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ABSTRACT
When fast radio burst (FRB) waves propagate through the local (�1 pc) environment of the
FRB source, electrons in the plasma undergo large-amplitude oscillations. The finite-amplitude
effects cause the effective plasma frequency and cyclotron frequency to be dependent on the
wave strength. The dispersion measure and rotation measure should therefore vary slightly
from burst to burst for a repeating source, depending on the luminosity and frequency of the
individual burst. Furthermore, free–free absorption of strong waves is suppressed due to the
accelerated electrons’ reduced energy exchange in Coulomb collisions. This allows bright
low-frequency bursts to propagate through an environment that would be optically thick to
low-amplitude waves. Given a large sample of bursts from a repeating source, it would be
possible to use the deficit of low-frequency and low-luminosity bursts to infer the emission
measure of the local intervening plasma and its distance from the source. Information about
the local environment will shed light on the nature of FRB sources.

Key words: radio continuum: general.

1 IN T RO D U C T I O N

Many bright fast radio bursts (FRBs) with isotropic luminosities
of the order of 1045 erg s−1 or higher were found by recent obser-
vations, e.g. FRB 010724 (Lorimer et al. 2007; Ravi 2019), FRB
160102 (Bhandari et al. 2018), 180817.J1533+42 (CHIME/FRB
Collaboration et al. 2019), 181016 (Farah et al. 2019), 181112
(Prochaska et al. 2019), 190523 (Ravi et al. 2019). Statistical studies
show that the FRB luminosity function possibly extends up to
∼1047 erg s−1 (Lu & Piro 2019). For coherent linearly polarized
waves, the amplitude of the electric field at a distance r is related to
the isotropic luminosity L by

E0 =
(

2L

r2c

)1/2

. (1)

The dimensionless wave strength is defined as (Gunn & Ostriker
1971; Luan & Goldreich 2014)

a = E0e

mωc
= 7.2 × 10−3L

1/2
45 r−1

17 ν−1
9 , (2)

where L = 1045L45 erg s−1 (the fiducial value corresponds to a flux
of 18 Jy GHz at redshift 1), r = 1017r17 cm, ν = 109ν9 Hz is the
wave frequency, and c is the speed of light. The field amplitude
and wave strength are smaller by a factor of

√
2 for a circularly

polarized wave of the same luminosity. In this paper, we explore
some observable signatures of large-amplitude wave propagation.
We use Gaussian CGS units and the widely adopted subscript
notation of Xn ≡ X/10n.

� E-mail: wenbinlu@caltech.edu

2 PRO PAGATI ON O F FI NI TE-AMPLI TUDE
WAV ES

Finite amplitude wave–plasma interactions have been intensively
studied (e.g. Akhiezer & Polovin 1956; Kaw & Dawson 1970;
Max & Perkins 1971, 1972; Ferrari, Massaglia & Dobrowolny
1975; Dobrowolny & Ferrari 1976; Chian 1981; Mourou, Tajima &
Bulanov 2006, and references therein) in the context of pulsars and
high-power pulsed lasers. These studies all restricted themselves
to steady-state periodic solutions. Noerdlinger (1971), Gunn &
Ostriker (1971) investigated the acceleration of individual particles
by a pulse, but did not fully consider the effect of plasma. While
protons stay nearly at rest, electrons’ motion in the longitudinal
direction generates a kinematically important electrostatic wake
field. Here we revisit the calculation, emphasizing certain points
relevant for the propagation of an intense wave packet of finite length
in an electron–ion plasma, for both circular and linear polarizations.
While finishing this paper, we learned of the work of Yang &
Zhang (2020), who investigated the propagation of finite-amplitude
waves (for circular polarization only) and also concluded that the
dispersion measure (DM) of FRBs from the local environment
depends on the wave strength.

