That is, find
Mi = {i m1,

i m2, . . .} ⊂ B such that each i mj is a
local maximum and T (ai ,

i mj ) > ηi , where ηi is a
chosen noise threshold.

c. Group the set of elements in M1 ∪ M2 ∪ . . . Mn into
ridges Rg . The initial ridges are defined by R j = {1mj }
for each 1mj ∈ M1, the set of local maxima for the
largest wavelet scale.

d. For each wavelet scale ai , i = 2, 3, . . . (ordered in de-
creasing wavelet scale), and for each element i mj ∈ Mi ,
append i mj to one of the existing ridges Rg if the ridge
contains an element i−1m from the larger wavelet scale
such that |i−1m − i mj | < δi and |i−1m − i mk | ≥ δi for
every i mk ∈ Mi/{i mj }, where δi is a chosen interval
in the shift parameter b. That is, local maxima of
T (ai−1, b) and T (ai , b) are included in the same ridge
if their separation in the b coordinate is less than δi and
there are no other local maxima in T (ai , b) that meet
this requirement.

e. If there is no existing Rg that satisfies this condition
(or equivalently, no such i−1m), then a new ridge is
initialized as Rh = {i mj }. If there are multiple elements
of Mi that are sufficiently close (within δi ) of an
i−1m ∈ Rg , then similarly initialize new ridges Rh1,
Rh2, . . . , one for each of these elements. We define
Rg as the mother ridge of each of these new ridges,
i.e., mother(Rh1) = mother(Rh2) = · · · ≡ Rg . We also
define the new ridges as the descendants of Rg , i.e.,
descendants(Rg) ≡ {Rh1, Rh2, . . .}, and catalog the
descendants over multiple generations such that if Rg is
a descendant of a ridge R f , descendants(R f ) becomes
descendants(R f ) ∪ descendants(Rg). We note that Rg is
effectively terminated in this step, as this ridge will not
contain elements from finer wavelet scales.

f. (optional) In some cases, it may be necessary to allow
ridges to effectively “skip” a number s ≥ 1 of wavelet
scales. That is, if there is no i−1m ∈ Mi−1 such that
|i−1m − i mj | < δi but there is a i∗

m ∈ Mi−2 ∪ Mi−3

∪ . . . Mi−s−1 such that |i∗
m − i mj | < δi , then include

i mj in the ridge containing i∗
m.

g. For each Rg , a peak is identified at position
x = imax m ∈ Rg (where imax is the largest wavelet scale
index represented in Rg) if Rg satisfies the conditions

∑
i m∈Rg

T (ai ,
i m) > ζ1, (5)

∑
i m∈Rg∪mother(Rg)∪mother (mother(Rg))∪...

T (ai ,
i m) > ζ2, (6)

∑
i m∈Rh

T (ai ,
i m) ≤ ζ1 ∀Rh ∈ descendants(Rg), (7)

where ζ1 and ζ2 are user-defined thresholds with ζ2 ≥ ζ1. For
a ridge without descendants or a mother, condition (7) is triv-
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ially met and conditions (5) and (6) differ only in the threshold
value. The criterion is that the sum of the values of the wavelet
transform at the local maxima in the ridge must be larger
than a chosen threshold. For a ridge that has a mother ridge,
condition (6) includes the local maxima of the mother ridge
in the cumulative wavelet transform intensity. For a ridge that
has descendants, condition (7) requires that all descendant
ridges have failed condition (5), and thus, a ridge is identi-
fied as a peak only if every descendant ridge is not identified
as a peak.

C. Algorithm discussion

The above algorithm defines ridges and grows them
through incremental analysis of finer wavelet scales. If the
cumulative wavelet transform of the ridge is sufficiently large,
a peak is identified at the position given by the end of
the ridge. The creation of descendant ridges from a mother
ridge corresponds to the identification of a set of over-
lapped peaks, and condition (7) precludes double-counting of
peaks.

