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Abstract

X-ray reflection spectroscopy is a powerful tool for probing the strong gravity region of black holes and can be
used for testing general relativity in the strong field regime. Simplifications of the available relativistic reflection
models limit the capability of performing accurate measurements of the properties of black holes. In this paper, we
present an extension of the model RELXILL_NK in which the accretion disk has a finite thickness rather than being
infinitesimally thin. We employ the accretion disk geometry proposed by Taylor & Reynolds and we construct
relativistic reflection models for different values of the mass accretion rate of the black hole. We apply the new
model to high-quality Suzaku data of the X-ray binary GRS1915+105 to explore the impact of the thickness of
the disk on tests of the Kerr metric.

Unified Astronomy Thesaurus concepts: Kerr metric (887); Astrophysical black holes (98);
X-ray astronomy (1810)

1. Introduction

Einstein’s theory of general relativity is a pillar of modern
physics and in agreement with all the available observational
tests (Will 2014). However, the theory has been primarily
tested in weak gravitational fields, while its predictions in the
strong field regime have only recently being put to test.
Astrophysical black holes are ideal laboratories for testing
general relativity in the strong field regime and a number of
theoretical reasonings point to the possibility that the spacetime
metric around these objects can present macroscopic deviations
from the predictions of Einstein’s gravity(see, for instance,
Dvali & Gomez 2013; Giddings & Psaltis 2018; Carballo-
Rubio et al. 2020).

In four-dimensional general relativity, uncharged black holes
are relatively simple systems. They are described by the Kerr
solution (Kerr 1963) and are completely specified by only two
parameters, representing, respectively, the mass M and the spin
angular momentum J of the black hole. This is the well-known
conclusion of the no-hair theorems, and it holds under specific
assumptions (Carter 1971; Robinson 1975; Chruściel et al.
2012). It is also quite remarkable that the spacetime metric
around an astrophysical black hole formed from the complete
collapse of a progenitor body should be well approximated by
the simple Kerr solution. For example, the presence of an
accretion disk or of a nearby star has a very small impact on the
near horizon metric and can normally be ignored (Bambi et al.
2014; Bambi 2018). The search for possible deviations from
the Kerr geometry in the strong gravity region of an
astrophysical black hole can thus be a tool to constrain and
find new physics.

The Kerr black hole hypothesis can be tested by studying the
properties of the electromagnetic radiation emitted by material
orbiting a black hole (Johannsen 2016; Bambi 2017; Krawc-
zynski 2018; Zhou et al. 2019b). Among all the electro-
magnetic techniques for testing the near horizon region of black

holes, X-ray reflection spectroscopy (Fabian et al. 1989;
Brenneman & Reynolds 2006; Reynolds 2014) is the most
mature one and the only one that can currently provide
quantitative constraints on the black hole strong gravity
region(see, for instance, Cao et al. 2018; Tripathi et al.
2019a, 2019b; Zhang et al. 2019a). Like any astrophysical
measurement, even for X-ray reflection spectroscopy it is
crucial to have a sufficiently sophisticated astrophysical model
in order to limit the modeling systematic uncertainties.
X-ray reflection spectroscopy refers to the analysis of the

features of the reflection spectrum of accretion disks. Our
system is a central black hole accreting from a geometrically
thin and optically thick disk, with the inner edge of the disk at
the innermost stable circular orbit (ISCO). Similar disks are
thought to form when the source is in the thermal state with an
accretion luminosity between a few percent and about 30% of
its Eddington limit (McClintock et al. 2006; Penna et al. 2010;
Steiner et al. 2010). The gas of the accretion disk is in local
thermal equilibrium and at any point on the surface of the disk
the emission is like that of a blackbody. The spectrum of the
whole disk is a multi-temperature blackbody-like spectrum
because the temperature increases as the gas falls into the
gravitational well of the black hole (Page & Thorne 1974;
Zhang et al. 1997). The thermal emission of the accretion disk
normally peaks in the soft X-ray band (0.1–1 keV) for stellar-
mass black holes and in the optical/UV band (1–100 eV) for
supermassive ones, as the disk temperature scales as M−0.25

(Zhang et al. 1997). The “corona” is some hotter (∼100 keV),
usually compact and optically thin, gas near the black hole.
Thermal photons from the disk can inverse Compton scatter off
free electrons in the corona, producing a power-law component
with an exponential cutoff in the X-ray spectrum of the black
hole (Sunyaev & Truemper 1979). The Comptonized photons
can illuminate the accretion disk, producing the reflection
component (George & Fabian 1991; Ross & Fabian 2005;
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García et al. 2013). The latter is characterized by fluorescent
emission lines below 8keV, notably the iron Kα complex at
6.4–6.79keV, depending on the ionization of iron ions, and the
so-called Compton hump peaking at 20–30keV.

A relativistic reflection model relies on a model to calculate
the reflection spectrum at every emission point on the disk
(assuming Einstein’s equivalence principle holds, these calcu-
lations only involve atomic physics) as well as on a disk-corona
model6 and a spacetime metric, which are both necessary to
calculate the reflection spectrum at the detection point far from
the source. All these pieces have a number of parameters and a
variation in the value of these model parameters can have an
impact on the predicted reflection spectrum of an accreting
black hole. Fitting observational data with the theoretical
model, we can infer the value of the model parameters and thus
the properties of the system. If we employ a spacetime metric
with some parameters quantifying deviations from the Kerr
spacetime, we can attempt to constrain possible deviations from
the Kerr metric by fitting X-ray data of some reflection-
dominated source with our model.

RELXILL_NK is a relativistic reflection model to test the Kerr
black hole hypothesis (Bambi et al. 2017; Abdikamalov et al.
2019). It is an extension of the RELXILL package (Dauser et al.
2013; García et al. 2013, 2014) to non-Kerr spacetimes. As in
RELXILL, in RELXILL_NK the reflection spectrum in the rest
frame of the disk is modeled by XILLVER, the accreting matter
is described by an infinitesimally thin Novikov–Thorne disk
(Novikov & Thorne 1973; Page & Thorne 1974), and the disk’s
intensity profile is either described by a broken power law or is
the profile generated by a corona with lamppost geometry.
RELXILL_NK differs from RELXILL only in the spacetime
metric. The main version of RELXILL_NK employs the
Johannsen metric (Johannsen 2013), which is not an exact
solution of some specific gravity model but a parametric black
hole spacetime. The Johannsen metric has an infinite number of
“deformation parameters” that quantify deviations from the
Kerr background. With the spirit of a null experiment, we can
fit the reflection spectrum of a source with RELXILL_NK,
determine the values of the deformation parameters, and thus
verify if they are consistent with the hypothesis that the metric
around the source is described by the Kerr solution as required
by general relativity. As it has been constructed, RELXILL_NK
can easily employ any stationary, axisymmetric, and asympto-
tically flat metric in analytic form(see, e.g., Zhou et al. 2018;
Nampalliwar et al. 2019; Tripathi et al. 2020; Zhou et al.
2020a).

