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Abstract For ~500 Martian solar days (sols), the Mars Science Laboratory team explored Vera Rubin
ridge (VRR), a topographic feature on the northwest slope of Aeolis Mons. Here we review the
sedimentary facies and stratigraphy observed during sols 1,800-2,300, covering more than 100 m of
stratigraphic thickness. Curiosity's traverse includes two transects across the ridge, which enables
investigation of lateral variability over a distance of ~300 m. Three informally named stratigraphic members
of the Murray formation are described: Blunts Point, Pettegrove Point, and Jura, with the latter two
exposed on VRR. The Blunts Point member, exposed just below the ridge, is characterized by a recessive,
fine-grained facies that exhibits extensive planar lamination and is crosscut by abundant curvi-planar
veins. The Pettegrove Point member is more resistant, fine-grained, thinly planar laminated, and contains a
higher abundance of diagenetic concretions. Conformable above the Pettegrove Point member is the Jura
member, which is also fine-grained and parallel stratified, but is marked by a distinct step in topography,
which coincides with localized meter-scale inclined strata, a thinly and thickly laminated facies, and
occasional crystal molds. All members record low-energy lacustrine deposition, consistent with prior
observations of the Murray formation. Uncommon outcrops of low-angle stratification suggest possible
subaqueous currents, and steeply inclined beds may be the result of slumping. Collectively, the rocks exposed
at VRR provide additional evidence for a long-lived lacustrine environment (in excess of 10° years via
comparison to terrestrial records of sedimentation), which extends our understanding of the duration of
habitable conditions in Gale crater.

Plain language summary The primary goal of the Mars Science Laboratory Curiosity rover
mission is to explore and assess ancient habitable environments on Mars. This requires a detailed
understanding of the environments recorded by sedimentary rocks exposed at the present-day surface in Gale
crater. Here we review the types of sedimentary rocks exposed at a location known as Vera Rubin ridge. We
find that the rocks at Vera Rubin ridge record an ancient lake environment and are a continuation of
underlying lake deposits. Ancient lake deposits are highly desirable targets in the search for habitable
environments, due to their ability to concentrate and preserve organic matter. This study significantly expands
the duration of habitable conditions that can be confirmed through ground truth of sedimentary rocks and
provides a framework for interpreting strata that lie ahead as Curiosity continues to explore Aeolis Mons.

1. Introduction

The primary goal of the Mars Science Laboratory (MSL) Curiosity rover mission is to explore, reconstruct,
and assess ancient habitable environments on Mars (Grotzinger et al., 2012). To do so requires a detailed
understanding of the depositional environments recorded in sedimentary rocks exposed at the surface in
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Gale crater, including characterization of the role and duration of ancient
aqueous environments. Since landing in Gale (Figure 1), the Curiosity
rover team has been able to investigate a diverse array of siliciclastic sedi-
mentary rocks, interpreted to have formed in fluvial, deltaic, lacustrine,
and eolian environments (Banham et al.,, 2018; Edgar et al., 2017;
Grotzinger et al., 2014; Grotzinger et al., 2015; Rice et al., 2017; Stack
et al., 2019; Williams et al., 2013). Ancient lacustrine deposits are highly
desirable targets in the search for habitable environments, due to their
ability to concentrate and preserve organic matter (Farmer & DesMarais,
1999; Hays et al., 2017; Meyers & Ishiwatari, 1995; Summons et al., 2011).

Gale crater was selected as the MSL landing site, in part because observa-
tions based on data from orbiting instrumentation revealed key environ-
mental transitions recorded as mineralogic variability in time-ordered
strata exposed on the northwest slope of Aeolis Mons (informally known
as Mount Sharp; Grotzinger et al., 2012; Golombek et al., 2012). Mount
Sharp, the central mound within Gale crater, is a 5-km-thick succession
of intact stratigraphy, the textural and mineralogical properties of which

Figure 1. (a) Mars Reconnaissance Orbiter Context Camera (CTX) mosaic
of Gale crater. The yellow star indicates the Mars Science Laboratory

are inferred to record changes in aqueous and climate conditions during
a key transition in the history of Mars (Milliken et al., 2010). One of the
unique features identified in images acquired from orbit within the strati-
graphic succession that makes up Mount Sharp is a distinct geomorphic
unit named the Vera Rubin ridge (VRR). Prior to landing in Gale crater,
VRR was identified as a target of interest due to its associated hematite sig-
nature in orbiter-based spectroscopic data (Fraeman et al., 2013; Fraeman
et al., 2016), with the potential that this hematite signals the presence of
abundant liquid water at some time during the depositional or diagenetic
history of the rocks exposed on the ridge. The aim of the MSL campaign at
VRR was to investigate the sedimentary lithologies and facies comprising
VRR bedrock strata and determine their geochemistry and mineralogy.
The Curiosity rover spent nearly 500 Martian solar days (sols; 500 Mars
days; 1.4 Earth years) investigating VRR rocks.

The objectives of this paper are to (i) characterize the stratigraphy of VRR
strata in relation to strata of the Mount Sharp group, (ii) describe sedimen-
tary facies and interpret them in terms of depositional processes, (iii) char-
acterize lateral variations in facies within the ridge, (iv) reconstruct the

(MSL) landing site at Bradbury Landing. The black box indicates the loca- ~ paleoenvironmental setting of VRR strata, and (v) discuss implications
tion of (B). (b) MSL traverse path from landing through the rover's for Martian climate and habitability.
exploration of Vera Rubin ridge represented by yellow line. The white box

shows the location of this study and area of Figure 3.

2. Geologic Setting

Gale crater is an ~155-km diameter impact crater located at 5.3°S,
222.3°W, on the topographic boundary that separates the heavily cratered southern highlands from
the relatively smooth northern lowlands of Mars. Crater counts suggest that Gale crater formed at
approximately ~3.7 + 0.1 Ga (Le Deit et al., 2012; Thomson et al., 2011), around the time that the pla-
net transitioned from the Noachian to the Hesperian period.

Since landing in August of 2012, Curiosity's traverse path (Figure 1b) has been determined by the science
team using a combination of interpretations based on data acquired from orbit and by data acquired on
the ground via the rover. In the search for records of ancient habitable environments, Curiosity has traversed
more than 20 km and gained more than 370 m in elevation.

Early in the mission (~sols 121-308), the Curiosity rover team investigated a 1.5-m-thick interval of
clay-bearing mudstones in the Yellowknife Bay formation, interpreted as a record of the first habitable envir-
onment explored by the rover (Grotzinger et al., 2014). The Sheepbed member of the Yellowknife Bay forma-
tion was described as fine-grained (grain sizes < 50 um), uniform, and laterally extensive, and was inferred to
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Figure 2. Generalized stratigraphic column prior to arrival at Vera Rubin ridge (sols 0-1,800). “YB” represents the
Yellowknife Bay formation, and “K” represents the Kimberley formation. Column illustrates the progression from flu-
vial and deltaic conglomerates and sandstones in the Bradbury group to finer-grained lacustrine facies in the Murray
formation. The Stimson formation unconformable overlies the Murray formation and is depicted over the elevation range
in which it was encountered.

have formed via settling from suspension in a lacustrine environment. Analyses of the geochemistry and
mineralogy of the mudstone indicate that the environment had a neutral pH, low salinity, all of the
necessary biogenic elements, and variable redox states (Grotzinger et al., 2014). However, as the Sheepbed
member was the stratigraphically lowest member within the Yellowknife Bay formation, its thickness,
and hence the inferred duration of habitable conditions, was limited in scope.