The value of δi should be larger than ai−1 and should
not be so large as to allow i mj to be associated with mul-
tiple local maxima from Mi−1. If this arises, i mj should be
associated with the closest member of Mi−1. Using larger val-
ues of δi promotes the detection of overlapping peaks but can
also lead to false peak detection. The optimal value will vary
with peak shape, and we find that δi = 1.5ai−1 is suitable for
analysis of powder diffraction patterns with both Gaussian
and Lorentzian peaks.

Our chosen weighting function g(a) = 1/a provides in-
creased wavelet transform intensity at smaller wavelet scales,
which we found to be desirable for detection of low-intensity
and overlapped peaks. An appropriate value for the noise
threshold ηi is determined by the noise level in the data
and choice of weighting function g(x). To maximize the
sensitivity of the algorithm, ηi should be sufficiently small
that at a given ai , there are local maxima in Mi that cor-
respond to false peaks. Then, ζ1 and ζ2 are chosen to be
sufficiently large that the false peaks are appropriately ex-
cluded from the set of identified peaks. While we recommend
this heuristic determination of these parameters, a reason-
able estimate may be obtained from the maximum wavelet
transform sum [see condition (6)] obtained in the analysis
of zero-signal (pure background noise) data with ηi set to
zero.

The behavior of the algorithm can be tailored in subtle
ways with different choices of ηi , ζ1, and ζ2, especially with
regard to the algorithm’s sensitivity to the detection of over-
lapped peaks. With ζ2 chosen for the respective noise level,
setting ζ1 = 0 provides maximal sensitivity to overlapped
peaks because every descendant ridge that does not have de-
scendants of its own will be identified as a peak, provided
the cumulative wavelet transform of the ridge and its ances-
try is above the threshold ζ2. Setting ζ1 = ζ2 provides mini-
mal sensitivity to overlapped peaks as condition (6) becomes
obsolete and the descendant ridge alone must contain suffi-
cient cumulative wavelet transform intensity. As described in
the Appendix, the local maxima of an overlapped peak may

be quite small, and thus for identification of overlapped peak
in powder diffraction patterns, we use ζ1 = 0.

The algorithms of Refs. 5 and 6 include neither the con-
cept of mother and descendant ridges nor cumulative thresh-
old criteria [e.g., conditions (5)–(7)]. In these algorithms, the
condition for identification of a ridge as a peak is that the
length of a ridge must be above a threshold value. The peak
identification conditions of Sec. III B can be extended using
this condition and the corresponding condition for the cumu-
lative length of a ridge and its ancestor ridges, which would
provide two more parameters for tuning the algorithm for a
given application. However, the ridge length condition is very
sensitive to the choice of A and provides a discrete threshold-
ing parameter. The continuous threshold parameters ζ1 and ζ2

are inherently more versatile and are particularly useful when
a small number of wavelet scales are used, which is desirable
for computational efficiency.

The peak position is defined as the end of the ridge be-
cause the wavelet transform at the smallest value of a has the
highest resolution for peak position. While the finer wavelet
scale makes the wavelet transform more susceptible to noise,
the uncertainty in determination of the peak position is �δi by
virtue of its inclusion in the ridge (although additional system-
atic errors arise in the case of overlapping peaks). The width
of the identified peak can also be estimated by the wavelet
scale ai at which the wavelet transform value of the ridge
is maximal, but we note that the relationship between this
wavelet scale and the peak width will vary with peak shape,
as noted in Sec. III A. For descendant ridges, the estimation
of peak width is less straightforward.