Like in any astrophysical measurement, even for the tests of
the Kerr metric with RELXILL_NK, it is crucial to limit the
systematic uncertainties. Otherwise, in the presence of high-
quality data, we could obtain precise but inaccurate measure-
ments of the spacetime metric around an accreting black hole
and our analysis may find deviations from the Kerr solution
that, actually, are due to systematic uncertainties. Among all
the systematic uncertainties, modeling uncertainties are nor-
mally the dominant ones. RELXILL_NK has a number of
modeling uncertainties, ranging from simplifications in the
nonrelativistic reflection model and in the disk-corona model to
relativistic effects not taken into account(see, for instance, the
discussion in Liu et al. 2019; Zhou et al. 2020b).

All the available relativistic reflection models assume that
the black hole accretion disk is geometrically thin and that there
is no emission of radiation inside the inner edge of the disk. For
example, if we apply these models to sources accreting near
their Eddington limit, the spin parameter can be easily
overestimated (Riaz et al. 2020a, 2020b). Moreover, the
accretion disk is always approximated as infinitesimally thin.
For a real accretion disk, we should expect that the disk has a
finite thickness and that the latter increases as the mass
accretion rate increases. Employing a model with an infinite-
simally thin accretion disk inevitably leads to modeling bias in
the final measurements of some model parameters. The impact
of such a simplification has been ignored for a long time and
only recently Taylor & Reynolds (2018a) have presented a
relativistic reflection model in which the accretion disk has a
finite thickness. In the present paper, we implement the
accretion disk model of Taylor & Reynolds (2018a) into
RELLXIL_NK as a step of our program of developing relativistic
reflection models for testing the Kerr black hole hypothesis in
order to try to create a tool for precision tests of general
relativity in the strong field regime. The implementation of a
disk of finite thickness in RELLXIL_NK can be useful to analyze
those sources with thicker accretion disks and providing more
precise measurements of the deformation parameters of the
spacetime.
The paper is organized as follows. In Section 2, we review

the accretion disk geometry proposed in Taylor & Reynolds
(2018a) and, in Section 3, we employ such a disk geometry in
RELXILL_NK. In Section 4, we use the new model with a disk
of finite thickness to analyze a Suzaku observation of the X-ray
binary GRS1915+105 and to explore the impact of the disk
thickness in our tests of the Kerr metric. This Suzaku
observation of GRS1915+105 was studied in Zhang et al.
(2019a) and currently provides one of the most precise
measurements of the deformation parameters of the spacetime,
so it is presumably quite sensitive to systematic uncertainties.
Summary and conclusions are reported in Section 5. In the
Appendix, we briefly review the Johannsen metric and its black
hole parameter space. Throughout the paper, we use units in
which GN=c=1 and a metric with signature (−+++).

2. Accretion Disk

We consider the accretion disk geometry proposed in Taylor
& Reynolds (2018a). We assume that the accretion disk
midplane lies in the θ=π/2 plane and is a radiation-pressure
dominated, geometrically thin, and optically thick disk with a
pressure scale height H defined as (Shakura & Sunyaev 1973)

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ ( )


h r

= -H
M

M

r3

2

1
1 , 1

Edd

ISCO

where ρ=r sin θ is the pseudo-cylindrical radius,  M MEdd is
the Eddington-scaled mass accretion rate, and rISCO is the
ISCO radius, which is also the inner edge of the disk.
The radiative efficiency is η=1−EISCO, where EISCO is the
specific energy of a test particle in the midplane at rISCO. We
assume that the surface of the disk is determined by the half
thickness ( )r =z H2 and that the disk rotates cylindrically
(q = 0), which means that all matter at some pseudo-
cylindrical radius ρ in the disk will have the same orbital
velocity as the material at the same cylindrical radius in the

6 For a “disk-corona model” here we mean a model for the description of the
accretion disk and the assumptions on the coronal geometry to describe the
disk’s intensity profile.
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equatorial plane (θ=π/2). Note that both η and rISCO are
functions of the spacetime metric. Therefore, for given
spacetime parameters, the Eddington ratio  M MEdd can be
used as the disk thickness parameter, since the geometric
thickness increases as we increase  M MEdd. In this paper, for
the sake of simplicity, we will always assume that the
spacetime geometry is described by the simplest version of
the Johannsen metric with the only possible nonvanishing
deformation parameter α13, while all other deformation
parameters will be set to zero (Johannsen 2013); the expression
of such a metric with some basic properties is reported in the
Appendix. Figure 1 illustrates our disks of finite thickness
around Johannsen black holes with different values of spin and
deformation parameters. We note that the pressure scale height
H in Equation (1) is derived from a Newtonian model (Shakura
& Sunyaev 1973). The actual pressure scale height must thus
deviate from ours as we approach the black hole, affecting both
the surface shape and the thickness of the disk. We can expect
that the actual thickness of the disk is smaller for the same
 M MEdd and thus our model may overestimate a bit the effect;
the different surface shape affects the actual value of the
emission angle, and in turn, the Doppler boosting, which has an
impact on the shape of the reflection spectrum. However, here
the spirit is to extend our disk model from infinitesimally thin
to finite thickness, as well as to get a crude estimate of the
impact of the disk thickness on the measurement of the model
parameters. A relativistic disk model would predict a somewhat
different pressure scale height H, but to keep the analysis
simple and facilitate the comparison with Taylor & Reynolds
(2018a) we use their model.

