PHYSICAL REVIEW D 101, 083006 (2020)

Ranking candidate signals with machine learning in low-latency searches
for gravitational waves from compact binary mergers

Kyungmin Kim ,1’2’* Tjonnie G. F. Li,2 Rico K. L. Lo,z’3 Surabhi Sachdev ,3’4 and Robin S. H. Yuen®
'Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu,
Daejeon 34055, Republic of Korea
2Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
’LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125, USA
4Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

® (Received 15 December 2019; accepted 11 March 2020; published 7 April 2020)

In the multimessenger astronomy era, accurate sky localization and low latency time of gravitational-
wave (GW) searches are keys in triggering successful follow-up observations on the electromagnetic
counterpart of GW signals. We, in this work, study the feasibility of adopting a supervised machine
learning (ML) method for scoring rank on candidate GW events. We consider two popular ML methods,
random forest and neural networks. We observe that the evaluation time of both methods takes tens of
milliseconds for ~45, 000 evaluation samples. We compare the classification efficiency between the two
ML methods and a conventional low-latency search method with respect to the true positive rate at given
false positive rate. The comparison shows that about 10% improved efficiency can be achieved at lower
false positive rate ~2 x 107> with both ML methods. We also present that the search sensitivity can be
enhanced by about 18% at ~10~"! Hz false alarm rate. We conclude that adopting ML methods for ranking
candidate GW events is a prospective approach to yield low latency and high efficiency in searches for GW

signals from compact binary mergers.
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I. INTRODUCTION

Recently, ground-based gravitational-wave (GW)
observatories, LIGO [1] and Virgo [2] detected
GW170817 [3] in about 1.7 seconds advance of the
observation of a short GRB, GRB170817A [4] which
was identified by the Fermi gamma-ray burst monitor
(GBM) [5]. These coincident observations of both GW and
short GRB became a monumental event for opening the era
of multimessenger astronomy [6]. From the joint obser-
vation, one of the most plausible scenarios for the central
engine which powers a short GRB is confirmed too.

With the opening of the multimessenger astronomy era,
it is natural to believe that we will observe other kinds of
joint GW-electromagnetic (EM) events too as summarized
in Ref. [7] with future GW detectors and optical telescopes
such as the Large Synoptic Survey Telescope [8]. For a
joint GW-EM observation, we may use a GW event as a
precursor for triggering follow-up observations on its EM
counterpart. The success of this kind of joint observation
will strongly depend not only on reducing the error of sky
localization in GW detection but also on curtailing the
latency of GW search; precise sky localization is related to
how many GW detectors in various geographical locations
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are on-line simultaneously while the latency of search is
associated with the quality of GW data and analysis
efficiency. Here, the efficiency implies the accuracy of
analysis. However, increasing the number of GW detectors
is not trivial despite KAGRA [9] and LIGO-India [10] will
come on-line in the near future in addition to currently
operating LIGO and Virgo detectors. Improving the quality
of GW data faces another difficulty because the current
instrumental specifications are adopting state-of-the-art
technology already. On the other hand, enhancing the
efficiency of data analysis is relatively capable since
studying the capability of a new method is much easier
than others. Therefore, we focus on the analysis efficiency
in this work.

Up to date, several pipelines [11-16] for the low-latency
GW search have been developed and conducted to search
GW signals by analyzing the time series GW data in real
time. The common goal of these pipelines is identifying a
candidate GW event as soon as possible. Currently, the
latency between the actual event time and the identification
of a candidate event with those search pipelines takes about
a few minutes as reported in Ref. [6] for the detection of
GW170817. When a low-latency search pipeline succeeds
in the identification of a candidate event based on the
significance of a ranking method of each pipeline and
obtains the information, e.g., event time, sky location (right

© 2020 American Physical Society
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ascension and declination), and signal-to-noise ratio of the
candidate event, it forwards the information to a database
system, GraceDB [17]. Then GraceDB delivers the infor-
mation to EM partner observatories/telescopes through an
alert system such as Gamma-ray Coordinates Network [18]
alert to trigger follow-up observations for seeking corre-
lated EM events.

Meanwhile, a candidate GW event is a survived one from
multiple stages of sanity tests of a search pipeline and the
event contains the result of each sanity test too in addition
to the observational information forwarded to GraceDB.
Thus, we can regard identifying the origin of a candidate
event as a multivariate classification problem and the
information describing candidate GW events seamlessly
leads to the consideration of machine learning (ML).
Indeed ML has been gradually implemented and accepted
in various GW data analyses [19-29] to achieve efficient,
that is, accurate analysis not only for the identification of
GW signals but also for the characterization of non-
Gaussian transient noises. From these studies it has been
shown that we can consider ML as an alternative and
complementary method to the conventional ranking
method of each analysis based on their classification
performances.