Subsequently, the rover drove southward and upward toward the lower reaches of Mount Sharp, across flu-
vial (Edgar et al., 2018; Williams et al., 2013) and deltaic (Grotzinger et al., 2015) facies. The facies associa-
tions and observed southward transport direction predicted that the rover would eventually encounter
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Figure 3. Curiosity's traverse path across Vera Rubin ridge. Exploration initially progressed from northwest to southeast,
then northeast to investigate an area with a high hematite signature (Fraeman et al., 2018). The unique traverse path
enabled two distinct transects through the stratigraphy. The gray line shows the traverse path from sols 1,664 to 2,582. The
red lines correspond to approximate eastern and western transects and correspond to profiles shown below.

deposits from a body of standing water. This was confirmed when the rover drove into Hidden Valley and the
Pahrump Hills and the team discovered a thick succession of fine-grained, well laminated rocks, interpreted
to have formed through lacustrine deposition (Grotzinger et al., 2015; Rivera-Hernandez et al., 2019; Stack
et al., 2019). Evidence for plunging river plumes at the Pahrump Hills favors a freshwater lacustrine origin
based on paleohydraulic modeling (Stack et al., 2019). These lacustrine mudstones were informally termed
the Murray formation. With the exception of modern and ancient eolian deposits that unconformably
overlie the Murray formation (Banham et al., 2018), the Curiosity rover has predominantly been driving
through the Murray formation for the past 5.5 Earth years.

As the mission progressed and the rover continued to drive southward and upward, the team developed a
working stratigraphic column (Figure 2). This stratigraphic column represents a sedimentary log of the
lithologies that the rover encountered over a lateral distance of more than 10 km. It should be noted that
the column represents both a vertical component of stratigraphic climb assuming approximate horizontality
of strata and a lateral component as the rover has driven to the south. The sedimentary succession is pre-
sented as a single column for simplicity but should not be taken as a true vertical succession at a
single location.

For much of the mission, the rover has only made unidirectional progress—rarely returning to stratigraphic
sections adjacent to previously explored areas—so the composite stratigraphic column does not account for
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lateral facies variability. At the time of writing, the stratigraphic column records more than 370 m of eleva-
tion. The Murray formation covers more than 300 m of the 370 m of strata explored to date. Prior to arrival at
VRR, five distinct stratigraphic members were recognized within the Murray formation based on subtle
changes in lithology (Fedo et al., 2019), as detailed below.

The Murray formation is a succession of sedimentary rocks that consist predominantly of mudstones
that are interpreted to have been deposited in a lake or marginal lake setting (e.g., Fedo et al., 2018,
2019; Grotzinger et al., 2015; Rivera-Hernandez et al., 2019, 2020; Stack et al., 2019). The lowest exposed
stratigraphic member of the Murray formation is the Pahrump Hills member (Figure 2), which is
defined by millimeter- to centimeter-scale laminated mudstone to very fine sandstone, with
decimeter- to meter-scale scour-and-drape structures. It is interpreted to record suspension fallout in a
lacustrine environment with occasional event beds formed by plunging river plumes (Minitti et al.,
2019; Stack et al., 2019). The Pahrump Hills member is overlain by the Hartmann's Valley member,
which includes meter-scale trough cross stratification and is interpreted to be consistent with eolian
or fluvial deposition in a lake margin setting (Gwizd et al., 2018, 2019). The Karasburg member of
the Murray formation is composed mainly of millimeter- to centimeter-scale parallel laminated mud-
stone that preserves abundant phyllosilicate minerals (Rampe et al., 2017), with two distinct interbeds
of cross-bedded sandstone. The Karasburg member is interpreted to have formed principally in a
low-energy lacustrine environment with stable water levels, as evidenced by the lack of disruption of
laminae indicating a lack of desiccation, and absence of higher energy, lake-margin, eolian, or fluvial
sandstone. Stratigraphically above the Karasburg member lies the heterolithic Sutton Island member,
which is recognized as a finely laminated mudstone to siltstone with centimeter-scale ripple cross lami-
nation to decimeter-scale cross stratification, and the presence of possible desiccation cracks (Stein et al.,
2018). It is interpreted to have formed via a mixture of depositional processes in a lacustrine and lake
margin setting. Prior to arrival at VRR, the rover encountered an additional member of the Murray for-
mation, known as the Blunts Point member. The Blunts Point member is a mudstone with extensive
planar lamination. Outcrops are crosscut by abundant fine fractures and curvi-planar calcium sulfate
veins, which commonly obscure primary sedimentary structures (Fedo et al., 2018, 2019). The Blunts
Point member indicates that the Sutton Island member did not represent the final drying out of the
lake, but instead, the environment shifted back into a stable lacustrine setting (Rivera-Herndndez
et al.,, 2020). The analysis of these members provides important context for exploration of the VRR
strata and raise questions about the duration of habitable conditions recorded in the rocks of lower
Aeolis Mons in Gale crater, and the variation in chemistry of these strata. In this paper we describe
the Blunts Point member in more detail and characterize two additional members of the Murray forma-
tion, covering more than 100 m of stratigraphic thickness.

3. Data and Methods
3.1. The Vera Rubin Ridge Campaign

Curiosity's ground-based investigation of VRR began with a close-approach for imaging starting on sol 1,726,
and subsequent ascent starting around sol 1,800. Several key regions on the ridge were identified based on
examination of Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment
(HiRISE) images as waypoints for more in-depth rover-based investigations. The initial traverse was planned
to progress from north to south across the ridge and to sample areas that were identified as having distinct
textural and spectral properties based on orbiter data. During this time, the MSL Team worked to develop a
new method to drill, after having been suspended following the “Sebina” drill campaign (sol 1,495). When
the drill became available for sample extraction again (sol 1,977), the team decided to descend VRR and drive
north to sample the Blunts Point member so that every member of the Murray formation would be sampled.
Efforts to drill both strata that comprise VRR and the Blunts Point member resulted in an extensive traverse
path that enabled two distinct, approximately north-south, transects across the ridge (Figure 3); this allowed
correlation of sedimentary facies across a lateral distance of several hundred meters. Stratigraphic correla-
tion of this extent had not been possible previously during the mission. Ultimately, the VRR campaign
resulted in 500 sols of science analyses, including four drill samples (13 previous drill samples are depicted
on Figure 2). Complete details of the VRR campaign are described by Fraeman et al. (2018).
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Table 1