D. Further processing and profile fitting

While the above algorithm provides estimates for the
position, width, and height of the identified peaks, further re-
finement of these parameters can be obtained by fitting the
data peaks to a functional form (profile). So that the back-
ground signal does not need to be modeled in the fitting
procedure, the data are processed by traditional algorithms
before profile fitting. For the powder patterns from high en-
ergy diffraction experiments, we employ an aggressive, non-
interactive background-subtraction algorithm which includes
Savitsky–Golay filtering and modeling of the baseline with
cubic splines. The spline points are chosen such that the area
under the baseline curve is maximized with the following two
constraints: The height of the baseline curve must be less than
f at all X , and the curvature of the background must remain
below that of typical Bragg peaks. While this background-
subtraction algorithm is very effective at removing most of
the intensity outside of the film Bragg peaks, it often cre-
ates artifacts in the background-subtracted spectrum which
are poorly distinguished from the true Bragg reflections. It
is by virtue of the wavelet-based algorithm that the true
Bragg peaks are distinguished. Given a functional form for
the Bragg peaks, a least squares regression algorithm refines
the peak parameters from their initial values provided by the
wavelet peak detection algorithm. Further details of this pro-
cedure and notes on computational efficiency are included in
the Appendix.
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IV. RESULTS AND DISCUSSION

A. Wavelet analysis of diffraction data obtained in the
theta–theta configuration

The diffraction pattern and data processing of the PtZn
nanoparticle diffraction pattern are shown in Fig. 3. Using the
algorithm of Sec. III B, nine peaks are identified in the noisy
diffraction pattern. For comparison, the known positions of
Bragg peaks from the PtZn ordered intermetallic phase are
shown, and we note that deviations from these positions are
expected due to shifted lattice parameters of the nanoparti-
cles, which are off-stoichiometric and susceptible to lattice
constriction due to surface energy effects. The wavelet-based
algorithm identified every Bragg peak in the phase except the
least intense peak near 75◦, whose height in the Joint Com-
mittee for Powder Diffraction Standards (JCPDS) pattern is
only 0.028 that of the peak at 41◦.12 We note that Fig. 3 con-
tains a ridge of length 3, which likely corresponds to this
peak, but the peak was not identified from this ridge due to
an insufficient cumulative wavelet transform (condition 6).

FIG. 3. (Color online) The analysis of the diffraction pattern of PtZn
nanoparticles. Top: The diffraction pattern, the locations of the peaks iden-
tified by the wavelet-based algorithm (long lines), and the peak locations
of PtZn from JCPDS card 03-066-0026 (short lines) (Ref. 12). Top-middle:
The wavelet transform at wavelet scale 0.42 deg−1 and the local maxima
above the noise threshold (stars). Bottom-middle: The wavelet transform at
12 wavelet scales is shown for the entire wavelet position range. The lo-
cal maxima above the noise threshold are shown as overlaid circles which
are colored in grayscale according to the relative wavelet transform intensity
within the respective ridge. Mother-descendant relations between ridges are
shown by black lines connecting the local maxima. Bottom: The background-
subtracted diffraction pattern and fitted peak profile (dashed).

The only false peak detection is due to the identification of
the peak at 66◦ as two overlapping peaks. We note that if the
smallest wavelet scale in Fig. 3 is excluded, the wavelet-based
peak detection algorithm correctly identifies the eight Bragg
peaks without this additional false peak. Normally, that small-
est scale would be excluded on the basis of expected peak
width, but we have included this false peak identification in
Fig. 3 for illustrative purposes.

Figure 3 also shows the powder pattern after background
subtraction using a Savitsky–Golay filter (Sec. III D). The
peaks identified in the wavelet-based algorithm are more ap-
parent in the filtered data, as discussed below in Sec. IV C.
The fitted diffraction profile using a Lorentzian peak shape
and initial parameters from the algorithm of Sec. III B shows
good agreement with the filtered data.