In specific, recent studies [27,28] suggest that introduc-
ing deep learning (DL), a subset of ML, for searching
transient GW signals from compact binary mergers can be
considered as a breakthrough approach in achieving the
enhancement of the analysis time with maintaining com-
parable search performance to the conventional search
method. However, as discussed by the authors of
Ref. [29], DL-based search methods may meet a concern
whether it is suitable tool to claim statistically significant
detections or not. Hence, in order to minimize such a
concern, we study the feasibility of enhancing detection
sensitivity of a conventional low-latency search method by
adopting ML for scoring rank on candidate events, the
output of the conventional method, based on the statistical
and physical parameters of the candidate events.

This paper is organized as follows: we present brief
descriptions on used tools, data preparation, and procedure
of applying MLs in Sec. II. The result of classification
performance of ML for the given data is summarized in
Sec. III. In Sec. IV, we present the detection sensitivity
obtained with the application of ML and compare it to the
sensitivity obtained with the ranking method of a conven-
tional low-latency search pipeline. Finally, in Sec. V, we
discuss the results of this work.

II. METHOD

In this section, we summarize the methods used for
configuring the input data and conducting classification
of candidate events with considered MLs. In specific, for the
configuration of input data, we select six statistical and
physical feature parameters from the output of a low-latency

search pipeline, GstLAL inspiral search pipeline [11] (here-
after GstLAL pipeline for convenience). We start with
briefly introducing each tool used in Sec. Il A.' Then we
describe the procedures from preparing input data to
obtaining the output of ML through Secs. II B and II C.

A. Tools

1. GstLAL inspiral search pipeline

The GstLAL pipeline is designed for the low-latency
search for gravitational waves (GWs) radiated from com-
pact binary mergers. It is built based on the GstLAL library
[30] which was derived from the GStreamer [31] and the
LIGO Algorithm Library [32]. The pipeline produces
candidate events from data of each GW detector by
performing matched filtering [33] with template wave-
forms. In turn, if two or more detectors are on-line, the
pipeline searches coincident events from detectors in the
network; given an event in one detector, the pipeline checks
for corresponding events in the other detector within a
relevant time window, which takes into account the
maximum GW travel time between detectors and statistical
uncertainty in the measured event time due to detector noise
at the moment [11].

We can use the pipeline in two different modes, on-line
which makes low-latency identification of a candidate
event and off-line which archives GW data with other
information such as background statistics and data quality
for further investigation on the candidate event identified
from the on-line mode. With the off-line mode, specifically,
it is possible to perform the software injection—injecting a
bunch of simulated GW signals for compact binary systems
into the calibrated GW data in order to test the search
performance of the pipeline by comparing the physical
parameters for the simulated signals and the recovered
parameters by the pipeline.

Both modes of GstLAL pipeline use log-likelihood ratio
[34] defined as

InL(2) = 1n§(/un) (1)

as a ranking method to judge the significance of candidate
events. In Eq. (1), P(A|s) and P(A|n) are the probability of
observing parameters of A of candidate events of all
detectors given a GW signal, s, and background noise,
n, respectively. The parameter vector A consists of char-
acteristic parameters of the candidate event such as signal-
to-ratio, y, physical parameters of template waveforms
used in identifying candidate events, detector sensitivities
at the time of the event, mean trigger rates at the time of the

'Since describing details of used tools are out of the scope of
this work, we recommend the reader to refer to the references.
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event, the trigger phases, and interdetector time differences
(for details, see Refs. [34,35]).

2. Machine learning

We consider supervised machine learning algorithms in
this work since we will use prelabeled” data for training as
described in the following subsection. Amongst many
supervised learning algorithms, we adopt random forest
(RF) [36] and neural network (NN) [37].

RF was suggested to remedy the biased overestimation
problem of the classical decision tree algorithm. RF is
basically a collection of decision trees. However, it can
reduce any biased effect in data classification by imposing
(i) random selection in configuring input data for each tree
and (ii) random choice on criteria at each binary split. Also,
as an additional method for reducing the biased overesti-
mation problem, RF scores ranks on samples in the input
data by averaging those ranks obtained from all decision
trees in the forest.