3.2. Instruments and Data

Targets for Assessment of Laminae Thickness

Elevation Average thickness The stratigraphy and sedimentology (sedimentary textures,
Target Sol (m) (mm) Member grain size, and sedimentary structures) of VRR strata were
Hexriver 1,879 —4,167 0.38 Jura documented wusing the Mast Cameras (Mastcams),
Klipfonteinheuwel 1,886  —4,167 0.32 Jura Navigation Cameras (Navcams), Hazard Cameras
Drakensberg 1892 —4,158 0.3 Jura (Hazcams), Mars Descent Camera (MARDI), Mars Hand
igluctl)(enkop 1’233 :2’123 g;g ﬁ;’j Lens Imager (MAHLI), and the Remote Micro Imager (RMI)
Witk 1897  —4,157 027 T subsystem of the Chemistry Camera (ChemCam) instrument.
Haroldswick 1,922 —4,1545 0.37 Jura These instruments provide images at spatial scales ranging
Crinan 1,925  —4,153.5 0.38 Jura from several centimeters per pixel down to tens of micro-
g LEBA e 02t UL meters per pixel. Details of the geochemical and mineralogic
Rhum 1,935 —4,149 0.3 Jura .
Ttk 1940  —4.148.5 022 Jura analyses are described by Thompson et al. (2019),
Mallaig 1,940 —4,148.5 0.25 T Frydenvang et al. (2018), and Morris et al. (2019).
Barkeval ) 1,988 —4,151 Ul Jura The Mastcam, Navcam, and ChemCam instruments are
NI T 038 Jura located on the rover's Remote Sensing Mast, mounted
Dun_Caan 2,008 —4,161 0.33 Pettegrove ’
Point approximately 2 m above the ground. Mastcam consists of
Babbitt 2,029  —4,166 0.38 Pettegrove two digital cameras with focal lengths of 34 mm (M34) and
Point 100 mm (M100), which provide pixel scales of 0.22 and
RNRsariLs Al =S Ot e 0.074 mrad/pixel, respectively. Mastcam is capable of produ-
Bald_Eagle_Lake 2,042  —4179 0.34 Petlzzgrlgve cing full color, panoramic and stereoscopic mosaics (Malin
Point et al., 2017) ideal for recognizing sedimentary facies, textural
Sasanoa 1,811 —4,200 0.57 Pettegrove and spectral variability, sedimentary structures, and bedding
Point orientations. All of these characteristics are used to make sub-
wiomi Eplaaiter Ll =200 2y Pet;egri)ve sequent stratigraphic correlations.
o1
N181611% 1,816  —4,196.5 0.38 Pettegrove The Navcam instrument consists of four digital cameras that
N181606° 816 41965 ™ Peizifive provide panoramic and stereoscopic imaging. There are two
’ e ’ Po{ignt pairs of Navcams, but only one pair is active at a time.
e G 1818  —4196.5 0.59 Pettegrove Navcam has a 45° field of view and a pixel scale of 0.82
Point mrad/pixel (Maki et al., 2012). Navcam images were used to
Whittum 1818  —4,196.5 0.4 Pettegrove provide additional geologic context and to select targets
Point across VRR.
Duluth 2,055 —4,192.5 0.3 Blunts Point

Abbreviation: MAHLI: Mars Hand Lens Imager.
Targets N181611 and N181609 were MAHLI targets that were imaged as candidate
Dust Removal Tool (DRT) targets to assess the topography of these rocks prior to dust

removal.

The ChemCam instrument consists of a laser-induced break-
down spectrometer (LIBS) and remote microimager (RMI),
which are used to provide remote elemental compositions at
distances up to ~7 m from the mast and to provide
high-resolution gray-scale documentation images (Maurice
et al., 2012; Wiens et al., 2012). The RMI has a field of view of 20 mrad and a pixel scale of 19.6 urad per pixel
(Le Mouélic et al., 2015). In addition to providing geochemical observations, the ChemCam LIBS and RMI
were used for identification of grain sizes (Rivera-Hernandez et al., 2019); RMI data also contribute to inves-
tigation of sedimentary structures.

MAHLI is a high spatial resolution camera located at the end of the rover's robotic arm. MAHLI provides
color and stereoscopic imaging and operates at working distances between 2.1 cm to infinity. MAHLI is cap-
able of acquiring images with a maximum high resolution of ~14 um per pixel (Edgett et al., 2012), which
enables the distinction of silt-sized grains from very fine sand. The highest spatial resolution images acquired
under typical usage conditions are in the 16 to 32 um per pixel range (Yingst et al., 2016). MAHLI images
were used to study grain size, stratification, and small-scale sedimentary structures across VRR (Bennett
et al., 2018).

MARDI is a fixed focal length nadir-pointed camera located underneath the front port side of the rover
(Malin et al., 2017). The camera was initially intended to localize the landing site within Gale crater during
descent but has since been used to document the terrain beneath the rover (Minitti et al., 2019). MARDI has
a field of view of ~70° by 52° and provides in-focus images from working distances of 2 m to infinity.
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MARDI images were used to document changes in bedrock beneath the rover and to provide additional
geologic context.

The Curiosity rover also contains four pairs of Engineering Hazard Assessment Cameras (Hazcams)
mounted on the lower portion of the front and rear of the rover (Maki et al., 2012). Each camera has a
120° field of view and a pixel scale of 2.1 mrad/pixel. Hazcam images were used to map out terrain, select tar-
gets, and provide additional geologic context.

3.3. Determination of Laminae Thickness

The thickness of lamination was characterized based on visual inspection of MAHLI images. Laminae thick-
nesses were calculated based on the pixel separation between the center of laminae identified along digitized
transects drawn orthogonally through mapped laminae. Lamination thicknesses were measured orthogon-
ally to the bedding to account for the varying orientation of the exposed rocks. The pixel resolution of each
MAHLI image was approximated from the standoff distance of the MAHLI instrument. Measurements of
surfaces especially oblique relative to bedding were either discarded or corrected for their orientation if there
was sufficient corresponding stereo information from Mastcam images. The arithmetic mean and one stan-
dard deviation in lamination thickness were computed for each target. Twenty-five targets were selected for
evaluation of laminae thickness (Table 1 and also, see data repository), focused on targets with appropriate
relief and sufficient stereo coverage.

3.4. Determination of Grain Size

Grain sizes were determined via visual inspection of MAHLI images, supplemented using ChemCam LIBS
and the Gini Index Mean Score (GIMS) to infer grain size. MAHLI acquired images at a total of 146 distinct
rock targets across VRR, with standoff distances ranging from ~1 to ~25 cm, yielding pixel scales of ~17 to
~100 um (Bennett et al., 2018). MAHLI images were analyzed to determine grain size, stratification, and
the presence or absence of small-scale diagenetic features.