Since the spacetime is stationary and axisymmetric there are
two Killing vectors, namely, a timelike and an azimuthal.
Therefore, there are two conserved quantities: the specific
energy E and the z-component of the specific angular
momentum Lz. The system is fully determined by imposing
that the gas follows nearly geodesic equatorial circular orbits
(Bardeen et al. 1972).
By definition, we can write

( ) = -
+

-
ff f

ff f

t
Eg L g

g g g
, 2

z t

tt t
2

( )f =
+

-
f

ff f

Eg L g

g g g
, 3

t z tt

tt t
2

where the overhead dot is a derivative with respect to the affine
parameter (proper time for a massive particle). Employing
Equations (2) and (3) in the normalization condition for the
4-velocity of massive particles uaua=−1, we get

( ) ( ) q q+ =qqg r g V r E L, ; , , 4rr z
2 2

eff

where the effective potential is

( )= - -
+ +

-
ff f

ff f

V
E g EL g L g

g g g
1

2
, 5

z t z tt

tt t

eff

2 2

2

and the 4-velocity is ( )   q f=u t r, , ,a .
The explicit expressions for the energy and the angular

momentum can be obtained when we impose equatorial
circular orbits. The circularity condition is equivalent to require

Figure 1. Accretion disk profiles for   =M M 0.1Edd , 0.2, and 0.3 in the case of a*=0, 0.8, and 0.998 and α13=−0.35, 0, and 0.35. x- and y-axes in units M=1.
Figure following Taylor & Reynolds (2018b).
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Veff=0 and ∂ Veff/∂ r=0. If we solve for E and Lz, we find

( )
( )= -

+ W

- + W + W

f

f ff

E
g g

g g g2
, 6

tt t

tt t
2

( )
( )=

+ W

- + W + W

f ff

f ff

L
g g

g g g2
, 7z

t

tt t
2

where the angular velocity of equatorial circular geodesics is

( )
( )f

W = =
-  -f f ff

ff

d

dt

g g g g

g
. 8

t r t r tt r r

r

, ,
2

, ,

,

With Ω, we can write t from = -u u 1a
a and considering that

for equatorial circular orbits we have ( ) f= =u t, 0, 0,a

( ) W t1, 0, 0, ,

( )
( ) =

- + W + Wf ff

t
g g g

1

2
. 9

tt t
2

The ISCO radius can be calculated by substituting Equations
(6) and (7) into Equation (5) and solving ¶ ¶ =V r 02

eff
2 for r.

3. Transfer Function

RELLXIL_NK employs the formalism of the transfer function
for geometrically thin and optically thick accretion disks
(Cunningham 1975; Speith et al. 1995; Dauser et al. 2010). The
observed reflection spectrum is the sum of the observed specific
intensities Io(νo) at frequency νo from all parts of the disk. We
can perform this sum by projecting the accretion disk onto a
plane perpendicular to the line of sight of the observer, which
corresponds to the observer’s sky (Cunningham 1975).

The observer is located at spatial infinity ( )= +¥r with
inclination angle ι between the normal to the disk and the line
of sight of the distant observer. We use Cartesian coordinates
(α, β) on the observer’s plane. In terms of the photon
momentum, the celestial coordinates can be written as

( )
( )

( )

( )

( )a b=
-

=
f q

¥ ¥

rp

p

rp

p
lim , lim , 10

r t r t

where p( a)s are the components of the 4-momentum of the
photon with respect to a locally nonrotating reference frame
(Bardeen et al. 1972) and are related to pas through a
coordinate transformation (e.g. pf=p(f)/ sin ι).7 The celestial
coordinates (α, β) and the solid angle on the observer’s sky are
related to each other through dα dβ=D2dΩ, where D is the
distance between the black hole and the observer
(Cunningham 1975).

Using Liouville’s theorem (Lindquist 1966), that states
Iν/ν

3=const., we can obtain the specific intensity as seen by
the observer. The observed flux of an accretion disk can then be
written as

( ) ( ) ( )òn q a b= nF
D

g I r d d
1

, , 11o o 2
3

e ee

where ( )qnI r ,e ee is the local specific intensity, re is the emission
radius, θe is the photon emission angle in the rest frame of the
gas, νe is the photon frequency in the rest frame of the gas, and
g is the redshift factor

( )
( )

( )n
n

= =g
p u

p u
. 12a

a

b
b

o

e

o

e

Here p a is the 4-momentum of a photon, and u a
o and u a

e are
the 4-velocities of the distant observer and the particles of
the gas, respectively. The photon’s 4-momentum is =pa
( )- g

q
gE p p L, , ,r z and the observer is treated as static,

( )=u 1, 0, 0, 0a
o . As we mentioned in Section 2, the
4-velocity of the orbiting material in the accretion disk is

( )= Wu t 1, 0, 0,a
e , where t is given by Equation (9) and Ω is
given by Equation (8). If we plug Equation (8) and
Equation (9) into Equation (12), the redshift factor becomes

( )
( )=

- + W + W

- W
f ff

g
g g g

b

2

1
, 13

tt t
2

where º g gb L Ez , which is a constant of motion along the
photon trajectory.
Since the local spectrum is not isotropic, it is necessary to

calculate the emission angle. The normal of the disk’s surface is
given by

( )∣ ( )( )=
+ qq

q

qq
q qn

g Z g Z
g Z g Z

1
0, , , 0 , 14a

rr
r

rr
r Z r

,
2

,
2

, , ,

where ( )q=Z Z r, is the “surface function” defined as

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )


q r q

h r
= - = - -Z r z H r

M

M

r
, 2 cos

3
1 ,

15
Edd

ISCO

and goes to zero on the surface of the disk. The gradient of Z(r,
θ) gives the normal to the surface. The emission angle is thus
given by

[ ] ( ) q q=
+

+
qq

q

q
g

g Z g Z
Z r Zcos , 16

rr
r

re

,
2

,
2

, ,

where r and θ are the coordinates at the emission point in
the disk.
We can define the relative redshift factor g* at a given radius

of the accretion disk as (Cunningham 1975)

[ ] ( )=
-
-

Îg
g g

g g
0, 1 , 17min

max min

*

where ( )i=g g r ,min min e and ( )i=g g r ,max max e represent,
respectively, the minimum and maximum values of the redshift
factor g for the photons emitted at re and detected on the distant
screen with inclination angle ι.
Introducing the transfer function, we can rewrite the

observed flux as

( ) ( )
( )

( )

( )

ò òn
p i

q=
-

F
D

r g f g r

g g
I r dg dr

1 , ,

1
, ,

18

R

R

o o 2 0

1
e

2
e

e e e e
in

out *

* *
*

where Rout and Rin are, respectively, the outer and inner radii of
the disk. Let us note that we performed a coordinate