NN operates as an artificial intelligence network similar
to the biological neuron system: activation of a node is
determined by an activation function which judges whether
the strength—sum of the value of each node times the
value of connection from one node to another node in the
next adjacent layer—exceeds a certain criteria or not.
Nowadays, NN can be divided into two categories, shallow
NN (SNN) and deep NN (DNN), by the complexity of the
structure of a network, more precisely, by the number of
hidden layers: if there is one hidden layer, it is called SNN
and if there are two or more hidden layers, it is called DNN.
But it is known that if one can solve the issue on the
computing time due to the complex structure of DNN, the
performance of DNN is better than that of SNN in general.

In the implementation of these two MLs, we use two
different open source packages: for RF, we use Scikit-Learn
[38] which supports various purposes of implementing
machine learning algorithms such as supervised/unsuper-
vised learning or classification/regression problems. On the
other hand, for NN, we use TensorFlow [39] because it allows
constructing DNN efficiently by reducing computing time
with sophisticated computational algorithms and/or multi-
ple computing processors.

B. Data preparation

We use data obtained from LIGO Hanford, WA, USA
(H1) and LIGO Livingston, LA, USA (L1). For the purpose
of conducting classification with supervised MLs, we
consider two classes of data, simulated signal data and
background noise data. Hereafter we call the simulated
signal data and background noise data simply signal data
and noise data for convenience. In particular, for the signal

’If one has unlabeled data and wants to train a machine
learning algorithm for either classification or regression, this kind
of training is called unsupervised learning.

TABLE I. Physical parameters of software injection.

Parameter Range/Condition

mp, ny Z 2 M@
my +my <100 Mg
my > nmy
[3, 5000] Mpc
512,522 € [=1,1]

Component mass

Distance
z-component of spin

data, we consider binaries of black hole-black hole (BBH)
because GWs from BBHs are the most common type of
signal detectable by ground-based detectors.” Hence, we
use simulated data* used for the estimation of event rate of
O1 BBH events including GW150914 [46—48]. The simu-
lated data is obtained by the software injection with
SEOBNRvV2 waveform model [49] via the off-line mode
of GstLAL pipeline. Physical parameters of the software
injection are given in Table I. For the noise data, we use
the data obtained by running a so-called time slide [50],
which estimates the background noise by performing
time shifting to outputs of GstLAL pipeline obtained from
different detectors in a network, around the time of software
injection. The software injection and time slide were
conducted with a chosen data segment taken between
October 21, 2015 UTC and December 3, 2015 UTC,
where no GW signal was found during the O1 operation
of LIGO and Virgo.

From the coincident events of H1 and L1 data, we extract
six feature parameters; signal-to-noise ratio (SNR) and
chi-square statistic of each trigger as statistical feature
parameters and, as physical feature parameters, masses and
spin magnitudes of two component compact objects. We
use the same feature parameters for the configuration of
both signal and background data consistently.

We first shuffle the samples of the input data to reduce
any biased effect in the composition of samples. Then, we
divide the shuffled input data into two categories, train and
test data, such as 75% of the whole data for the train data
and the rest 25% for the test data. We use the train data and
test data to train ML and to evaluate the performance of
trained ML, respectively. The number of signal and noise
samples for train and test data is tabulated in Table II. One
can recognize that the number of signal and noise samples
are imbalanced which may lead to biased training.

*In general, expecting electromagnetic (EM) counterparts for
BBH events is mainly discussed in theoretical studies [40-44].
However a possible association of a gamma-ray burst to the
first GW detection, GW150914 was discussed in the literature
[45]. Thus considering BBH signals in this work is viable
about discussing latency with keeping in mind GW-EM joint
observations.

To avoid overfitting that could be occurring in the training of
MLs, we need a sufficient number of signal samples, at least
>((10?). For this reason, simulated data is more preferable than
a single real signal of GW150914.
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TABLEII. Number of signal and noise samples for training and
test data.
Signal Noise
Hi Train 3,641 129,405
Test 1,220 43,129
L1 Train 3,623 129,423
Test 1,238 43,111

However, the imbalance may mimic the real situation
since, in real detections, identifying a GW signal from
noise dominant GW data is common. Thus we admit the
imbalance and aim that successfully classifying desired
signal samples from a much larger number of noise samples
is a challenge of this work.

C. Training and evaluation

We train each ML in a different manner not only because
of the different characteristics of tested MLs, RF and NN,
but because of the different properties and usages of
implemented packages, Scikit-Learn and TensorFlow. For given
data, optimal choice on the hyperparameters of MLs in the
training procedure is critically related to the performance
of each ML. We determine the hyperparameters of RF and
NN with the strategies described in Appendices A and B,
respectively, and use them to train each ML. Once the
training is done, the trained ML is recalled for the
evaluation of test data.