B. Wavelet analysis of data from high energy
diffraction experiments

For the Pt–Ru composition spread thin film, diffraction
patterns from 20 film locations (compositions) were ana-
lyzed and processed using the algorithms of Sec. III B and
Sec. III D. The noise thresholds ηi and ζ2 were set quite high
to avoid false peak detection. A summary of the results is
presented in Fig. 4. The compositions corresponding to the
20 diffraction measurements are plotted as horizontal arrows
on the left ordinate axis, and the diffraction intensity of the
postprocessed diffraction patterns is plotted in a logarithmic
color scale. The diffraction intensity is interpolated along
the composition axis. The diffraction patterns used to create
Fig. 4 were processed with the background-subtraction
algorithms of Sec. III D, and the positions of peaks identified
by the wavelet-based algorithm are plotted as white stars.
Bragg peaks near 44 and 76 nm−1 are identified by the
wavelet-based algorithm but are attributed to an underlayer
film (not the Pt–Ru film). Other than these peaks, nearly every
identified peak corresponds to a documented reflection from
the fcc-Pt (JCPDS card 04-0802) and hcp-Ru (JCPDS card
06-0663) phases, considering the shifts lattice constant due
to chemical alloying.12 That is, the wavelet-based algorithm

FIG. 4. (Color online) An interpolated diffraction map of the Pt–Ru com-
position spread thin film. The measurement compositions are indicated by
arrows on the left ordinate axis and the identified peaks at these compositions
are plotted as stars.
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FIG. 5. (Color online) The analysis of the diffraction pattern from the Pt–Ru
thin film at 42 at. % Pt. Top: The diffraction pattern and the locations of the
peaks identified by the wavelet-based algorithm (vertical lines). Middle: The
wavelet transform at 23 wavelet scales is shown with overlaid ridges (see
Fig. 3 for other notation). Bottom: A subset of the background-subtracted
diffraction pattern and five fitted peaks (dashed).

correctly identifies 338 Pt and Ru Bragg peaks over the entire
composition range, including the two-phase region, with the
only falsely identified peak occurring at 34 nm−1, 16 at.% Pt.

An example of the data used in the peak searching algo-
rithm is shown in Fig. 5. The wavelet transform and ridges
are also shown, indicating the identification of 21 Bragg
peaks, many of which are overlapping. Figure 5 also demon-
strates the data processing and profile fitting of the five peaks
identified in the range 26–33 nm−1. The two most strongly
overlapped peaks in this range (Pt {111} and Ru {002}) are
resolved in the wavelet-based algorithm only at the smallest
wavelet scale in the chosen set of wavelet transform parame-
ters.

C. Background subtraction and false peak detection

The background signal in powder patterns is generally
defined as any signal which is not due to Bragg scattering and
is typically composed of a slowly varying baseline superim-
posed with higher frequency Gaussian noise. The baseline is
often modeled using low order polynomials or cubic splines
and subsequently subtracted from the data. Background sub-
traction using these “smooth” profiles may make features,
such as edges, in the original pattern appear as Bragg peaks
in the resulting data. This undesirable occurrence is an exam-
ple of the general problem that background subtraction may
introduce artifacts to the data and lead to false peak identifi-
cation.

The wavelet transformation naturally includes both of
these types of background subtraction, but the algorithm of

Sec. III B is less susceptible to false peak detection be-
cause the identification of peaks occurs through analysis of
T (a, b), not background-subtracted data. As indicated by
Eq. (2), the wavelet transform is a window average over the
effective support region of the wavelet (see the Appendix).
Also, the choice of a wavelet (such as the LoG) with no
zeroth or first moment results in a baseline subtraction in
T (a, b) which is smooth on the length scale defined by a.
Thus, the wavelet transform surface is a background-filtered
dataset in which peaks are identified without introduction of
artifacts.

The diffraction pattern in Fig. 3 contains a background
signal that is typical in theta–theta diffractometry, and this
background signal is efficiently removed by both the wavelet
transform and the Savitsky–Golay filter. The diffraction pat-
terns obtained in the high energy x-ray diffraction experi-
ment contain a background signal that cannot be removed
by a Savitsky–Golay filter because the acquired diffraction
images include not only the Bragg diffraction from the thin
film but also thermal diffuse scattering from the single crystal
Si substrate. While the majority of the intensity from the Si
scattering is removed in the image processing (see Ref. 10),
the resulting powder patterns may contain residual features,
such as edges, due to shortcomings of this image processing.
While this type of background is not well modeled by the typ-
ical polynomial or cubic spline profiles, Fig. 5 demonstrates
that the wavelet transform analysis effectively removes this
background and results in reliable identification of the Bragg
peaks.