7 Note that this is the photon momentum of the incoming photon. There is a
minus sign in the expression of α because α and β are on the observer’s screen,
so the coordinates along that axis are mirrored, e.g., if a photon leaves the disk
with positive pf, i.e., moving to the left from the black hole’s perspective, the
photon will arrive on the observer’s screen on the right.
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transformation from (α, β) to (re, g
*), which means that now

we carry out the integration over the accretion disk. ( )if g r, ,e*
is the transfer function, which is given by

( ) ( ) ( )
( )

( )i
p

a b
= -

¶
¶

f g r
r

g g g
g r

, ,
1

1
,

,
, 19e

e e
* * *

*

where ∣ ( ) ( )∣a b¶ ¶ g r, , e* is the Jacobian.
As noted in Taylor & Reynolds (2018a), the inner part of the

accretion disk will be obscured as  M MEdd increases. For any
unobscured part of the disk, for given values of re and ι, the
transfer function is a closed curve parametrized by g*, except in
the special cases ι=0 and π/2. There is only one point in the
disk for which =g 0* and one point for which =g 1* . There
are two curves that connect these two points, so there are two
branches of the transfer function, say ( )( ) if g r, ,1

e* and
( )( ) if g r, ,2

e* . This allows us to rewrite Equation (18) as

( ) ( )
( )

( )

( )
( )

( )

( )

( )
( )

( )
( )

ò ò

ò ò

n
p i

q

p i
q

=
-

+
-

F
D

r g f g r

g g
I r dg dr

D

r g f g r

g g
I r dg dr

1 , ,

1
,

1 , ,

1
, ,
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1
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2 1
e

e e e
1

e

2 0

1
e

2 2
e

e e e
2

e
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out

in
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*

* *
*

*

* *
*

where ( )qe
1 and ( )qe

2 present the emission angles with relative
redshift factor g* in the branches 1 and 2, respectively. For
values of re for which the disk is obscured, some portion of

( )( ) if g r, ,1
e* and/or ( )( ) if g r, ,2

e* corresponding to the
obscured parts of the disk will be equal to zero (see
Figures 2–4), which means there is no radiation contributing
from this part into the total reflection spectrum. In such cases,
the integration in Equation (20) is performed only on nonzero
values of the transfer function.

3.1. Numerical Method

Here we describe our method for calculating the transfer
function and, following the methodology of RELXILL and
RELXILL_NK, we create a FITS (Flexible Image Transport
System) file that contains the relevant spacetime information.
The structure of the FITS file is similar to that used in
RELXILL_NK for a infinitesimally thin accretion disk and is
fully described in Abdikamalov et al. (2019). There are three
physical parameters describing the black hole spacetime in the
table, namely, the dimensionless black hole spin parameter a*,
the deformation parameter (α13 for the metric considered in this
paper), and the inclination angle ι, structured in a 30 by 30 by
22 grid, respectively. The grid for the black hole spin becomes
denser as the black hole spin increases, since for high values of
a* the ISCO changes faster. The values of the deformation
parameters of the Johannsen metric in the grid are first evenly
distributed in the range [−5, 5]. However, for negative values
of α13 we may have spacetimes with pathological properties;
see the Appendix and the constraint on α13 in Equation (A4).
The lower bound of α13 is thus set to the larger value between
−5 and the bound in Equation (A4). The grid point along the
inclination angles are evenly distributed in 0<cosι<1. For
each combination of a*, α13, and ι, we discretize the accretion
disk into 100 emission radii re. For every emission radius, the
transfer functions, f, and emission angles, θe, are tabulated at 40
equally spaced values of g* on each branch of the transfer
function.

As in Abdikamalov et al. (2019), a general relativistic ray-
tracing code is used to compute the necessary parameters for
the FITS file, namely, the redshift factor, emission angle, and
the Jacobian. The ray-tracing code calculates the trajectories of
photons in the Johannsen metric from the black hole accretion
disk to a distant observer. The code follows the method
described in Psaltis & Johannsen (2012) and is a modified
version of the one used in Abdikamalov et al. (2019),
Ayzenberg & Yunes (2018), Gott et al. (2019). Since it is a
stationary and axisymmetric spacetime, the Johannsen metric
has a conserved energy E and a conserved angular momentum
Lz. Their relation to the 4-momentum of a test particle,
pt=−E and pf=Lz, leads to two first-order differential
equations shown in Equations (2) and(3). Rewriting these two
equations in terms of the impact parameter b≡Lz/E and the
normalized affine parameter l l¢ º E , we obtain
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The second-order geodesic equations for a generic axisym-
metric metric describe the evolution of the r- and θ-components
of the photon’s position as
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where Gbc
a indicate the Christoffel symbols of the metric.

A coordinate system and reference frame are chosen in such
a way that the black hole is located at the origin and the black
hole spin angular momentum is along the z-axis. We set M=1
in what follows and in the code, since the reflection spectrum
does not directly depend on the black hole mass M. The
observer screen is located far from the black hole at a distance
of D=108, with azimuthal angle θ=ι and polar angle f=0.
The screen uses the polar coordinates rscr and fscr, and their
relation to the celestial coordinates of Equation (10) are
a f= r cosscr scr and b f= r sinscr scr.

The code solves the system of equations—
Equations (21)–(24)—backwards in time. Each photon has an
initial position on the screen and an initial 4-momentum
perpendicular to the screen. In the Boyer–Lindquist coordinates
of the black hole spacetime, the initial position and
4-momentum of the photon are given by

( ) ( )a b= + +r D , 25i
2 2 2 1 2
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The expression for ( )l¢dt d i is obtained by requiring that the
norm of the photon 4-momentum vanishes. The impact
parameter b is a conserved quantity used in Equations (21)
and (22), calculated from the initial conditions.
Our algorithm adaptively searches for the photons that hit the

surface of the accretion disk,i.e.the z(re) surface, at the 100
disk emission radii re to within a precision of ∼10−7 varying
rscr and fscr. For each emission radius we first shoot 10
photons, from which we register preliminary gmin and gmax.
Then the actual redshift extremas are found by shifting fscr
from these preliminary extremas with an adaptive step-size.
Afterwards we search for 80 different photons, 40 in each

Figure 2. Examples of transfer functions at three different radii in Kerr spacetime with spin parameter a*=0.5 and three different viewing angles (ι=20°, 45°, and
70°, respectively left, central, and right panels). The transfer function of an infinitesimally thin disk (   =M M 0Edd , blue curves) is compared with those of disks of
black holes accreting at 10% (orange curves), 20% (green curves), and 30% (black curves) of the Eddington limit.
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branch of the transfer function, that correspond to equally
distributed values of g*ä[0,1]. The photons are split into two
branches according to

( )f f f f f f< < > >and 32scr
min

scr scr
max

scr
min

scr scr
max

where fscr
min and fscr

max are the photons with gmin and gmax,
respectively. When searching for photons at a disk emission
radius re, we divide photons into real and imaginary ones.
Imaginary photons are those that cross the disk several times
before landing on the target ring of the disk. Similarly, a real
photon does not cross the disk before landing on the target
radius. This separation helps to distinguish photons originating
from obscured and unobscured parts of the disk. Therefore,
imaginary photons originate from the obscured part of the disk
that we cannot see.