Grain size was also estimated using GIMS, a grain size proxy that uses point-to-point chemical variabilities
in ChemCam LIBS data (Rivera-Herndndez et al., 2019). ChemCam LIBS is a destructive analysis, leaving
behind small 0.4- to 0.6-mm pits that represent the points that were vaporized by the ChemCam laser
(Maurice et al., 2012; Wiens et al., 2012). The diameters of these points correspond to the size of medium
to coarse sand. Chemically homogeneous rocks with grains considerably smaller than the laser spot size
tend toward low point-to-point chemical variability, while rocks with grains about the size of the spot or
larger result in higher point-to-point chemical variability when individual grains of different composition
contribute to the spectra (e.g., Rivera-Hernandez et al., 2019). In this way, the presence of mud-sized grains
can be inferred via low point-to-point variability, while the presence of sand-sized grains can be inferred
from nonuniform compositions. Following the methods of Rivera-Herndndez et al. (2019), and grain size
calibration of Rivera-Herndndez et al. (2020), GIMS grain size estimates were determined for 161 VRR
rocks. MAHLI and ChemCam RMI images were used to exclude LIBS shots on or near diagenetic features,
loose sediment, and fractures/cracks from the GIMS analysis.

4. Sedimentary Facies

Six distinct sedimentary facies were identified at VRR based on grain size, texture, and sedimentary struc-
tures (Table 2 and Figure 4). Erosional resistance was also used as a proxy for changes in grain size, cemen-
tation, and porosity, highlighting minor differences in sedimentary facies. Facies are presented in order of
increasing grain size and inferred energy of deposition.

4.1. Facies 1: Recessive Weathering Evenly Planar Laminated Mudstone With Abundant
Fractures and Veins

4.1.1. Description

This facies exhibits extensive planar lamination and is inferred to consist predominantly of mudstone
(Figure 4a). Average laminae thicknesses are 0.3 mm. This facies is commonly crosscut by abundant frac-
tures and millimeter-thick calcium sulfate veins. The veins are more resistant to erosion than the mudstone
and crosscut at a variety of angles, from bedding parallel to high angle, which in some places obscures the
primary stratification. However, the veins can be distinguished from the recessive mudstone by the appear-
ance of thin white lineations (Figure 4b), which represent freshly exposed parts of the calcium sulfate veins
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Table 2

VRR Sedimentary Facies

Facies Description Interpretation

1 Recessive weathering, evenly planar laminated mudstone facies with Fallout from suspension in a lacustrine setting
abundant fractures and veins

2 Resistant, evenly laminated mudstone to fine sandstone facies Lacustrine sedimentation in a nearshore environment

3 Fine-grained thinly parallel-stratified red and gray mudstone to very fine sandstone Lacustrine sedimentation in a nearshore environment with
facies with rare crystal molds variable diagenesis

4 Alternating thinly and thickly laminated mudstone facies Variable deposition in a lacustrine environment due

to changes in sediment supply
5 Decimeter-scale cross-stratified facies Subaqueous transport in a nearshore environment
6 Meter-scale inclined bedding Small slope failures resulting in slumping

in contrast to the red to brown bedrock. In places that are free of veins and fractures, fine parallel
laminations can be traced laterally for several meters with no disruption. This facies was observed on the
traverse leading up to VRR and is exposed just below the topographic ridge (Table 2).

; 2cm
meeem JFacies 4 —

\

‘Facies 5

Figure 4. Sedimentary facies observed at Vera Rubin ridge. See text for full descriptions. (a) Facies 1: Recessive weathering evenly laminated mudstone with abun-
dant fractures and veins. Mastcam M100 image acquired on sol 1,737, sequence mcam09078. (b) Facies 1 seen in ChemCam RMI acquired on sol 1,737,
CRO0_551693659, ChemCam sequence ccam04736. (c) Facies 2: Resistant, evenly laminated mudstone to fine-sandstone. Mastcam M100 image acquired on sol
1,812, sequence mcam09355. (d) Facies 2 observed in ChemCam RMI of target “Mount Coe” acquired on sol 1,812, CR0_558351395, ChemCam sequence
ccam04811. (e) Facies 3: Fine-grained thinly parallel-stratified red and gray mudstone to very fine sandstone with occasional crystal molds. Mastcam M100 image
acquired on sol 2,009, mcam10584. (f) Crystal molds in Facies 3 observed in Mars Hand Lens Imager (MAHLI) target “Seaforth Head” acquired on sol 1,991
from 5-cm standoff. MAHLI image 1991MH0002650000800144R00. (g) Facies 4: Thinly and thickly laminated mudstone facies (Flodigarry facies). Mastcam
M100 image acquired on sol 2,013, sequence mcam10610. (h) Facies 4 observed in MAHLI target “Trollochy” acquired on sol 2,166. MAHLI image
2166MH0001800010802797C00. (i) Facies 5: Decimeter-scale cross-stratified facies. Mastcam M100 image acquired on sol 1,802, sequence mcam09300. (J) Facies 6:
Large-scale inclined bedding. The white dashed lines trace beds that are steeper than the angle of repose, indicated by the arrow. Mastcam M100 image acquired on
sol 1,946, sequence mcam10168.
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4.1.2. Interpretation

This facies is interpreted to have formed through fallout of clay and/or silt-sized sediment from suspension
in a lacustrine setting. The fine-grained nature, recessive weathering character, and lack of disruption of pri-
mary laminae suggest that the deposits were not subaerially exposed during deposition.

4.2. Facies 2: Resistant, Evenly Laminated Mudstone to Fine-Sandstone

4.2.1. Description

This facies is characterized as a parallel-laminated mudstone to fine sandstone that is more erosion-resistant
compared to Facies 1 (Figures 4c and 4d). Laminae thicknesses range from 0.32 to 0.51 mm, with an average
of 0.41 mm. Facies 2 contains fewer fractures and veins than Facies 1, though veins are still present.
However, Facies 2 is more competent, and veins do not stand out in positive relief as they do in Facies 1.
Facies 2 also contains a higher abundance of diagenetic nodules. GIMS analyses of Facies 2 suggest grain
sizes that are mostly consistent with mudstone but also contain silt and very fine sand.

4.2.2. Interpretation

The sedimentary texture and structure of this facies are consistent with lacustrine sedimentation but may
indicate a more nearshore environment relative to Facies 1, as evidenced by the introduction of coarser
grains. However, the consistent, even laminations and general lack of disruption suggest fallout from sus-
pension in a relatively stable aqueous environment.

4.3. Facies 3: Fine-Grained Thinly Parallel-Stratified Red and Gray Mudstone to Very Fine
Sandstone With Occasional Crystal Molds

4.3.1. Description

This facies is characterized by parallel-stratified mudstone to very fine sandstone (Figure 4e). Fine laminae
of variable thickness are traceable for up to several meters laterally with minimal disruption. Laminae thick-
nesses range from 0.24 to 0.41 mm, with an average of 0.31 mm. GIMS analyses of Facies 3 suggest a poten-
tially higher abundance of rocks with very fine sand than in Facies 2. This facies also differs from Facies 1
and 2 by the occurrence of crystals and crystal molds (Bennett et al., 2018), and greater variability in color,
with many notable red and gray color variations across decimeter- to meter-scale outcrops. The red and gray
color variations are observed to crosscut laminae. Grain size measurements indicate that there may be minor
variations between the slightly finer-grained red parts of the outcrop to the slightly coarser grained gray parts
(Bennett et al., 2018). MAHLI and ChemCam targets acquired from gray parts of this facies suggest the pre-
sence of grains up to very fine sand, whereas the red parts of this facies have grain sizes that are consistent
with silt and finer. Crystal molds are observed to be randomly distributed and cut across bedding planes.
Crystal molds are approximately 2 mm in length, and some show swallow-tail twins. Where present, crystal
molds make up a few percent of the surface area (Figure 4f).