We start from the Maxwell equations

∇ · E = 4πe(n − n0), ∇ · B = 0, (3)

∇ × E = −c−1∂t B, ∇ × B = c−1(∂t E + 4πenv), (4)

where n is the electron density, n0 is the constant proton density, e is
the electron charge, and v is the electron speed. A divergence-free
B-field can be written in terms of a vector potential A and the E-field
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can be described by A and the scalar potential V,

B = ∇ × A, E = −c−1∂t A − ∇V . (5)

Adopting Coulomb gauge ∇ · A = 0, we write Gauss’s law in the
form of a Poisson equation

∇2V = −4πe(n − n0), (6)

and Ampere’s law in the form of a wave equation(
c−1∂2

t − c∇2
)

A + ∂t∇V = 4πenv. (7)

In the following, we take the system to be 1D with all variations
only in the z-direction, and consider a transverse plane wave
propagating along the z-axis, e.g. for the linearly polarized case,
E = E0 exp[i(kz − ωt)]. For such a 1D system, the Coulomb gauge
condition implies that A is purely transverse, and longitudinal terms
arise only from the gradient of the scalar potential V. We thus
identify the ∂ t∇V term as the longitudinal (along ẑ) current

∂t∇V = 4πenvz ẑ. (8)

This can be seen by taking the divergence of the Ampere’s law,
which gives

∇ · (4πenv − ∂t∇V ) = 0. (9)

Thus, the wave equation can be decoupled into a longitudinal
component (equation 8) and transverse components(
c−1∂2

t − c∇2
)

A = 4πenv⊥. (10)

It follows that the oscillating part of the vector potential A is purely
transverse. Note that there could be a constant magnetic field in
the plasma, but we ignore it for the moment since the cyclotron
frequency is much smaller than the wave frequency considered
here.

To solve the potentials A and V, we need the electron’s equation
of motion, which is described by the Lagrangian

L = −mc2/γ + e(A · v/c − V ), (11)

where γ ≡ (1 − v2/c2)−1/2 is the Lorentz factor. Since the Lagrangian
does not explicitly depend on x and y (the coordinates in the trans-
verse direction), these two components of the Canonical momentum
p = mu + eA/c (u ≡ γ v is the four-velocity) are conserved. We
consider the case where the amplitude of the electromagnetic wave
slowly ramps up from zero to maximum on a time-scale much
longer than the wavelength. We ignore the initial thermal motion of
the particles and hence set px = py = 0, which means

ux = − e

mc
Ax, uy = − e

mc
Ay. (12)

The z-component of the vector potential is Az = 0 in the absence
of a static magnetic field. Thus, the equation governing the vector
potential (equation 10) becomes

(
c2∂2

z − ∂2
t

)
A = − (

4πen0 − ∂2
z V

) −eA
γm

= ω2
p

γ

(
1 − ∂2

z V

4πen0

)
A, (13)

where we have used the Poisson equation to eliminate n and defined
the plasma frequency ωp =

√
4πe2n0/m. The scalar potential

equation (8) can be rewritten as

∂t∂zV = 4πen0

(
1 − ∂2

z V

4πen0

)
vz. (14)

This can be understood that in the limit ∂2
z V /(4πen0) � 1 (a strong

wake field has not developed yet), the longitudinal electric field ∂zV
grows with time due to charge separation as a result of longitudinal
electron motion vz (since protons are not moving).

We restrict ourselves to the non-relativistic case of a = eA0/(mc2)
� 1, A0 being the amplitude of the vector potential. In this limit,
vz is of the order of O(a2) and the Lorentz factor is approximately
given by ux and uy, i.e.

γ ≈ (
1 + u2

x/c
2 + u2

y/c
2
)1/2 = (

1 + e2A2/m2c4
)1/2

. (15)

The detailed evolution of the scalar potential is complex, but
equation (14) shows that ∂2

z V /4πen0 is at most of the order
of vz. Therefore, as a reasonable approximation, we ignore the
(1 − ∂2

z V /4πen0) factor1 in the wave equation (13) and obtain

(
c2∂2

z − ∂2
t

)
A ≈ ω2

p

(
1 − e2A2

2m2c4

)
A. (16)

A rough, intuitive way of understanding the above result is that
electrons are accelerated by the wave electric field to an averaged
Lorentz factor of 〈γ 〉 and hence the plasma frequency is reduced
by a factor of 〈γ 〉−1/2 due to the relativistic correction to the inertial
mass of the electron.