For each of these photons, we calculate the redshift factor g,
Equation (12), emission angle θe, Equation (16), and Jacobian
∣ ( ) ( )∣a b¶ ¶ g r, , e* . The latter is calculated by using
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33

p

e
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e e*

where p is the number of the branch (1 for branch 1 and 2 for
branch 2). The introduction of imaginary photons avoids the
zero values of the Jacobian, hence, the zero values of the
transfer function. We attribute a negative sign to them because
the negative transfer function allows us to leave unchanged
the standard interpolation scheme used in RELXILL_NK. We set
negative values of the transfer function to zero only after the
final interpolation in the model. The third term on the right-
hand side is computed using an adaptive algorithm that, when
solving the geodesic equations, searches for two photons that
have g±Δg for the given emission radius re, where g is the
initial redshift factor of the original and Δg<10−6. For
re±Δr, the code uses adjacent photons from two neighboring
emission rings, thus, Δr is the distance between these photons.
The derivatives are then calculated from the emission radius,
redshift factor, and initial coordinates of these four photons in a
separate code, as the second term on the right-hand side of
Equation (33).
Finally, we use a separate script to process all photons and

create the FITS file for a specific value of  M MEdd. First, the
script calculates the Jacobian and then generates a FITS file
containing the values of 100 emission radii re, corresponding

Figure 3. As in Figure 2 in Kerr spacetime with spin parameter a*=0.9.
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minimum and maximum redshift values (gmin and gmax),
transfer functions, and emission angles θe, for the full
combination of dimensionless spin a*, deformation parameter
α13, and inclination angle ι.

3.2. Impact of Disk Thickness on the Iron Lines

Figures 5–7 show iron line profiles for different values of a*,
α13, ι, and  M MEdd. All calculations assume that the energy of
the line in the rest frame of the gas is E=6.4 keV and that the
intensity profile of the disk is described by a power law with
emissivity index q=3, i.e., Ie ∝ρ−3. Here the intensity
profile is described using the coordinate ρ, and not r, because
such a choice guarantees a one-to-one correspondence between
every value of ρ and every point of the surface of the disk
(modulo the cylindrical symmetry of the system). At a
qualitative level, we can say that the impact of the thickness
of the disk on the iron line profile is weak for ι=20° and 45°
(Figures 5 and 6), while it is a bit larger for ι=70° (Figure 7).
For a* and α13 there is not a clear trend: generally speaking, if
the ISCO radius is closer to the black hole, the gravitational
field is stronger, and we can expect that small variations in the
exact emission point has a larger impact on the shape of the

iron line profile; however, when the ISCO radius is closer to the
black hole, η is typically higher, making the disk thinner for the
same value of  M MEdd, thus producing the opposite effect with
smaller difference with respect to an infinitesimally thin disk.
In Figure 7, we see a peaky feature in some iron line profiles

for disks of finite thickness, while such a feature is never
present in the case of infinitesimally thin disks. It is not a
numerical artifact but the result of a combination of the disk
self-shadowing, namely, the fact that a disk of finite thickness
can obscure a portion of the very inner part of the disk and
relativistic effects. We note that the effect of self-shadowing
shows up above some critical value of the viewing angle
(which depends on the black hole spin, deformation parameter,
mass accretion rate, and emissivity profile) and the effect is
more and more important as the viewing angle increases, as
both the self-shadowing and the Doppler boosting increase. In
the Kerr spacetime (α13=0) we see a peaky feature in
Figure 7, where ι=70°, and for a*=0.9. When a*=0.998,
the peaky feature disappears because the radiative efficiency η
is significantly higher and the disk is thus thinner, see
Equation (1) and Figure 1. Taylor & Reynolds (2018a) do
not find such a peaky feature in their paper because their plots
show iron line profiles observed with viewing angles up to 60°,

Figure 4. As in Figure 2 in Kerr spacetime with spin parameter a*=0.998.
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while Figure 7 is for 70°. Moreover, the feature depends also
on the disk intensity profile: here we use a power-law profile,
while Taylor & Reynolds (2018a) employ a lamppost
emissivity profile.

To illustrate the origin of the peaky feature, in Figure 8 we
show the iron line profile contributions from a few inner annuli
of the accretion disk for   =M M 0Edd (left panel) and
  =M M 0.3Edd (right panel) in the case a*=0.9, ι=70°,
and q=3. As can be seen from the comparison of the two
panels, the spectra of the inner annuli (rISCO<ρ<3 M) is
significantly different in the two iron line profiles, while the
spectra of outer annuli are quite similar. The spectra of annuli
with r>10 M are not shown in Figure 8 because the
difference is negligible. While the spectrum of the inner
annulus of the infinitesimally thin disk has a broad peak, that of
the disk with finite thickness has a sharp cutoff at high energy
due to the obscuration of the disk. The Doppler effect and light
bending are also different as the gas keeps the same angular
velocity but leaves the equatorial plane of the infinitesimally
thin disk; indeed, the emission angle θe changes and the inner
part of the accretion disk behind the black hole becomes more
face on as the thickness of the disk increases, affecting the
Doppler boosting.