4.3.2. Interpretation

This facies is interpreted to record fallout from suspension in a lacustrine environment. The lack of disrup-
tion of laminae suggests nonemergence. Similar to Facies 2, the presence of coarser grains may indicate
proximity to a nearshore environment. Crystals and crystal molds are interpreted as a signal of the presence
of early diagenetic minerals (Bennett et al., 2018). The color variations are also inferred to result from diag-
enesis, as evidenced by the observation of red and gray color variations crosscutting primary lamination
(Fraeman et al., 2018).

4.4. Facies 4: Alternating Thinly and Thickly Laminated Mudstone Facies (Informal Unit Name,
“Flodigarry Facies”)

4.4.1. Description

This facies is defined by alternating thinly and thickly laminated packages of mudstone to fine-sandstone
(Figures 4g and 4h). Changes in laminae thickness produce alternating erosional characteristics and color
differences. Thinly laminated packages are recessive, while more thickly laminated packages are resistant,
which leads to red-colored resistant beds and orange (potentially more dust-covered) recessive intervals.
This facies is named after the “Flodigarry” target that was encountered on sol 2,357, after the rover had des-
cended the south side of VRR, into the Glen Torridon region. It was given a name because it is distinct and
critical for understanding the linkages between the strata exposed on VRR and in Glen Torridon (Fedo et al.,
2019). Where present, the Flodigarry facies is exposed in an approximately 5- to 7-m-thick interval. Grain
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507

5 Pettegrove Point

Figure 5. Vera Rubin ridge stratigraphic member boundaries shown as black dashed lines. The white line shows the tra-
verse path from sols 1,754 to 2,481. The traverse path can be approximately divided into western and eastern sections for
comparison. Numbers indicate sols for key transitions and notable outcrops.

size estimates from GIMS suggest mud to coarse silt sized grains. The average laminae thickness is
approximately 0.35 mm.

4.4.2. Interpretation

This facies is interpreted to record variable deposition in a lacustrine environment. Changes in sediment
supply can result in thicker less well-laminated intervals, alternating with more typical finely laminated
mudstone indicative of fallout from suspension.

4.5. Facies 5: Decimeter-Scale Cross-Stratified Facies

4.5.1. Description

This facies is characterized by the appearance of decimeter-scale trough cross-bedding (Figure 4i). The facies
occurs at isolated intervals and typically only represents a single bedset. Facies 5 is recognized by
trough-shaped truncation surfaces that do not correspond to curvi-planar white calcium sulfate veins.
MAHLI and ChemCam observations were not acquired on this facies, so grain size information is unavail-
able, but the grains are finer than Mastcam images can resolve. This facies typically occurs in association with
Facies 2.

4.5.2. Interpretation

The presence of cross-bedding suggests deposition by subaqueous traction transport. A nearshore environ-
ment is inferred based on the association of Facies 5 with Facies 2, and the presence of cross-bedding implies
sand-sized grains or silt/clay aggregates (e.g., mud pellets) was involved. Cross-bedding may record lateral
migration of muddy channels or bars, migration of muddy bedforms in stratified flows (Flood & Giosan,
2002), migration of mud banks (Taylor & Purkis, 2012), or deposition by dunes made of sand-sized mud
aggregates. Due to the limited observations of this facies, we are unable to distinguish between these deposi-
tional processes but recognize the influence of subaqueous currents.

4.6. Facies 6: Meter-Scale Inclined Bedding

4.6.1. Description

This facies is defined by meter-scale inclined beds and the absence of truncation surfaces (Figure 4j). Beds dip
in a variety of orientations and in some places are steeper than the angle of repose. Domal, concave-down
structures are observed, as are occasional verging folds (e.g., the target “Glen Tilt” observed during sols
1,942-1,946). This facies occurs near the top of the topographic ridge, at elevations ranging from —4,172 to
—4,146 m. Inclined beds are traceable in packages for up to 15 m laterally and up to 2 m thick. This facies
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Figure 6. Grain size data estimated from Gini Index Mean Score, shown as percent abundance within each stratigraphic
member, and composite through the Blunts Point, Pettegrove Point, and Jura members (far right column). A minor
coarsening upward trend is observed as the percentage of rocks with very fine sand increases from the Blunts Point to
Pettegrove Point to Jura members.

is often associated with Facies 3 and 4. MAHLI and ChemCam observations were not acquired on this facies,
so grain size information is unavailable, but grains are finer than Mastcam images can resolve.

4.6.2. Interpretation

This facies is interpreted to record deposition from suspension in a lacustrine environment, followed by
slumping due to small, localized slope failures. The lack of truncation surfaces and the presence of
over-steepened beds are inconsistent with subaqueous or subaerial bedforms. The patchy lateral distribution
of this facies across VRR, with the fairly constrained 26-m elevation interval in which this facies occurs, is
also consistent with slumping. Beds were partially lithified prior to deformation in order to preserve these
structures. Slumping may have been related to impact activity or other disturbances.

5. Stratigraphic Members

The abundance of fine-grained, parallel-stratified mudstones observed across VRR indicates that the rocks
exposed on VRR are like those which occur below the ridge, between the lowermost exposed stratum of the
Pahrump Hills member of the Murray formation and the uppermost stratum of the Blunts Point member of
the Murray formation. In other words, the rocks exposed on VRR are also Murray formation rocks. The
strata that comprise VRR are conformable with the underlying section of Murray formation rocks, with
no observations that subjacent units were exposed, eroded, with their fragments incorporated into the over-
lying units exposed on VRR. However, a distinct topographic break occurs at the base of VRR, where the
overall lithology and low-relief outcrop pattern composed of broken slabs (Blunts Point member), give
way to a more distinct meters-tall cliff absent any of the low-angle Ca-sulfate veins characteristic of the
Blunts Point member. Consequently, the team divided the overlying stratigraphy as the Pettegrove Point
and Jura members of the Murray formation (Figure 5). Through the VRR campaign, the Curiosity team
acquired remote and in situ observations of the Blunts Point, Pettegrove Point, and Jura members, with
the latter two members making up the topographic feature known as VRR.

5.1. Blunts Point Member

As previously documented (Fedo et al., 2019), the Blunts Point member is defined as a fine-grained recessive
facies with extensive planar lamination. GIMS analyses indicate that the Blunts Point member is
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predominantly mudstone (Figure 6). While not defined by diagenetic features, this member is notably cross-
cut by abundant calcium sulfate veins that stick out in positive relief compared to the more recessive back-
ground sediment. These veins show a variety of orientations, including both high-angle and
bedding-parallel veins (Fedo et al., 2018). Blunts Point is dominated by Facies 1. This member was observed
during sols 1,687-1,809, and again during sols 2,045-2,094 in order to acquire a drill sample at the “Duluth”
target. Figure 7 shows type examples of Blunts Point member rocks at the outcrop scale to the hand lens
(macrophotographic) scale.