2.1 Implications

The simplest case is for a circularly polarized wave of amplitude
|A| = A0. Using the dimensionless wave strength a = eA0/(mc2),
the dispersion relation for this case is

ω2 − c2k2 = ω2
p(1 − a2/2), for cir. pol., (17)

in agreement with Akhiezer & Polovin (1956). For linearly polar-
ized polarized wave, since the nonlinear term involves cos 3ψ =
(3cos ψ + cos 3ψ)/4, we adopt the ansatz A = A0(cos ψ +
C cos 3ψ), where ψ = kz − ωt is the phase and |C| � 1 is a
constant. Then, the LHS of the wave equation is(
c2∂2

z − ∂2
t

)
A = (ω2 − c2k2)A0(cos ψ + 9C cos 3ψ). (18)

If we only retain the lowest order terms O(a2) and O(C), the RHS
becomes

ω2
p A0[(1 − 3a2/8) cos ψ + (C − a2/8) cos 3ψ]. (19)

In order for the wave equation to hold for arbitrary phase ψ , the
coefficients of the cos ψ and cos 3ψ terms must be equal, so we
obtain C = −a2/64, and hence the dispersion relation is

ω2 − k2 = ω2
p(1 − 3a2/8), for lin. pol. (20)

The wave develops some small amplitude O(a2) harmonics at fre-
quency 3ω in the transverse direction. The longitudinal oscillation
is given by uz ≈ (e2A2/2m2c3)cos 2ψ , which oscillates at frequency
2ω. Thus, it is a quasi-transverse wave mode (no purely transverse
mode is possible for linear polarization). On the other hand, for
multifrequency propagation, e.g. two modes with ψ i = kiz −ωit (for
i = 1, 2), other than the linear terms cos ψ i, there will be non-linear
O(a2) terms related to cos 3ψ1, cos 2ψ1cos ψ2, cos ψ1cos 2ψ2, and
cos 3ψ2, thus involving frequencies 3ω1, 2ω1 ± ω2, 2ω2 ± ω1, and
3ω2. The non-linear evolution of wave packets with a continuous
Fourier spectrum will be studied in a future work.

1Including, the (1 − ∂2
z V /4πen0) factor will introduce a numerical factor

in front of the e2A2/2m2 term, but our equation (16) captures the non-linear
effects qualitatively.
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3310 W. Lu and E. S. Phinney

Here, we take linear polarization as the fiducial case (circular
polarization gives similar results) and replace the wave strength a
by the isotropic luminosity L and radius r according to equation (2),
and then the dispersion relation can be written as

ω2 = k2 + ω2
p(1 − δ), δ = 1.9 × 10−5L45r

−2
17 ν−2

9 . (21)

The effect of a large-amplitude wave is to reduce the DM of the
local environment (at distance r) by a factor of 1 − δ. The DM
variation caused by the wave amplitude effects is given by

	DM =
∫

dr n(r)δ(r) � (6.3 × 10−3pc cm−3) n4L45r
−1
17 ν−2

9 .

(22)

It can be shown that the same physics applies to magnetized plasma
as well, in the sense that both the square of the plasma frequency
and cyclotron frequency ωB = eB/mc are reduced by a factor of
〈γ 〉−1, and hence the local rotation measure contribution ∝ω2

pωB is
reduced by a factor of 1 − 2δ. These finite-amplitude effects may
be noticeable for bright, low-frequency bursts with sufficient time
and frequency resolution.

3 FREE–FREE ABSORPTION

In the previous section, we have considered electron oscillations
driven by finite-amplitude waves, ignoring the existence of protons
(or ions). Occasionally, the electron may undergo a Coulomb
collision with a proton and hence gain or lose energy from
the electromagnetic field. Since, on average, energy-absorbing
encounters dominate energy-emitting ones, this process is known
as free–free (ff) absorption. It has been extensively discussed in the
literature both classically and quantum mechanically (e.g. Rybicki
& Lightman 1979; Kroll & Watson 1973; Schlessinger & Wright
1979; Decker et al. 1994; Pert 1995; Bornath et al. 2001, and
references therein).