We evaluate the test data by using the trained MLs. At
this stage, each ML scores a rank, r, on each sample of the
test data based on the probabilistic prediction. Thus, the
value of ris given within a range of 0 < r < 1. We observe
that the evaluation time for scoring ranks on about 45,000
samples in the test data takes about tens of milliseconds.

III. CLASSIFICATION PERFORMANCE

We discuss the classification performance of trained
MLs in this section by comparing it to the performance of
the ranking method of GstLAL pipeline.

As described in the previous section, MLs return only
probabilistic values between 0 and 1 while GstLAL returns
unnormalized values of the log-likelihood ratio with
Eq. (1). To address this issue, we compute the log-
likelihood ratio with the resulted ranks obtained from
the evaluation such as

P(rls)
P(r|n)

by following the same analogy of Eq. (1) because (i) we can
separate samples of the test data into either s or n based on
the prelabeled class and (ii) we can estimate the probability
density function of the given ranks of signal and noise
samples too. Thus, by these two reasons, this approach is

InL(r) =1In (2)

applicable to the evaluated result too and this prescription
makes the comparison fair.

The estimation of probability densities of the numerator
and denominator of Eq. (2) is done by using the kernel
density estimation method of ScikitLearn with Gaussian
kernel and an empirically determined optimal bandwidth
of 0.03. One can find the result of probability density
estimation from Appendix C.

A. ROC curve

In order to discuss the performance, we draw the receiver
operating characteristic (ROC) curve as a figure of merit.
To draw the ROC curve, we define true positive rate (TPR)
and false positive rate (FPR) as follows:

NO(In LW (InL >1nLgy))

TPR = 5
Ny
= P(InL®(InL >1nLy)), (3)
M (In L™ (In L >
EPR — N (InL (1(n)L >InLy))
Ny
= P(InLO(InL > InLy,)), (4)

where N and N respectively denote the number of
signal and noise samples satisfying their values of In L larger
than or equal to a given threshold value, In Ly, within the

group of signal samples, In L") = {InL;;i = 1,2, ...,N(TS>}

and the group of noise samples, InL™ = {lnLj;j =1,2,...,

N(T")}. Therefore, InL®)(InL > InLy) or InL"(InL >
InLy,) represents subgroups of In L% or InL™, respec-

tively, satisfyingIn L > In Ly,. N (TS Jand N (T") are respectively
the total number of signal and noise samples of test data
presented in Table II. Note that TPR and FPR represents how
likely it is to identify signal sample as signal correctly and
noise sample as signal incorrectly respectively. Hence, we
desire to obtain a higher value of TPR than FPR as In L,
increases. Subsequently, we can interpret a ranking method
resulting higher in TPR at lower FPR as a better discrimi-
nator in distinguishing signal from noise adequately.

We present ROC curves in Fig. 1 by computing TPRs
and FPRs with Egs. (3) and (4) respectively. To depict the
tendency of TPR with respect to FPR, we limit the range of

InLy as In L,(;’i)n <InLy <In L,(ffgx, i.e., to make the mini-
mum FPR to be 1/N (T”>. In the legend box of Fig. 1, we also
present the area under curve (AUC) for each result because
it represents the probability that a ranking method will
score a higher value on an arbitrary signal instance than the
value of an arbitrary noise instance. For the computation of
AUC, we use the trapezoidal method.

From this figure, we can see that all cases are drawn in

the upper region of the gray-dashed line which indicates
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Combined ROC curves and values of area under curve. The left and right panels show the ROC curves of the result of H1 or L1

data, respectively. The red and navy solid lines indicate the results of In Ls of MLs and the green solid line indicates the result of In L of
GstLAL pipeline. One can see that both MLs show higher TPR than GstLAL pipeline over given FPR ranges and it results in that the
areas under curves of MLs are larger than the AUCs of In L. The performances of RF and NN are more or less similar to each other.

random guess.5 We can understand this result as the ratio of
signal samples having larger InL is bigger than that of
noise samples. In other words, we can say In ngx is bigger
than In Lfﬂx. From this result we know that In L works as a
proper ranking method in discriminating signal samples
from noise samples as desired.