5.2. Pettegrove Point Member

The Pettegrove Point member is distinguished from the underlying Blunts Point member by its erosional
resistance, which suggests more competent bedrock due to minor changes in grain size, compaction, or
cementation. It is composed of Facies 2 and 5. Although it is similar to Blunts Point in that it is fine-grained,
thinly laminated, and mostly parallel-stratified, it also contains fewer veins but a higher abundance of other
macroscopic diagenetic features such as nodules or concretions. These diagenetic nodules reflect changes in
pathways of diagenetic fluids driven by the different character of the bedrock within this member compared
to Blunts Point rocks, and the different character of the bedrock and its diagenetic setting, and might influ-
ence its geomorphic expression as observed in HiRISE data (Bennett et al., 2018). Pettegrove Point rocks are
typically red in color, though minor gray patches are observed. The member was named after a prominent
outcrop on the north side of VRR, imaged during Curiosity's ascent onto the ridge (Figure 8). This member
was observed during sols 1,809-1,871; 1,999-2,014; 2,020-2,045; and 2,094-2,157. On sol 2,136, a sample
was collected for mineral and chemical analyses at a drill hole named “Stoer.”

5.3. Jura Member

The Jura member is the stratigraphically highest member of the Murray formation observed on VRR. It is
easily distinguished from the underlying Pettegrove Point member in that a distinct step in topography
occurs at the contact between them (Figure 5), and the Jura contains much more variability in terms of color,
texture, and sedimentary structures (Figure 9). While some parts of the Jura member are expressed as
erosion-resistant outcrops, other parts are more recessive and form a lag of centimeter-sized pebbles across
the top of the ridge. The Jura member consists of Facies 3, 4, and 6, with Facies 4 and 6 forming the base
of the section. The member was named after a location with notable red and gray color variations
(Figure 9b). MAHLI images were acquired at a target named “Jura” on the gray part of the outcrop and
revealed distinctive crystal pseudomorphs, and fine, continuous laminations of variable thickness
(Figures 9c-9e). While the Jura member is still dominantly composed of mudstone facies, GIMS analyses sug-
gest a higher proportion of rocks with coarser grains than the Pettegrove Point and Blunts Point members
(Figure 6). The Jura member was observed during sols 1,871-1,999; 2,014-2,020; 2,157-2,302; and 2,094-
2,157; drill samples “Highfield” and “Rock Hall” were collected from this unit.

6. Stratigraphic Correlation

The VRR campaign consisted of two distinct traverse paths across the ridge (Figures 3 and 5), which enabled
correlation of stratigraphy across two sections, separated laterally by several hundred meters. The strati-
graphic members described above were recognized by their distinct lithologic properties as expressed in
Mastcam images and also correspond to clear topographic and textural changes observable in HiRISE
images. As such, the contacts between these members can be mapped using orbiter (MRO HiRISE) images
as informed by ground-based observations from Curiosity (Figure 5).

The same textural and lithologic transitions from Blunts Point to Pettegrove Point and from Pettegrove Point
to Jura members can be observed on both the western and eastern parts of the traverse path. However, the
contacts show some substantial topography from west to east (Figure 10). On the western traverse, the tran-
sition from Blunts Point to Pettegrove Point occurs at —4,209 m, whereas on the eastern traverse it occurs at
—4,187 m. Similarly, the Pettegrove Point to Jura contact occurs at —4,168 m on the western traverse com-
pared to —4,157 m on the eastern traverse. Expanding the stratigraphic member mapping beyond VRR
reveals similar trends and variable topography. While the thickness of individual members is relatively con-
sistent, the elevation at which these transitions occur is offset by approximately 10-20 m.
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Figure 7. (a) Blunts Point member observed on the approach to Vera Rubin ridge. Horizontal laminae are crosscut by
white high-angle calcium sulfate veins. This mosaic also shows the transition to the overlying Pettegrove Point member
which forms the more resistant top of the outcrop. Mastcam mosaic acquired on sol 1,785 by the M100 camera,
sequence mcam09211. (b) A block of the Blunts Point member showing recessive intervals interrupted by low-angle veins.
The white box shows the location of (c). Mastcam image acquired on sol 1,700 by the M100 camera, sequence mcam08865.
(c) Closer inspection of (b) reveals fine-grain sizes, planar lamination, and resistant bedding-parallel white veins.

(d) Mars Hand Lens Imager (MAHLI) imaging confirms fine-grain sizes and thin parallel lamination. Dark spots represent
a 3x3 ChemCam raster in the middle of the image. MAHLI image of target “Winter Harbor” acquired on sol 1,736 from
5-cm standoff. MAHLI image 1736 MH0001220010700071C00.

This offset can be attributed to one of two explanations: VRR may have experienced differential compaction
such that originally horizontal contacts are now slightly offset, or that the contacts between these members
record lateral variations in facies that would naturally vary with elevation as strata accumulate due to differ-
ent inputs to the sedimentary basin(s). Because this is a rare opportunity in the mission that two separate
transects through the stratigraphy have been possible, it is unclear whether differential compaction occurred,
though this is common in terrestrial sedimentary environments. It is thought that Gale crater may have once
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Figure 8. A) Pettegrove Point member observed at the initial ascent of Vera Rubin ridge. Fine, parallel lamination can be traced across the outcrop with no disrup-
tion. Mosaic includes the “Pettegrove Point” target for which this member was named. Mastcam mosaic acquired on sol 1,812 by the M34 camera, sequence
mcam09356. (b) An outcrop of the Pettegrove Point member showing resistant outcrop with a higher abundance of nodules, and fewer veins than the Blunts Point
member. Planar lamination is observed throughout. Mastcam image acquired on sol 1,829 by the M100 camera, sequence mcam09462. (c) Mars Hand Lens Imager
(MAHLI) imaging reveals fine-grain sizes and thin parallel lamination. The center of the image reveals the Dust Removal Tool (DRT) target “Mitten Ledge.”
MAHLI image acquired on sol 1,818 from 25-cm standoff. MAHLI image 1818MH0001900010701460C00. (d) Several targets within the Pettegrove Point member
also show evidence for fine sand grains. MAHLI image of “Sherwood Forest” acquired on sol 1,824 from 1-cm standoff. MAHLI image

1826 MH0007250000701691R00.

EDGAR ET AL. 14 of 22



Y ed N | .
NI Journal of Geophysical Research: Planets 10.1029/2019JE006307

ADVANCING EARTH
AND SPACE SCIENCE

Figure 9. The Jura member observed at the top of Vera Rubin ridge. (a) The white dashed line shows the transition between the Pettegrove Point member and the
Jura member. The base of the Jura is defined by a distinct step in topography, which often coincides with inclined beds and the Flodigarry facies. Mastcam mosaic
acquired on sol 1,850 by the M34 camera, sequence mcam09680. (b) The red and gray color variations in the vicinity of the “Jura” outcrop, for which this
member was named. The white circle includes the “Jura” target and the locations of c-e. Mastcam mosaic acquired on sol 1,909 by the M34 camera, mcam10011. (c)
Mars Hand Lens Imager (MAHLI) image of the “Jura” target acquired on sol 1,925 from 10-cm standoff. MAHLI image 1925MH0002910010703326C00. The
false color image has been enhanced to highlight stratification. (d) A portion of (c) showing swallowtail crystal molds. (e) A portion of (c) showing fine lamination of
variable thickness.