The common figures of merit for peak detection are the
sensitivity and false detection rate, and the performance of a
given peak detection algorithm will depend not only on the
noise level but also on the nature of the background signal. A
comprehensive evaluation of the performance of the wavelet-
based algorithm vis-a-vis other peak detection algorithms is
beyond the scope of the present work. We note that limited
studies of this type have been performed in the context of
mass spectrometry data.5, 7

D. Python program and computation time

The algorithms of Secs. III B and III D have been im-
plemented in the PYTHON programming language, and an
open-source release of the code is in preparation. While
Figs. 4 and 5 demonstrate the effectiveness of the peak de-
tection algorithm, we point out that the algorithm is computa-
tionally efficient. As discussed in the Appendix, the values of
the wavelets can be calculated from Eq. (4) and saved for anal-
ysis of any number of powder patterns. Given these values, the
20 powder patterns from the Pt–Ru thin film were analyzed
with the PYTHON implementation of the wavelet transform
and peak identification algorithm using a personal computer
with a 3.07 GHz quad core processor (Intel Core I7 950). The
332 peaks were identified with an average analysis time per
powder pattern of 0.4 s. This computation time is roughly pro-
portional to the number of intensity measurements per powder
pattern and the number of wavelet scales (1540 and 23 in this
example).
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V. CONCLUSIONS

We present algorithms for peak identification and sub-
sequent background subtraction and profile fitting that are
applicable to any type of 1D data. The peak identification
algorithm involves the analysis of the wavelet transform
surface, which is a noise-filtered representation of the data.
A description of the general algorithm is given as well
as detailed explanations for the “Lorentzian of Gaussian”
wavelet analysis of powder diffraction spectra. Using ex-
ample data from two diffraction experiments with different
types of noise, we have demonstrated the ability of the
wavelet-based algorithm to identify Bragg reflections in the
diffraction patterns with very few false peak identifications.
The resolution of strongly overlapped peaks in the wavelet
transform is also discussed and demonstrated.
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APPENDIX: FURTHER DISCUSSION OF
WAVELET ALGORITHM FEATURES

1. Wavelet modification for analysis of discrete
datasets

The discrete convolution of data f with wa,b can be per-
formed either in the coordinate space of the data [the discrete
counterpart of Eq. (2)] or in its reciprocal coordinate space
through multiplication of the discrete Fourier transforms of f
and wa,b. In both approaches, artifacts in the calculation result
may arise due to the finite spacing in X and “edge” effects due
to the termination of the data at the extreme values of X . We
implement the following algorithm to circumvent these issues
in the direct transform calculation.

The LoG wavelet has no zeroth or first moment, and thus
in the support region of the wavelet (nominally [−5a, 5a]),
constant and linear components of f do not contribute to the
transform intensity. However, these desirable properties may
be lost in a wavelet transform calculation if a is comparable
to δx or b is within ∼5a of the extremes of X . In many data
analysis algorithms, the latter issue is addressed by artificially
extending the dataset through interpolation or reflection of f
about the boundary. However, we propose that both problems
are remedied by modification of the discrete wavelet

wa,b(x) =
{

αwa,b(x) if wa,b(x) ≥ 0
βwa,b(x) if wa,b(x) < 0,

(A1)

where α and β are chosen such that wa,b has no zeroth or first
moment and has wavelet energy equal to that of the mother
wavelet∑

X

w2
a,bδx =

∫
w2

a,b dx . (A2)

That is, the basic properties of the wavelet are restored by an
asymmetric (vertical) stretch. The energy conservation pro-
vided by Eq. (A2) is desirable for any type of wavelet anal-
ysis, but significant modification of the wavelet through Eq.
(A1) may introduce artifacts in the wavelet transform. The ex-
tent of wavelet modification that should be allowed will vary
with the desired result of the wavelet transform, but we have
found that reasonable results are obtained if the unmodified
wavelet has an energy within 12% of the continuous wavelet
energy. Otherwise, the measurement grid X is considered to
be insufficient for the calculation of T (a, b). While not uti-
lized in the present work, we note that this technique may also
be useful for cases of missing data (holes in X due to missing
or corrupted measurements) or nongrid data (such as random
spacing in X ). In these cases, δx in Eq. (A2) must be replaced
with the appropriate data point cross sections.