Also, one can see that two MLs show higher TPRs than
the GstLAL pipeline over given FPR ranges and it results in
the AUCs of MLs being about 4%-5% larger than the
AUCs of GstLAL pipeline. When we focus on the TPR at

the lower FPR region, specifically at the lowest FPR where

InLy, = In L%, MLs show 0.103-0.125 higher TPR than
the TPR of GstLLAL. This result shows that we could obtain
highly probable signal samples 10.3%—-12.5% more with
MLs than GstLAL pipeline. In the consideration of a
practical application of MLs to the low-latency search
for GWs from binary mergers, the performance at lower
FPR is important since FPR can be interpreted as the same
analogy to the false alarm probability, which will be
discussed in Sec. IV, and, eventually, identifying a GW
signal candidate with sufficiently low false alarm proba-
bility will be connected to the declaration of the detection
of a GW signal.

In the comparison between RF and NN, one can notice
that the performance of each ML is similar to each other,
despite RF showing about 0.73%-0.76% larger AUC and
about 1.1%-1.7% higher TPR at the minimum FPR than
NN depending on data. From this result, one can recognize
that the classification performance of RF on the overall test

data is the best.

The random guess is the case when a discriminator cannot
distinguish a sample neither signal nor noise, i.e., the discrimi-
nator returns 0.5 for the probability of all signal and noise

samples.

B. Scatter plot

We need to examine how individual samples contribute to
the resulted ROC curve. Thus, we investigate the contribu-
tion by looking at the correlation between the value of In Ls
of considered ranking methods and the feature parameters.
We present example scatter plots in Figs. 2 and 3 drawn with
selected feature parameters from the test data. In the scatter
plot, the color bar on the right side shows normalized and
unnormalized values of In L. Note that we use the chirp mass

defined as

(m1m2)3/5

(my + my)'/3

(5)

instead of individual component masses, m; and m,, for
the horizontal axis because the chirp mass is one of the
important parameters in describing characteristics of the
evolution of the GW waveform generated from compact
binary systems [51]. Also, since the SNR is one of the
fundamental statistical quantities in judging the significance
of a GW signal buried in noisy GW data, we especially select
these two parameters for this example.

From Figs. 2 and 3, we see that signal samples of higher
SNR and of higher chirp mass obtained higher InLs as
expected from the ROC curve. In particular, for the
distribution with respect to the chirp mass, we also see
that signal samples are in the range of 4.5, 45] M, which
is believed as the detectable chirp mass range for the BBH
system by LIGO/Virgo. However, from the comparison of
signal samples between GstLAL pipeline and MLs,
GstLAL returns relatively lower In Ls on samples having
SNR < 10 which is a criterion for the SNR of the GW
candidate signal. On the contrary, MLs return higher In Ls
even for those signal samples. This result means MLs can
distinguish even less significant signal samples correctly
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FIG. 2. Scatter plots of signal and noise samples of H1 data with respect to two selected feature parameters: SNR and the chirp mass,
M. The unit of M is given in M. The left and right columns show scatter plots of signal samples and noise samples, respectively. The
color bar indicates the value of the normalized (left side) and unnormalized (right side) of In Ls. One can see that MLs computed
relatively higher In L even for signal samples of lower SNR.

which may be disregarded as a candidate with GstLAL

pipeline.

On the other hand, for noise samples, all ranking
methods return relatively lower In Ls than signal samples.
However, in particular for HI data, NN shows the best
distinguishability than the other two methods in terms of
normalized In L. Meanwhile, for L1 data, RF and NN
shows similar distinguishability. Therefore we conclude
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that the distinguishability on individual samples is less
effective in the computation of TPR and FPR of the

ROC curve.

IV. SEARCH SENSITIVITY

In this section, we discuss the search
through the relation between the sensitivity
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FIG. 3. Scatter plots of signal and noise samples of L1 data with respect to two selected feature parameters: SNR and the chirp mass,
M, as drawn in Fig. 2. One can see that the L1 data case shows similar to H1 data case but better discriminability on the RF result than

the H1-RF result in Fig. 2.
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the false alarm rate (FAR) [34] in order to suggest a
practical application of MLs for searching GWs from
compact binary systems. For this calculation, we refer to
Sec. IV C of Ref. [11].

In general, FAR is defined as

1 [+
FARE—/ P(InL|n)dInL, (6)
InLy,

where T is the length of the data segment. We can use FAR
for the determination of a threshold value for a ranking
method and, eventually, can use the value to judge a
detection of a GW signal. If we assume that the chance
of background noises gaining higher In L is very rare, we
can write the FAR for the given InL of a noise in an
approximated form:

P(InL >1nLgy|n) )
T .

FAR ~

This approximation is valid for the consideration of this
work too since it is shown that most of the noise samples
obtain lower In L than signal samples.