For large wave amplitudes such that electrons’ oscillatory
speed eA0/mc is much larger than the thermal speed

√
kBT /m

at plasma temperature T (kB being the Boltzmann constant), the
electron motion corresponds to a higher effective temperature Teff ∼
e2A2

0/(kBmc2) � T , so the ff absorption coefficient is suppressed
by a factor of order (Teff/T)−3/2. In this section, we discuss how the
suppression of ff absorption affects the detection of low-frequency
FRBs (e.g. Ravi & Loeb 2019). We define a dimensionless wave
amplitude ξ0 ≡ eA0/

√
mc2kBT (roughly the ratio between the

oscillatory and thermal speeds), and then the ff absorption optical
depth is given by

τff (ν) = 8〈ln �〉ξ0

3(2π)1/2

EM e6

c(mkBT )3/2ν2
F (ξ0)

= 3.0 × 1016 〈ln �〉ξ0
F (ξ0)

(T /K)3/2(ν/Hz)2

EM

pc cm−6
, (23)

where EM = ∫
n2d
 is the emission measure, the average Coulomb

logarithm is given by

〈ln �〉ξ0
≈

{
ln

[
3kBT

(
1 + ξ 2

0

)
/hω

]
, cir. pol.,

ln
[
3kBT

(
1 + ξ 2

0 /2
)
/hω

]
, lin. pol.,

(24)

and we find that the suppression factor F can be fitted by the follow-
ing simple forms (with maximum fractional error of 15 per cent)

F (ξ0) =
{ (

1 − 0.33ξ0 + 0.83ξ 2
0

)−3/2
, cir. pol.,(

1 + 0.15ξ0 + 0.35ξ 2
0

)−2.85/2
, lin. pol.

(25)

A classical calculation of the suppression factor F is provided later
on in Section 3.2 (and our figures are based on accurate numerical
results). We note that, when the Coulomb logarithm is included,
in the limit ξ 0 � 1, the absorption coefficient roughly scales
as αff (ξ0) ∝ ξ−2.9

0 for circular polarization and ∝ξ−2.75
0 for linear

polarization. In the following, we first discuss the observational
consequences of the modified absorption coefficient.

3.1 Escape of low-frequency FRB radiation

In Fig. 1, we show the ff optical depth divided by EM6 ≡
EM/106 pc cm−6 as a function of the wave energy flux S = 〈
A2〉 ω2/4πc = L/4πr2 and wave frequency ν, for a plasma of
temperature T = 104 K. We find that the ff optical depth scales
as d log τff/d log ν � −2.1 at ν � νc (when finite-amplitude effects
are not important) and d log τff/d log ν � 0.9 (cir. pol.) or �0.75
(lin. pol.) at ν � νc, where the critical frequency νc is roughly
given by (for both polarizations)

νc � (2.3 GHz) S
1/2
10 T

−1/2
4 . (26)

The implications are (1) FRBs at frequency ν � νc are more likely
to escape due to finite-amplitude suppression of ff absorption; (2)
By monitoring a repeating source at different frequencies, it may
be possible to find luminosity-dependent ff absorption frequency
(where τ ff = 1), which provides a way of probing the local
environment of FRB sources.

To illustrate how this might be done, in Fig. 2, we show two
mock samples of individual bursts collected from a single repeating
source. The repetition statistics of the best-studied FRB 121102 are
still under debate (Law et al. 2017; Gourdji et al. 2019; Wang &
Zhang 2019). So to demonstrate the qualitative results, we consider
the following simplified conditions: the occurrence probability
density is flat in log-frequency and a power law in luminosity, i.e.
dP/d log ν = const., dP/d log L ∝ L−β , and take β = 1 (consistent
with current observational constraints). The minimum/maximum
frequencies are log νmin [Hz] = 7.5 and log νmax [Hz] = 10. We
note that broadband spectra are not needed for individual bursts,
but our method does require the emission mechanism for each
repeater to be operating at a sufficiently wide range of frequencies.
The minimum/maximum luminosities are log Lmin [erg s−1] = 42.5
and log Lmax [erg s−1] = 46. Although bursts with much lower
luminosities than Lmin have been detected from FRB 121102, our
results do not depend on the choice of Lmin. All bursts are assumed
to be linearly polarized. We consider a burst as ‘detected’ only when
the ff optical depth τ ff < 1.