been filled and has since been partly exhumed (Malin & Edgett, 2000), which would lead to substantial
compaction of the lower strata of Mount Sharp (Borlina et al., 2015). Sedimentary facies of variable grain
size, sorting, cement, and other properties could produce local differences in compaction, which may
explain the offset observed at VRR. However, it is equally likely that Gale crater contained a lake or series
of lakes (Grotzinger et al., 2015) and that these connected lakes experienced minor gradients in grain size,
which manifest as distinct stratigraphic members, and that those lateral variations in facies led to vertical
offsets in member boundaries through time, following Walther's law (Walther, 1894).
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Figure 10. Schematic cross section from west to east across Vera Rubin ridge, illustrating the offset in elevation between
stratigraphic members. Colors indicate the distribution of the six facies and their relation to stratigraphic members.
Pattern indicates that the dominant lithology is mudstone with an increase in silt and sand content higher in the section.
Boxes show the approximate locations of the stratigraphy observed in the western traverse and eastern traverse.

Based on these lateral and vertical variations, the contacts between different stratigraphic members are
represented by curved lines on the stratigraphic column (Figure 11) to indicate the observed elevations of
these contacts as context for chemostratigraphic studies (Frydenvang et al., 2018; Thompson et al., 2019).

7. Deformation

The primary depositional layering of the strata that comprise VRR are generally interpreted to be horizontal
(Stein et al., 2019). At the outcrop scale, individual laminae can be traced for up to several meters, and strike
and dip measurements indicate relatively flat orientations, varying just a couple of degrees (Stein et al., 2019).
Further constraints on bedding orientation come from stratigraphic correlations, and the observation that
Facies 4 (Flodigarry facies), which marks the base of the Jura member, can be identified beyond VRR in
the Glen Torridon region (Stein et al., 2019). The elevation at which this facies occurs on VRR and in Glen
Torridon, separated by nearly 100 m laterally, requires the strata to be generally horizontal in a north to
south direction.

However, there are localized regions in which the strata are clearly not flat-lying, as shown by the large-scale
inclined beds of Facies 6. These inclined beds generally mark the base of the Jura member, in association with
Facies 4 (Flodigarry facies), and correspond to a break in slope. The observation of domal, concave-down
structures with traceable laminae suggests at least partial lithification prior to ductile deformation.

One such structure was observed on VRR between sols 1,848-1,867 and has an antiformal structure. This
structure was best documented from the sol 1,864 end-of-drive location, using the M34 camera
(Figure 12a). Here, the antiform is highlighted by laminations characteristic of the Murray formation,
which dip away from a central crest area, where the laminations have an apparent zero degree dip.
From the sol 1,864 end-of-drive location, the structure has a measured vertical height of ~0.8 m, and the
face of the outcrop where the fold is observed has a width of ~20 m. The two limbs of the antiform can
be observed to dip shallowly away from the crest of the structure, with apparent angle of dip between 10
and 20°, giving the fold an apparent interlimb angle of ~140°—a gentle fold (Figure 12b). Using the meth-
ods for estimating dip orientation described by Banham et al. (2018), dip-azimuth measurements were
derived and mapped to determine the shape and orientation of the structure (Figure 12c). The western limb
of the structure, while partially eroded and covered with windblown sand, was observed to dip with an
apparent orientation toward the northwest (~310°). The east limb of the structure, which is better exposed,
demonstrates a dip direction toward the southeast (~116°). The axis of this fold is oriented approximately
NE-SW (Figure 12c). Whether or not the fold is plunging toward the south cannot be ascertained due to
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Figure 11. Generalized stratigraphic column extended through Vera Rubin ridge (VRR). Contacts between VRR strati-
graphic members are shown as sinuous lines to indicate the observed change in elevations across VRR. Flodigarry mar-
ker is represented by white boundary at the base of the Jura member. Drill locations within the Murray formation are
marked by distinct symbols to differentiate the targets, as indicated in the legend.

uncertainty associated with the measurement of the fold limbs. When the east limb of the fold is viewed
perpendicular to strike from the sol 1,869 end-of-drive location, no preferential apparent dip can be
discerned in the Navcam mosaic, suggesting that the fold is not plunging. The antiform structure is
approximately 20 m across, and each of the limbs are approximately 10-12 m across. It should be noted
that the face observed in Figures 12a and 12b is oblique to the structure, as mapped out in Figure 12c.
The antiform structure may record a subaqueous slump that occurred soon after deposition. Water-laden
layers of sediment would have accumulated on a slope, which would have resulted in sediment moving
down slope under the influence of gravity. The axis and shortening direction of the fold would imply
that the slope was dipping in a NW-SE direction. An alternative hypothesis for the antiform is that the
fold could have been generated by meteoric impact, although this particular fold is not associated with
any visible impact craters.
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Figure 12. Inclined beds observed during sols 1,848-1,867. (a) Mastcam M34 mosaic acquired on sol 1,864. View is
approximately toward the south. (b) Interpreted view of (a). Beds dip away from a central crest. Apparent dip direction
reported in yellow. (c) High Resolution Imaging Science Experiment (HiRISE) image showing the antiform structure in
plan view. The dashed white line shows the approximate axis of the antiform. The solid white line shows the rover's tra-
verse path. Note that the contact between the fractured Pettegrove Point member to the north and the darker smoother
Jura member to the south is also visible in this image. The inclined beds occur at the base of the Jura member.

Another location with inclined beds, informally named “Glen Tilt,” is associated with an inferred impact
structure. The “Glen Tilt” structure was observed from the sols 1,942 and 1,944 end-of-drive locations.
From the sol 1,942 position (Figure 13a), laminated beds can be observed, which form a north-south trending
ridge, that demarks the southwest rim of a degraded crater. Within the north section of that ridge, beds are
observed to dip shallowly toward the east with an apparent dip of ~10-15°. To the south, where the ridge
curves to the east, the overall apparent dip direction appears to change toward the northeast. Locally within
the ridge, local dip directions change over relatively short distance. From the sol 1,944 end-of-drive position, a
small synform-like fold that is approximately 3 m wide can be observed (Figure 13b). This small fold plunges
approximately east, which would have been toward the center of the crater. A similar structure, which is lar-
gely occluded by regolith, can be observed in the south edge of the crater rim (Figure 13a). These axial fold
structures are common in impact crater structures (Kenkmann et al., 2014), and therefore, it is inferred that
the Glen Tilt deformation structures may be related to an impact event that occurred after partial lithification.