2. Resolution of overlapping peaks by wavelet
analysis

Figure 6 demonstrates the resolution of strongly overlap-
ping peaks in example data containing a pair of Gaussian and
a pair of Lorentzian peaks. In both cases, the pair of peaks are
separated by less than their FWHM and have a height ratio of
2:1. The sum of the peaks serves as the data f , which has a
single local maximum, but the wavelet transform T (0.25, b)

FIG. 6. (Color online) The LoG wavelet transform of strongly overlapping
Gaussian (top) and Lorentzian (bottom) peaks. The sum of the overlapping
peaks is shown (black line) with its wavelet transform (right axis) at scale
parameter a = 0.25. The plots (dotted lines) and functions of the constituent
peaks are also shown.
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has two local maxima near the positions of the original peaks.
For any pair of peaks with finite separation, T (a, b) will have
two local maxima with respect to b at sufficiently small a.
However, the resolving power offered by wavelet transform
analysis has two practical limitations. First, the lowest value
of a that may be used for robust analysis is limited by the mea-
surement grid X . Also, for peak detection with the algorithm
of Sec. III B, the value of T (a, b) at the local maxima must
be larger than the specified noise level. This value is always
greater than zero, and we note that for overlapping peaks with
a large height ratio, T (a, b) may be negative at one of the local
maxima. Still, wavelet-based detection offers automated iden-
tification of overlapping peaks that is not afforded by search-
ing the data for local maxima. In addition, the wavelet-based
peak resolution algorithm is quite straightforward compared
to the typical alternative method, which involves the identi-
fication of one of the peaks, profile fitting of that peak, and
subsequent analysis of the residual.

3. Computational efficiency

a. Wavelet transform

For a given data analysis application, such as peak
detection in powder patterns from a particular instrument, the
wavelet parameters sets A and B can be used for the analysis
of every dataset. If the measurement coordinate set X is the
same for every dataset, the arrays of wavelet values can be
calculated a priori using Eqs. (4) and (A1). With these arrays,
each wavelet transform coefficient T (a, b) is attained by com-
putationally efficient array multiplication and summation.
For example, using a personal computer with a 3.07 GHz
quad core processor, the calculation of the arrays of wavelet
values takes several minutes but only needs to be performed
once. The entire algorithm of Sec. III B is then performed
in <1 s.

b. Profile fitting

Profile fitting for peak parameter extraction typically
involves three fit parameters for each peak (assuming

symmetric peaks). Profile fitting algorithms commonly in-
volve simultaneous optimization in each parameter, allow for
a variable number of peaks, and include additional parame-
ters for simultaneous fitting of the baseline profile. For the
fitting of many peaks in a large set X , such profile fitting can
be computationally expensive. The wavelet peak identifica-
tion algorithm provides a fixed number of peaks with near-
optimal starting parameters. Thus, the inclusion of the algo-
rithm of Sec. III B as a first pass in a profile fitting scheme
can offer increased computational efficiency.

In our profile fitting algorithm we further exploit the
wavelet peak identification information by segmenting the
dataset for profile fitting. With the peak positions and widths
estimated from the wavelet-based algorithm, sets of overlap-
ping or near-overlapping peaks are readily identified. Seg-
ments of the data coordinate X are then defined such that
the segment containing each peak includes the interval of X
within three widths of that peak. The data in each segment are
then fitted using the appropriate subset of the identified peaks,
and the ranges of X that are not in any such segment are not
included in any profile fitting. In this scheme, several differ-
ent profile fitting routines must be performed but each routine
includes a relatively small number of fitting parameters and
significantly reduced dataset size. For example, the five fitted
peaks in Fig. 5 were fit in a single segment.
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