For the N = 500 sample, we bin the ‘detected’ bursts in log-
frequency and show the median luminosity for each bin in cyan
squares. The boundary at τ ff = 1 should be smoother in reality, but
the median luminosity in each bin is not strongly affected. Notice
the jump in median luminosity at νjump � 500 MHz, which is the
frequency at which low-amplitude (ξ 0 → 0) bursts are ff absorbed.
This can be used to infer the EM of the absorbing plasma

EM � 8 × 105 pc

cm4

10

〈ln �〉T 1.5
4

( νjump

500 MHz

)2
, (27)

which is close to the true value used in the simulation: 106 pc cm−4

(for T = 104 K). The median luminosity Ljump � 1043.5 erg s−1 in
the bin right below ν jump can be plugged into equation (26) to infer
the distance between the plasma and the FRB source

r � (7 × 1016 cm) T
−1/2

4 L
1/2
jump,43.5

( νjump

500 MHz

)−1
, (28)
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FRB propagation in local environment 3311

Figure 1. The ff optical depth divided by EM6 ≡ EM/106 pc cm−6, as a function of wave energy flux S = L/4πr2 and wave frequency ν, for a plasma
of temperature T = 104 K. The left-hand panel is for circular polarization and the right-hand panel is for linear polarization. A reference energy flux is
S ≈ 8 × 109 erg s−1 cm−2 for L = 1045 erg s−1, and r = 1017 cm. The cyan-dashed line shows the critical frequency at which the dimensionless strength ξ0 =
1.4 (left-hand panel) and 1.8 (right-hand panel), roughly corresponding to when the finite-amplitude effects become important.

Figure 2. Two mock samples of bursts from a repeating source collected
at a wide range of frequencies from 30 MHz to 10 GHz. The larger sample
(black dots) has size N = 500 and the smaller sample (red stars) has N = 50.
The samples are generated by the following (highly simplified) conditions:
the occurrence probability density is flat in log frequency and power law in
luminosity, i.e. dP/d log ν = const., dP/d log L ∝ L−β , and β = 1. A burst
is ‘detected’ only when the ff optical depth τ ff < 1 for linear polarization
(the results for circular polarization are similar). For the N = 500 sample, we
bin the ‘detected’ bursts in log-frequency and show the median luminosity
for each bin in cyan squares.

which is again close to the actual value used in the simulation:
1017 cm. Qualitatively similar, but less accurate, conclusions can
be drawn from the N = 50 sample. We also note that the above
choices of EM and r are only for illustrative purpose, whereas in
reality different FRB sources may be located in extremely diverse
environments. Finally, we note that the degeneracy in the inferred
parameters (EM and r) with the plasma temperature T cannot be
eliminated, unless we have additional information, such as the Hα

intensity.

3.2 Free–free absorption for finite-amplitude waves

In this subsection, we provide a classical calculation of the suppres-
sion factor F (defined in equation 23) for ff absorption.

We are mainly concerned with Coulomb collisions with impact
parameter b � bmax ≡ v/ω, which means the scattering time is much
less than a wave period and hence the electromagnetic field does not
change during the interaction.2 This is the impulse approximation.
We also adopt a minimum3 impact parameter bmin = h/mv (h being
the Planck constant), because an electron with known momentum
mv cannot be described classically if closer to a proton than bmin.
The precise values of bmax and bmin do not strongly affect our results
since they enter the final absorption coefficient through the Coulomb
logarithm ln(bmax/bmin).

To keep the expressions concise, we take c = kB = 1 in this
subsection, which can be easily recovered based on dimensional
consideration. In the non-relativistic case (ignoring O(a2) terms),
the electron has canonical momentum

p = q + eA, (29)

where is the q = mvkinetic momentum and A(ψ) is the vector
potential of the electromagnetic wave (such that the electric field is
E = −ωA′). In the absence of Coulomb collisions, the canonical
momentum is conserved to the order O(a2). Under an additional
Coulomb potential V, the Hamiltonian is given by

H = (q − eA)2

2m
+ eV = q2

2m
+ eV + e2A2

2m
− q · A

m
. (30)