The numerator of Eq. (7) means the probability that
noise data, n, get a high value of a ranking method. Thus it
is called as false alarm probability (FAP) [34]. In this work,
as discussed in Sec. Il A, FPR can be interpreted in the
same analogy of FAP when we compare Eq. (4) and the
numerator of Eq. (7). However, at this moment, we change

the In Ly, in the expression of FAP to be In LY < Ly <

min —
In LES?M instead of using In Lf:i)n <InLyk <In LE,’QX since our
interest is estimating the FAR of signal samples.
Additionally, we follow the procedure for calculating

Eq. (31) of Ref. [11] with the value of FPR in order to
take account of the corrections which have been used in the
conventional GstLAL pipeline for the computation of FAP.

For the calculation of the sensitivity range, we use the
distance parameter which was used for the generation of the
signal samples. We also adopt the definition of efficiency, €,
with the found sample given in Ref. [11]: when the
estimated FARs of some signal samples are lower than a
given fiducial FAR we call the signal sample found samples
and the ratio of found samples to total number of signal
samples efficiency. Then we compute the search volume
such that

V= 471/000 e(r) 2, (8)

where [ is the distance to the source of GW and ¢(/) is the
efficiency at the distance /. Now the sensitivity range, R can

be calculated by
3V 13
R=|(— . 9
(3) ©)

For the computation of the search volume, Eq. (8), we
integrate the integrand with the trapezoidal method by
varying the fiducial FAR. We refer to the sensitivity range,
R, as the search sensitivity in this work and plot it with
respect to the combined FAR in Fig. 4. The combined FAR
is obtained by collecting an individual FAR computed with
the data of each detector. In order to take account of the
uncertainty in binary discrimination into signal or noise, we
compute the lower and upper bounds, (o=, w"), of the
Wilson confidence interval [52] with continuity correc-
tion [53]:

2p+ 22— [e/E =1y +ayp(l = p) + (4p—2) + 1
o — maxd 0 2P = VE -1y + p(1=p)+(4p=2) + 1] (10)
2(y+27)
2yp + 22 Ty + dyp(1—p) + (4p—2) + 1
ot —mind 1 2P HEHEVE -1y p(1=p)+(4p=2)+ 1] (an
2(y +2°)

where p = p/y is the fraction of found signal samples to
the number, y, of total samples and z is the probit function.
For Egs. (10) and (11), if p =0, @~ is taken as 0. On the
other hand, if p =1, w" is taken as 1.

From Fig. 4, we can see that we can detect more farther
events with MLs for the given range of FAR than with
GstLAL pipeline, in particular, at the lowest FAR, the
central value of detectable range is ~1.7 Gpc for both RF
and NN while ~1.4 Gpc for GstLAL pipeline. We see that
the range of RF is slightly farther than that of NN. But, they
are placed within 30 uncertainty bounds of the Wilson
confidence interval of each other. Therefore, we conclude

their sensitivities are comparable and this result is con-
sistent with the ROC curves discussed in Sec. III A.

V. SUMMARY AND DISCUSSION

Machine learning (ML) is known by its fast and accurate
performance on identifying/classifying nonlinear multidi-
mensional data of various fields. From several studies
related to GW data analysis, applications of MLs have
shown improved and/or comparable classification perfor-
mances compared to conventional statistical approaches.
Thus, in this work, we study the feasibility of whether we
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FIG. 4. Comparisons of the sensitivity in terms of detectable
range in distance versus the combined false alarm rate (FAR). The
red line indicates the result of RF, the navy line indicates the
result of NN, and the lime line indicates the result of GstLAL
pipeline. The shaded regions around each line show 3¢ of the
binomial confidence interval computed based on the Wilson
method [52] with continuity correction [53]. One can see that the
detectable range of MLs is relatively farther than that of GstLAL
pipeline at the lower FAR region and it means we can identify an
event occurred at farther distance with MLs.

can use the output of ML for scoring rank on candidate
events for low-latency GW searches.

For this study, we consider two supervised MLs, random
forest (RF) and neural network (NN). The mock data for
GW150914 obtained by running GstLAL pipeline in off-
line mode is used as the signal sample. From the output of
GstLAL pipeline, we extract six physical and statistical
feature parameters for the configuration of input data for
ML. With given data, we train considered MLs and test the
classification performance of the rank of MLs to compare it
to the conventional ranking method, the log-likelihood
ratio, In L of GstLAL pipeline. However, MLs return only
probabilistic rank values in between 0 and 1 while In L of
GstLAL pipeline is unnormalized. Thus, to make a fair
comparison, we first estimate the probability density
function (PDF) for ranks of signal and noise samples
separately and then compute In L with the PDF.