8. Diagenesis

VRR is a thick succession of lacustrine deposits that encountered variable diagenetic episodes. Evidence for
diagenesis is manifested through notable red and gray color variations that cut across primary stratification
(Fraeman et al., 2018; Horgan et al., 2019), millimeter- to centimeter-scale features such as crystal
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Synform structure

Figure 13. Inclined beds at “Glen Tilt,” observed during sols 1,942-1,944. (a) View from the sol 1,942 position, looking
toward the southwestern rim of the crater at azimuth 235°. Beds in the lower half of the image dip toward the left,
which is approximately to the southeast, while beds in the upper half of the image dip toward the viewer, which is
approximately to the northeast. (b) View from the sol 1,944 location, view toward azimuth 285°, showing a small synform
structure that appears to be plunging toward the east.

pseudomorphs, nodules, and dark, diagenetic features (Bennett et al., 2018; L'Haridon et al., 2019), and
abundant fractures containing calcium sulfate veins of variable orientation (Fedo et al., 2018). Details of
the diagenetic history revealed from MAHLI images are summarized by Bennett et al. (2018) and include
the following episodes: (1) early diagenesis including lithification of parts of the Jura member and
precipitation of crystals, (2) dissolution and replacement of original crystals, (3) precipitation of nodules,
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Figure 14. Average laminae thickness for twenty-five targets observed at
Vera Rubin ridge. Targets are plotted as a function of elevation. The
orange data points correspond to targets within the Pettegrove Point mem-
ber, the blue data points correspond to the Jura member, and the purple data
point represents the “Duluth” target in the Blunts Point member.

and (4) development of various generations of calcium sulfate veins.
Further evidence for a complex diagenetic history is the occurrence of
the ridge as a discrete topographic feature, thought to result from
enhanced crystallization and cementation due to warm fluids (Fraeman
et al., 2018; Morris et al., 2019).

9. Implications for the Duration of
Habitable Conditions

Exploration of VRR reveals that the stratigraphic section of lacustrine
mudstones is continuous for much of the lower Murray and is at least
300+ m thick. From Curiosity's first encounter with the Murray formation
at the Pahrump Hills (Grotzinger et al., 2015; Stack et al., 2019) to the top
of VRR, Curiosity has gained 314 m in elevation. Rocks exposed on the
VRR constitute a significant fraction of the stratigraphic thickness of the
Murray formation. The facies observed in the 314 m of the full Murray for-
mation are consistent with lake and lake margin environments (Fedo
et al., 2019; Grotzinger et al., 2015; Rivera-Hernandez et al., 2020; Stack
et al., 2019). Comparison of the average laminae thickness at VRR (ran-
ging from 0.22 to 0.59 mm; Figure 14) to laminae observed at the
Pahrump Hills (ranging from 0.2 to 0.55 mm, Grotzinger et al., 2015) sug-
gests comparable sediment input and depositional processes. Previous
work has considered the finely laminated mudstone facies of the
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Murray formation to be generated by either hyperpycnal or hypopycnal sediment plumes as the delivery
mechanism for sediment into the lake basin (Grotzinger et al., 2015; Stack et al., 2019). When the Murray
formation was first encountered, Grotzinger et al. (2015) used a 75-m stratigraphic thickness of the
Murray formation, combined with laminae thickness and scaled to terrestrial deposition rates (Sadler
et al., 1981) to estimate a duration of 10* to 107 years for accumulation. Stack et al. (2019) considered indi-
vidual laminae in the 13-m-thick Pahrump Hills section to be event beds and estimated a minimum duration
for the Pahrump Hills section on the order of 10° years if these events occurred seasonally, and a maximum
duration of up to 10 years if hyperpycnal flows occurred at more rare intervals.

Here we use new data to confirm lacustrine deposition through VRR and build on previous work to esti-
mate the duration of habitable conditions in Gale crater. Rates of lacustrine sedimentation on Earth typi-
cally range from 0.01 to 0.12 cm/year (Robbins & Edgington, 1975) to 0.29 to 9.5 cm/year (Sekar et al.,
2010) depending on climatic influences and methods for age and rate determination. Based on the 314-m
thickness of the Murray formation and the range of sedimentation rates achieved in terrestrial settings,
the Murray formation would have required a minimum of 10° to 10° years to form. However, the
Murray formation also likely endured substantial compaction and erosion. Based on terrestrial compaction
curves for shales (Baldwin & Butler, 1985), and assuming that the strata were likely buried by more than
2 km of sediment (Grotzinger et al., 2015; Malin & Edgett, 2000), we estimate that the stratigraphic thick-
ness of the Murray formation represents only part of its original thickness (77% according to the Dickinson
curve) and therefore suggest that aqueous environments existed in Gale crater in excess of 10° years. While
previous studies supplied similar estimates for the duration of a lake or series of lakes in Gale crater,
exploration of VRR significantly expands the duration of habitable conditions that can be confirmed
through ground truth of lacustrine environments.

Curiosity has a lot more stratigraphic section to climb and explore within Gale crater, and tens of meters
more that may be attributed to the Murray formation based on similar outcrop erosional expressions as seen
in HiRISE images. The sedimentary facies and stratigraphic members identified here serve as a guide for
future exploration within the Glen Torridon region (Bennett et al., 2019) and beyond.

10. Conclusions

Curiosity's exploration of VRR s, to date, the longest duration and most thorough investigation of lacustrine
strata on Mars. The VRR campaign provided a rare opportunity in the MSL mission to perform two distinct
transects through a stratigraphic section. Through identification of sedimentary facies and stratigraphic cor-
relations, the following conclusions can be drawn:

1. The members within the VRR and the Blunts Point member are composed of six sedimentary facies. These
facies are consistent with deposition in a dominantly low-energy lacustrine environment. A few outcrops
of low-angle stratification suggest possible influences by subaqueous currents. Inclined beds suggest
minor deformation and are inferred to be a result of small slope failures and slumping. However, the vast
majority of the strata at VRR consist of fine-grained, parallel-stratified facies with few disruptions and no
desiccation cracks or other evidence of subaerial exposure, which suggests relatively stable water levels
throughout its deposition.

2. The facies described here are part of the Murray formation and can be subdivided into three stratigraphic
members: Blunts Point member, Pettegrove Point member, and the Jura member, with the latter two
members forming the topographic ridge. A distinct facies at the base of the Jura member may serve as
a marker for recognizing this transition.

3. Grain size and laminae thicknesses are consistent with previous observations within the Murray forma-
tion. Observations from MAHLI and ChemCam LIBS data indicate that grain sizes are typically mud to
very fine sand. A slight coarsening upward sequence is observed as the Jura member has a higher propor-
tion of targets with observable coarser grains than the underlying strata. Laminae thicknesses across
VRR range from 0.22 to 0.59 mm, which is similar to previously reported laminae thicknesses in lower
strata of the Murray formation (Grotzinger et al., 2015; Stack et al., 2019).

4. Stratigraphic correlation across two distinct transects indicates that the boundaries between stratigraphic
members crosscut elevation. The elevation difference suggests either the result of differential compaction
or that the contacts between these members record lateral variations in facies.
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5. No significant gaps in the stratigraphic record are observed. The strata exposed at VRR significantly
expand the duration of habitable conditions observed in Gale crater and suggest that aqueous environ-
ments existed in Gale crater in excess of 10° years.

6. The sedimentary facies and stratigraphic members identified at VRR serve as a framework for interpret-
ing strata within the Glen Torridon region and beyond.
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