Fast-rotating black holes observed from large viewing angles
are the most interesting and suitable sources for testing the Kerr
metric, since these two properties maximize the relativistic
effects in the reflection spectrum. As we have seen in this
section, these turn out to be even the sources with the reflection
spectra more affected by the thickness of the disk. It is thus
important to further investigate the features of their spectra.
In particular, a relevant parameter is the emissivity profile. In
Figures 5–7, we have calculated iron line profiles employing an
emissivity index q=3. In the analysis of real data, it is
common to find much higher emissivity indices, especially for
the inner part of the disk (an example is presented in the next
section). If we increase the value of q, we increase the fraction
of radiation emitted from the very inner part of the accretion
disk, enhancing the impact of the thickness of the disk on the
iron line shape.
Figure 9 shows iron line shapes for a spin parameter

a*=0.9, a viewing angle ι=70° and 80°, and an emissivity
index q=10 for infinitesimally thin disks and disks of finite
thickness. Figure 10 is as Figure 9 but for a*=0.998. We note
that employing q=6 does not change the line shapes much,
while there are clear differences for lower values of q. While
the effects of a*, α13, ι, q, and  M MEdd mix together in a quite

Figure 5. Examples of iron line profiles in the Johannsen metric for a spin parameter a*=0, 0.9, and 0.998, a deformation parameter α13=−0.35, 0, 0.35, and an
inclination angle ι=20°. The iron line profile for an infinitesimally thin disk (   =M M 0Edd , blue profiles) is compared with those for black holes accreting at 10%
(orange profiles), 20% (green profiles), and 30% (black profiles) of the Eddington limit.
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complicated way, we can see that the main impact of the disk
thickness is to move the peak of the iron line shape to lower
energies. This is again the effect of the obscuration of the inner
part of the accretion disk and of the different Doppler boosting
discussed a few paragraphs above and related to the peaky
feature of the disk with finite thickness. Enhancing the fraction
of radiation emitted from the very inner part of the accretion
disk by increasing the value of q leads to increase the effect of
the thickness of the disk on the shape of the iron line.

4. Impact of the Disk Thickness on Tests of the Kerr Black
Hole Hypothesis

With the FITS file for a specific value of  M MEdd, we can
test the new model with real data in order to estimate the
systematic uncertainties of the model with an infinitesimally
thin disk and the impact of the disk thickness on our tests of the
Kerr black hole hypothesis. For a preliminary study to present
in this paper, we consider the 2007 Suzaku observation of
GRS1915+105, which was analyzed for the first time by
Blum et al. (2009) with a Kerr model and was analyzed by our
group in Zhang et al. (2019a) to test the Kerr metric with
RELXILL_NK. These data provide, as of now, one of the most
stringent constraints on α13 among all the observations and
sources analyzed so far with RELXILL_NK, and they are thus

suitable to test the impact of the disk thickness on the
measurement of the deformation parameter α13. Note that
during the 2007 Suzaku observation, the Eddington-scaled
accretion luminosity of the source was about 0.2,8 which is a
high value but still in the range expected for a geometrically
thin accretion disk with inner edge at the ISCO radius.
The observation, data reduction, and choice of the model has

already been discussed in Zhang et al. (2019a). Here we just
point out the main properties of this observation and this
source. GRS1915+105 is quite a bright stellar-mass black
hole. Previous analyses in Kerr and Johannsen backgrounds
suggest that the inclination angle of the disk is high (around
70°) and the inner edge of the accretion disk is very close to the
black hole. A high value of the inclination angle tends to
maximize the relativistic effects, in particular the light bending.
Moreover, as we have seen at the end of the previous section, it
seems that a high inclination angle maximizes the impact of the
thickness of the accretion disk, which is indeed what we want
to explore here. Concerning the position of the inner edge of
the accretion disk, we meet two opposing effects. If the inner

Figure 6. As in Figure 5 for a viewing angle ι=45°.

8 Blum et al. (2009) estimate the Eddington-scaled accretion luminosity of the
source∼0.3, but they assume the black hole mass M=14±4 Me (Greiner
et al. 2001) and distance D∼12 kpc (Fender & Belloni 2004). Here we use the
more recent measurements reported in Reid et al. (2014): = -

+M 12.4 1.8
2.0 Me

and = -
+D 8.6 1.6

2.0 kpc.

10

The Astrophysical Journal, 899:80 (17pp), 2020 August 10 Abdikamalov et al.



edge is closer to the black hole, the signature of the strong
gravity effects in the reflection spectrum are larger, and it may
be possible that small differences in the location of the
emission can have an impact on the reflection spectrum. Note

also that in our tests of the Kerr black hole hypothesis we
typically prefer to analyze sources with an inner edge of the
accretion disk very close to the compact object because this
helps to break the parameter degeneracy and constrain the

Figure 7. As in Figure 5 for a viewing angle ι=70°.

Figure 8. Total iron line profile and contributions from a few inner annuli of an infinitesimally thin accretion disk (left panel) and of an accretion disk of finite
thickness with   =M M 0.3Edd (right panel). The annuli are: r< <r 3ISCO M (blue curves), 3M<ρ<5 M (yellow curves), 5M<ρ<7 M (green curves), and
7M<ρ<10 M (red curves). The spacetime is described by the Kerr metric with a*=0.9, the viewing angle is ι=70°, and the emissivity index of the intensity
profile is q=3.
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deformation parameter; if the inner edge of the accretion disk is
far from the source, simultaneous measurements of the black
hole spin and the deformation parameter are difficult or
impossible. On the contrary, an inner edge of the accretion disk
very close to the black hole is typically accompanied by a high
value of the radiative efficiency η, which makes the disk
thinner via Equation (1). The difference with the infinitesimally
thin disk should thus be smaller.

The analysis of the 2007 Suzaku observation of GRS1915
+105 reported in Zhang et al. (2019a) provides, at the moment,
one of the most stringent and robust tests of the Kerr metric
with RELXILL_NK. Suzaku observed GRS1915+105 on
27May2007 (obs. ID 402071010), when the source was in
the low-hard state, for approximately 117ks. After all
efficiencies and screening, the net exposure time is 29ks for
the XIS1 camera and 53ks for HXD/PIN, while the other XIS
units either were turned off or run in a special timing mode. As
shown in Zhang et al. (2019a), the hardness of the source was
quite stable in the 2007 Suzaku observation. The spectrum is
clearly dominated by a strong relativistic reflection component,
with a clear broad iron line around 6keV and a Compton hump
peaking around 20keV. We do not see any thermal component
from the disk, which is also welcome because the nonrelati-
vistic reflection model employed is XILLVER, which should
only be used for cold accretion disks. The quality of the Suzaku
data is very good and we have both a high energy resolution

near the iron line with the XIS1 instrument and a broad energy
band when we add the PIN data.
As discussed in Zhang et al. (2019a), the XSPEC model