It is known that ML should be trained with sufficiently
large and nonbiased data for a successful application [54].
In general, training a ML with a large amount of data needs a
long computational time from about hours to days to
determine the most optimal combination for the hyper-
parameters of a ML. The training time depends on the
size of train data such as the number of samples and
the number of feature parameters. In this work, we find
that training a ML with a set of train data of about
165,000 (number of samples) x 6(number of features) takes
a few hours. Meanwhile, evaluating a test data or a new data
requires a much shorter time than time for training: from our
study, the evaluation with a set of test data of roughly
45, 000(number of samples) x 6(number of features)
dimensions can be done in the order of tens of milliseconds.

Thus, we can see the positive prospect of applying ML for
the low-latency GW search in terms of the analysis speed.
We investigate the classification performance of MLs
through a couple of figures of merit. In this work, we choose
the receiver operating characteristic (ROC) curve to see
overall performance for all tested samples and the scatter
plot to see the contribution to an individual sample. From the
ROC curve and the area under the curve, we can observe that
MLs show better performance on classifying more signal
samples from noise samples than GstLAL pipeline. The
result on individual samples is also studied through the
scatter plot to try to see the correlation between the output
value of a given ranking method and selected feature
parameters, e.g., signal-to-noise ratio (SNR) and chirp mass.
We find that signal samples of relatively higher In Ls have
higher SNR and chirp masses within expected chirp mass
range for binary black hole mergers. Thus we are convinced
that the resulting higher In L values of given ranking
methods are correlated to the tested feature parameters.

For the difference in performance between RF and NN,
one may suspect that the hyperparameters of NN might be
less optimized than RF since we empirically selected the
hyperparameters of NN without automated determination
as discussed in Appendix B. However the most optimal
choice on the hyperparameter depends on the input data for
training: if we train MLs with different training data, the
choice on the set of optimal hyperparameters will be also
changed. On top of that, it is hard to think the data used in
this work can represent the general property of all possible
BBH systems. Thus, conducting more fine-tuning on the
optimal hyperparameters for NN with the data used in this
work is out of the scope of this kind of feasibility study and
we admit the difference between RF and NN is placed in
the acceptable range.

We compare the sensitivity in terms of the detectable
range with respect to the approximated false alarm rate
(FAR) too. In specific, since the false positive rate (FPR) of
the ROC curve can be translated to the false alarm
probability, the FPR of the ROC curve is also used in
computing the approximated FAR. From the sensitivity
plot, we can see that MLs are more sensitive than GstLAL
pipeline, that is, it would be possible to detect farther events
with MLs beyond the upper limit of the detectable range of
GstLAL pipeline. Therefore we conclude that using output
of ML can be an alternative ranking method to the
conventional ranking method of GstLAL pipeline for
obtaining improved detection significance and it is worth
considering ML as a new ranking method for future low-
latency searches for GWs from compact binary mergers.

In this work, we constrained the origin of feature
parameters of input data for ML only to the information
obtained from the GstLAL pipeline for simplicity.
However, it is also possible to consider collecting transient
noise information, which is used for the GW data quality
measurement, along with the current methodology. In the
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future work, therefore, we will discuss the practical
implementations such as training MLs with combining
the current feature parameters and transient noise informa-
tion into the input data. Next, we will build up the strategy
and the framework for an on-line GW inspiral search
pipeline which implements ML as its ranking method.

However we admit that this approach is rather weak in
interpretability: it is not easy to clearly understand how the
model results in the better result with less information
than the conventional method. This point is one of the
differences from the conventional approach because it is
built on statistically reliable considerations and, eventually,
has strong interpretability. The interpretability is another
critical point for judging the confidence of a detection.
Therefore, for the practical implementation, we may also
need to design an additional method to make the classi-
fication model to be interpretable.
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APPENDIX A: HYPERPARAMETERS OF RF

For RF, we run a module, GridSearchCv embedded in Scikit-
Learn for searching optimal hyperparameters. The core of
this module is the k-fold cross validation method: con-
ducting k-times validation tests on k different validation
subsets, which are prepared by shuffling all train data and
then dividing evenly into k subsets, with a given combi-
nation of hyperparameters. Each validation test is done by
evaluating one of the k subsets as a test subset based on the
trained ML which is trained with remaining subsets. This
module computes the averaged accuracy:

number of samples(Viye = Ypred)

average accuracy = -
total number of samples in a subset

(A1)

as the final output of each test for RF. In Eq. (A1), v, and
Yprea denote, respectively, the original class and the pre-
dicted class of a sample. At last, a combination of hyper-
parameters which gives the highest averaged accuracy is

TABLE III. Tested entries for hyperparameters of RF in
running GridSearchcv.