2For large impact parameter b � bmax ≡ v/ω, the Coulomb scattering occurs
over multiple wave periods and the electron adiabatically adjusts to the
slowly evolving combined electromagnetic+Coulomb fields and hence there
is little energy exchange.
3Another possible bmin is b90 = e2/mv2 at which the electron is deflected by
90o (Rybicki & Lightman 1979). For electron speeds larger than the thermal
speed at T ∼ 104 K, the quantum lower limit is more stringent.
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3312 W. Lu and E. S. Phinney

We assume that protons remain motionless and hence the Coulomb
scattering is elastic.4 Thus, q2/2m + eV is conserved during the col-
lision, e2A2/2m does not change under the impulse approximation,
and the energy gain/loss per scattering is given by

	E(q1 → q2) = − e

m
Q · A, Q ≡ q2 − q1 = p2 − p1. (31)

The Rutherford formula for differential cross-section is

dσ

d�
= e4

m2v4(1 − cos �)2
, (32)

where � is the deflection angle given by cos � = q1 · q2/q
2 (where

q = q1 = q2). Using Q = |q2 − q1| as defined in equation (31), it
can be recast in a simpler form

dσ

d�
= 4m2e4/Q4. (33)

In the following, we consider the unperturbed electron distri-
bution function to be Maxwellian in canonical momentum (taking
Boltzmann constant kB = 1)

f ( p) = (2πmT )−3/2e−p2/2mT , (34)

which is normalized such that
∫

fd3p = 1. The rate of transition
from state p1 to the phase-space volume d3p2 near p2 is denoted
as R( p1, p2)d3p2. At a given wave phase ψ , there is a one-to-
one map between canonical momentum p and kinetic momentum
q (equation 29), so we have d3p = d3q. Then R is related to the
differential cross-section (equation 33) as follows:

R( p1, p2)d3q2 = δ(q1 − q2)dq2 · nv1
dσ

d�
d�q2 , (35)

where δ(q2 − q1) is the Dirac delta-function as a result of elasticity.
Making use of d3q2 = q2

2 dq2d�q2 and equation (33) for dσ /d�, we
obtain the differential scattering rate

R( p1, p2) = δ(q2 − q1)
4nme4

qQ4
. (36)

One can easily see that R( p1, p2) is symmetric between p1 and p2

as a result of the symmetry of Coulomb scattering.
Therefore, the volumetric heating rate (in erg s−1 cm−3) due to ff

absorption is given by

U̇ = 1

2
n

∫
d3p1

∫
d3p2[f ( p1) − f ( p2)]	E · R( p1, p2), (37)

where f ( p1) − f ( p2) accounts for the cancellation between for-
ward d3p1 → d3p2 and backward d3p2 → d3p1 processes, and the
factor of 1/2 is due to double counting in the full integral. In the
weak scattering limit, we have 	E � T and hence f ( p1) − f ( p2) ∝
1 − e−	E/T = 	E/T . Then the integral can be carried out by using
d3p2 = d3q2 = q2

2 dq2d�q2 , and we obtain

U̇ = 2n2e6

(2π )3/2(mT )5/2

∫
d3p1exp

( −p2
1

2mT

)

×
∫

dq2δ(q2 − q1)q2

∫
d�q2

( Q · A)2

Q4
. (38)

At a given moment, let A = A ẑ and we define cos θq ≡ A ·
q1/(Aq1). In the weak scattering limit, the deflection vector Q

4For weak scatterings which dominate the ff absorption, the electron
momentum kick is ∼e2/bv = (b90/b)mv < mv, the proton will receive a
kick velocity ∼(mv/mp)(b90/b) and hence energy of (m/mp)(b90/b)2mv2/2
� mv2/2.

lies in a plane perpendicular to q1 and the amplitude is Q = q1sin θ .
We write d�q2 = sin θdθdφ, where θ is the angle between q1 and
q2, and φ is the azimuthal angle (starting from the intersecting line
between the Q plane and the q1–A plane). Then, we obtain

Q · A = QA sin θq cos φ, (39)

and the d�q2 integral becomes∫
d�q2

( Q · A)2

Q4
= A2 sin2 θq

q2
1

∫
dφ cos2 φ

∫
dθ

sin θ
. (40)