TBABS×RELXILL_NK fits the data well and it seems that we do
not need other components.9 TBABS describes the Galactic
absorption (Wilms et al. 2000), and the hydrogen column
density is left free in all fits. RELXILL_NK is our relativistic
reflection spectrum in the Johannsen metric with nonvanishing
deformation parameter α13, and we consider two models: the
infinitesimally thin disk (   =M M 0Edd ) and the model with
  =M M 0.2Edd . The best-fit values for the two models are
reported in Table 1, where the parameter uncertainties
correspond to the 90% confidence level. Best-fit models and
ratio plots are shown in Figure 11. As our interest here is in the
impact of the disk thickness on tests of the Kerr metric, we also
show the constraints on the black hole spin and the deformation
parameter in Figure 12 after marginalization over all other free
parameters.
The fit of the model with a disk of finite thickness is only a

bit better, but not significantly better than the model with an
infinitesimally thin disk ( cD = 8.232 ). The measurements of
most model parameters are consistent; in particular, there is no
difference in the final constraint on the deformation parameter

Figure 9. Examples of iron line profiles in the Johannsen metric for a spin parameter a*=0.9, a deformation parameter α13=−0.35, 0, 0.35, an inclination angle
ι=70° and 80°, and an emissivity profile q=10. The iron line profile for an infinitesimally thin disk (   =M M 0Edd , blue profiles) is compared with those for black
holes accreting at 10% (orange profiles), 20% (green profiles), and 30% (black profiles) of the Eddington limit.

9 Note that if we add a nonrelativistic reflection component to describe some
possible cooler material at larger distances, we find that its normalization would
be very low and we would not improve the quality of the fit.
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α13. Both models require a very high spin parameter; the two
measurements are slightly different if we believe in the
statistical uncertainty of the fits, but that is indeed too low to
expect that systematic uncertainties are not dominant. The
model parameter presenting some difference in the two
measurements is the disk inclination angle, and the model
with a disk of finite thickness requires a very high value of ι.

In both models, we find a very high inner emissivity index
and a very low outer emissivity index. We interpret this result
as a possible indication of a corona with a ring-like
axisymmetry geometry located just above the accretion disk,
which actually would be fitted better with a twice broken power

law with very steep emissivity profile over the inner region,
then flattening in the intermediate region, and falling off
approximately as r−3 over the outer region (Miniutti et al.
2003; Wilkins & Fabian 2011; Wilkins & Gallo 2015b). Such a
coronal geometry above the accretion disk would predict the
Comptonization of the relativistic reflection component that,
when not taken into account in the XSPEC model, would lead
to residuals similar to those shown in the lower panels of
Figure 11 (Wilkins & Gallo 2015a). We note that other authors
have interpreted very high inner emissivity indices from the fit
as a deficiency of the model, in particular of the assumption of
a constant ionization profile of the disk (Kammoun et al. 2019).

Figure 10. As in Figure 9 for a spin parameter a*=0.998.

Figure 11. Best-fit models (top quadrants) and data to best-fit model ratios (bottom quadrants) for the models with an infinitesimally thin disk (left panel) and finite
disk thickness with   =M M 0.2Edd (right panel). The black and red crosses are, respectively, for XIS and PIN data.
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Such an interpretation would presumably lead to a different
measurement of the spin and of the deformation parameter
(Shreeram & Ingram 2020), and we plan to leave the study of
such a possibility and its impact in the constraint on α13 to
future work.

Since the model TBABS×RELXILL_NK has 13free para-
meters in our fits and the χ2 minimizing algorithm of XSPEC
has often problems to reliably find a minimum in complicated
χ2 landscapes, we perform a Markov Chain Monte Carlo
(MCMC) analysis of the case with   =M M 0.2Edd using the

Python script by Jeremy Sanders, which uses EMCEE (MCMC
Ensemble sampler implementing the Goodman & Weare
algorithm).10 We use 200walkers of 10,000iterations, after
burning the initial 1000 iterations (which is around 100 times
the autocorrelation length). Figure 13 shows the corner plot
with all the one- and two-dimensional projections of the
posterior probability distributions of all the free parameters (we
only omit the normalization of RELXILL_NK). The two-
dimensional projections report the 1, 2, and 3σ confidence
level limits for two relevant parameters. In Figure 14 we zoom
into the spin parameter versus deformation parameter panel of
Figure 13. We note that the results of the MCMC analysis is
consistent with the results obtained with XSPEC; in particular,
the constraints in Figure 14 are very similar to the constraints in
the right panel in Figure 12.

5. Concluding Remarks

The possibility of performing precision tests of general
relativity in the strong gravity region around black holes using
X-ray reflection spectroscopy is determined by our capability
of limiting the systematic uncertainties (broadly defined) in the
final measurement of possible deviations from the Kerr
background. The work presented in this paper is a step of
our program to develop a sufficiently sophisticated relativistic
reflection model to perform precision tests of the Kerr black
hole hypothesis.
In current relativistic reflection models, the accretion disk is

assumed to be infinitesimally thin, while in reality it has a
finite thickness, which should increase as the mass accretion
rate increases. Here we have presented an extension of
RELXILL_NK in which the disk has a finite thickness by
implementing the disk geometry proposed in Taylor &
Reynolds (2018a). With the current structure of the model,
we cannot add the mass accretion rate as a new model
parameter capable of varying over some range, as this would
make the FITS file too large. We have thus constructed FITS
files for specific values of the mass accretion rate of the source.
With our current version of the ray-tracing code, the
construction of a single FITS file for a specific value of
 M MEdd requires about 2 weeks on a computer cluster with
about 250cores. The size of the FITS file is about 1.3GB.

Table 1
Best-fit Values from the Analysis of the 2007 Suzaku Sbservation of GRS
1915+105 RELXILL_NK Employing an Infinitesimally Thin Disk (Left