Hyperparameter Entry
n_estimators 50, 100, 200
criterion Gini, entropy
max features 2,4,6
min samples split 2,3,4,5

max_depth None, 10, 30, 50

TABLE IV. Empirically determined optimal hyperparameters
of RF by running Gridsearchcv. One can see that some hyper-
parameters are the same for different data.

Hyperparameter Data Optimal
. H1 50
n _estimators L1 50
. . H1 Entropy
criterion L1 Entropy
feat H1 4
max_features L1 4
. . H1 3
min samples_split L1 4
H1 30
max_depth L1 10

selected as the most optimal set of hyperparameters. Used
entries of selected hyperparameters for running this module
are tabulated in Table III. One can find the description of
each hyperparameter from Ref. [55].

In this work, we conduct the run of GridSearchCV with
k =3 and the determined optimal hyperparameters for
given data are summarized in Table I'V. From this table, one
can see that some hyperparameters are the same for
different data. It means those values are the most optimal
value amongst tested entries for the type of data of this
work. Therefore, if we do not change the selected six
feature parameters for a similar type of data, we can fix the
values of those hyperparameters and alter remains for the
determination of optimal hyperparameters.

APPENDIX B: HYPERPARAMETERS OF NN

Unlike RF, we set the hyperparameters of NN empiri-
cally because there is no available module for grid search in
TensorFlow.” We set them to be the same for all considered
data for convenience. In addition to the hyperparameters for

®It is also known that it is hard to consider such grid search
model for DNN because there are too many hyperparameters to
be tuned [54]. However, it is not impossible at all if we use an
automated method such as DeepHyper [56]. Despite the availability
of the automated hyperparameter search method, we do not
implement it in this work because we could get satisfactory
performance with the empirically determined hyperparameters.
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TABLE V. Hyperparameters for NN.

Hyperparameter Value

1 input (6 nodes)
4 hidden (32 nodes for each)
1 output (1 node)
0.01%

Layers (nodes)

Learning rate

Regularization L2 with 0.01%
Dropout 10%

Activation function ReLU

Cost function Cross entropy with Softmax
Batch size 1024

the topology of a NN, in order to avoid overestimation (or
overfitting equivalently), we adopt L2 regularization to
constrain a NN’s connection weights and dropout [57] to
remove potential dependency on certain nodes of the given
network. The rectified linear units (ReLU) function [58] is
used for the activation function between nodes in two
adjacent layers. For the cost function, which measures the
error between the target value, 1 for signal and O for
background, and the output value in between 0 and 1 of the
output node, the Cross entropy function is implemented by
taking the output probability computed from the Softmax
function as the input probability of the Cross entropy
function. Finally, we also consider Batch normalization
[59] to properly minimize the cost function in the back-
propagation [60] process. All of these hyperparameters are
summarized in Table V as well.

APPENDIX C: PROBABILITY
DENSITY ESTIMATION

In order to compute log-likelihood ratio, we estimate the
probability density functions (PDFs) of signal and noise
samples for the numerator and the denominator respec-
tively of Eq. (2). The estimation of PDFs of resulted ranks
of evaluation samples is done by using the kernel density

—— PDF - Signal
102 — PDF- N,
De

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

rank rank

(a) H1 data with RF (b) H1 data with NN

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 ‘ 1.0
rank rank

(¢) L1 data with RF (d) L1 data with NN

FIG.5. Estimated probability density functions (PDFs) for each
data with studied MLs. For the PDF estimation, we use the kernel
density estimation method of Scikit-Learn with Gaussian kernel
and bandwidth of 0.03. The blue- and red-solid lines are the
estimated PDFs for signal samples and for noise samples,
respectively. The blue- and red-dashed boxes show the normal-
ized density distribution of signal and noise samples, respectively,
used for the estimation of PDFs.

estimation (KDE) method of Scikit-Learn with Gaussian
kernel and an empirically determined optimal bandwidth
of 0.03. For this estimation, we compute normalized
density distribution for the ranks of evaluation samples
first and apply KDE with given bandwidth. The resulted
PDFs for signal and noise samples of each test data using
ranks from each ML are shown in Fig. 5. From these plots
and Eq. (2), we can expect that we can obtain smaller In L
with lower ranks and bigger In L with higher ranks.
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