Column) and a Disk with Finite Thickness for ˙ ˙/ =M M 0.2Edd

Infinitesimally Thin Disk Disk with Finite Thickness

TBABS

N 10H
22 cm−2

-
+7.97 0.09

0.07
-
+7.867 0.024

0.022

RELXILL_NK
qin 10.0−0.6 -

+8.55 1.01
0.13

qout 0.00+0.21 0.0+1.1

Rbr [M] -
+6.03 0.44

0.18
-
+7.26 0.11

3.62

i [deg] -
+73.7 0.6

1.6
-
+79.6 0.5

3.3

a* -
+0.9897 0.0009

0.0015 ( )
-0.9950 0.0003
P

α13 - -
+0.09 0.10

0.10
-
+0.00 0.15

0.05

 M MEdd 0a 0.2a

xlog -
+2.77 0.04

0.03
-
+2.699 0.010

0.011

AFe -
+0.60 0.06

0.07
-
+0.737 0.032

0.021

Γ -
+2.199 0.016

0.015
-
+2.2120 0.0016

0.0059

Ecut [keV] -
+71.2 1.6

3.3
-
+69.6 1.1

0.5

Rf -
+0.48 0.03

0.09
-
+0.461 0.073

0.006

norm -
+0.0429 0.0025

0.0004
-
+0.04626 0.0044

0.0005

c n2 2314.75/2208 2306.52/2208
=1.04835 =1.04462

Note. The reported uncertainties correspond to the 90% confidence level for
one relevant parameter ( cD = 2.712 ).
a Indicates that the parameter is frozen in the fit. Note that qin and qout are
allowed to vary in the range [0, 10] and the best fits are stuck at the boundary
with the exception of qin for the model with   =M M 0.2Edd . The maximum
value of the spin parameter allowed by the model is 0.998, and for
  =M M 0.2Edd the 90% confidence level reaches the boundary.

Figure 12. Constraints on the spin parameter a* and on the deformation parameter α13 from the 2007 Suzaku data of the X-ray binary GRS1915+105. In the left
panel, we analyzed the data with the current version of RELXILL_NK with an infinitesimally thin disk. In the right panel, we used the new version of RELXILL_NK with
  =M M 0.2Edd . The red, green, and blue curves mark, respectively, the 68%, 90%, and 99% confidence level contours for two relevant parameters (Δχ2=2.30,
4.61, and 9.21, respectively). The thick horizontal line marks the Kerr solution α13=0.

10 Available on github at https://github.com/jeremysanders/xspec_emcee.
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In Section 4 we have analyzed the 2007 Suzaku observation
of GRS1915+105 with RELXILL_NK assuming either that the
accretion disk is infinitesimally thin and that the disk has a
finite thickness with   =M M 0.2Edd , which is the estimate
inferred from the Suzaku observation and the known values of
mass and distance of the source. Our analysis does not show a
significant difference in the estimate of the model parameters,
and in particular, in the constraint on the deformation parameter
α13. We should stress that we have analyzed very high-quality
data: GRS1915+105 is a bright source and Suzaku has both a
good energy resolution near the iron line (which is the most
informative part of the reflection spectrum concerning the

spacetime metric) and high energy data to fit the Compton
hump. The source is also characterized by a high disk
inclination angle, which should maximize the impact of the
thickness of the disk. As of now, the analysis of these data
provides one of the most stringent constraints on the Kerr
metric with RELXILL_NK, so this motivated us to use the new
model with this observation. It is possible that the weak impact
of the disk thickness on the analysis of this source is related to
the fact that the estimate of the radiative efficiency η is high,
which makes the disk quite thin even if   =M M 0.2Edd .
However, this is always the case for sources used to test the
Kerr metric, because for low values of η the signature of the

Figure 13. Corner plot for all the free parameter pairs in the model with   =M M 0.2Edd after the MCMC run.
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background metric on the reflection spectrum is weak and we
cannot constrain the deformation parameter due to parameter
degeneracy.

Last, we note that there is no disagreement between our
results and those found in Taylor & Reynolds (2018a), but a
comparison is not straightforward. In our model the intensity
profile is described a broken power law, while Taylor &
Reynolds (2018a) consider the profile generated by a point-like
lamppost corona. Taylor & Reynolds (2018a) find that the disk
thickness leads to underestimating the black hole spin
parameter when the data are fitted with a infinitesimally thin
disk model, but their input parameter is a*=0.9, so η is lower
and the thickness of the disk is higher. Moreover, they assume
a point-like lamppost corona with height h=3M: for such a
low value of h, the difference of the intensity profile between a
disk of finite thickness and an infinitesimally thin disk is quite
pronounced. In our case, since we have analyzed a source with
high η, the thickness of the disk is lower and probably for this
reason we do not see any clear modeling bias in the
measurements of the model parameters. Note that the purpose
of implementing a disk with finite thickness in RELXILL_NK is
not primarily to fit sources with thicker disk. Our goal is to get
stringent constraints on the deformation parameters and for this
reason we have analyzed the Suzaku observation of GRS1915
+105, as it represents one of the most stringent tests of the Kerr
metric.

We want to stress that the thickness of the disk is one of the
current common model simplifications among many others,
and presumably not the most crucial one. The present extension
of RELXILL_NK implementing a disk with finite thickness does
not aim to perform generic tests of the Kerr metric using X-ray
reflection spectroscopy. It is meant to arrive at an estimate of
the impact of the disk thickness on our capabilities of testing
the Kerr black hole hypothesis. The model has still a number of
simplifications that inevitably lead to modeling bias currently
not well under control. Uncertainties in the coronal geometry,

simplifications in the calculations of the reflection spectrum in
the rest frame of the accreting gas on the disk, impact of
magnetic fields on the disk structure, etc. are all effects that
need to be investigated in order to improve the capability of
X-ray reflection spectroscopy to study accreting black holes.
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Appendix
Johannsen Metric

In Boyer–Lindquist-like coordinates, the line element of the
Johannsen metric reads (Johannsen 2013)
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where M is the black hole mass, =a J M , J is the black hole
spin angular momentum, S̃ = S = f , and
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where {òn}, {α1n}, {α2n}, and {α5n} are four infinite sets of
deformation parameters without constraints from the New-
tonian limit and solar system experiments. The leading order
deformation parameters are thus ò3, α13, α22, and α52. In this
paper, we have only considered the deformation parameter α13

because it has the strongest impact on the shape of the
reflection spectrum, but all our results can be easily extended to
metrics with other nonvanishing deformation parameters as
well as, more in general, to any stationary, axisymmetric, and
asymptotically flat black hole spacetime.
In order to avoid spacetimes with pathological properties, we

must impose some constraints on the values of a* and α13. As

Figure 14. 1-, 2-, and 3σ confidence contours for the spin parameter a* and the
deformation parameter α13 in the model with   =M M 0.2Edd after the
MCMC run.
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in the case of the Kerr spacetime, we must impose that
∣ ∣ a 1;* for ∣ ∣ >a 1* there is no event horizon and the solution
describes the spacetime of a naked singularity. As discussed in
Tripathi et al. (2018), we have to impose the following
constraint on α13:

( ) ( )a > - + - a
1

2
1 1 . A413

2 4
*
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