The deflection angle θ is related to the impact parameter b
by tan(θ /2) = e2/(bmv2) ≈ θ /2 (in the weak scattering limit),
so the θ integral can be written as

∫
dθ/ sin θ ≈ ∫ bmax

bmin
db/b =

ln(bmax/bmin) ≡ ln �, which is known as the Coulomb logarithm.
The φ integral is trivial

∫ 2π
0 dφ cos2 φ = π. Furthermore, we make

use of A = A ẑ, sin2 θq = (p2
1 − p2

1,z)/q
2
1 , and q2

1 = ( p1 − eA)2,
and then the volumetric ff heating rate becomes

U̇ = ln � A2n2e6

(2π)1/2(mT )5/2

∫
d3p1

(
p2

1 − p2
1,z

)
e−p2

1/2mT(
p2

1 − 2ep1,zA + e2A2
)3/2 . (41)

The integral can be carried out by using d3p1 = 2πp2
1dp1 sin θpdθp ,

where θp is the angle between p1 and A (i.e. p1, z = p1cos θp). Note
that, for simplicity, we have ignored the dependence of the Coulomb
logarithm ln � = ln(mv2/hω) on the particle’s momentum. In the
small amplitude limit eA � p1, the integral is elementary and the
heating rate is

U̇ = 4

3

(2π)1/2ln � A2n2e6

(mT )3/2
. (42)

Averaging over the wave phase 〈A2〉 = ∫ π

0 (dψ/π)A2, we obtain the
Poynting flux S = 〈 A2〉 ω2/4π. Then the ff absorption coefficient
is given by

αff = 〈U̇〉
S

= 8 ln �

3(2π)1/2

n2e6

(mT )3/2ν2
, (43)

which is independent of polarization and agrees with the result from
the thermal ff emissivity combined with the Kirkhoff theorem (see
equation 5.19a of Rybicki & Lightman 1979).

For the case of finite-amplitude waves, the integral I(ξ ) ≡
(4πmT)−1

∫
d3p1(···) in equation (41) can be written as

I (ξ ) = 1

(2ξ )3/2

∫ ∞

0
dx x5/2e−x2

∫ 1

−1

(1 − y2)dy

(t − y)3/2
,

x = p1√
2mT

, y = cos θp, ξ = eA√
2mT

, t = x2 + ξ 2

2xξ
. (44)

We carry out the
∫

dy integral analytically∫
dy · · · = 8

3

[
(2t − 1)(t + 1)1/2 − (2t + 1)(t − 1)1/2

]
, (45)

which asymptotes to (4/3)t−3/2 when t � 1 (i.e. the wave amplitude
is either very small ξ → 0 or very large ξ → ∞) and hence I(ξ →
0) = 2/3.

The suppression factor at dimensionless wave amplitude ξ 0, as
defined in equation (23), is given by

F (ξ0) ≡ 3

2π〈A2〉
∫ π

0
dψ A2(ψ)I (ξ ), ξ0 ≡ eA0√

2mT
. (46)

For circular polarization, the amplitude A(ψ) = A0 is independent
of phase, and for linear polarization, the amplitude is given by
A(ψ) = A0sin ψ (and hence 〈A2〉 = A2

0/2). We show the numerical
results of F(ξ 0) in Fig. 3. In the limit ξ 0 � 1, the suppression
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Figure 3. The suppression factor F(ξ0) (equation 46) for ff absorption
due to finite-amplitude waves, for circular polarization (blue solid line) and
linear polarization (red dashed line), not including the Coulomb logarithm.
The dimensionless amplitude ξ0 is roughly the ratio between the oscillatory
speed and the thermal speed. In the large amplitude limit ξ0 � 1, the scalings
are F ∝ ξ−3

0 for circular polarization, and ∝ξ−2.85
0 for linear polarization.

Our linear polarization case agrees with Schlessinger & Wright (1979, their
equation 3.34) as shown in black dotted line.

factor F(ξ 0) scales as ξ−3
0 for circular polarization and ξ−2.85

0 for
linear polarization. The slightly shallower behaviour for linear
polarization is because the oscillatory speed is much less than the
maximum eA0/m for a fraction of the wave period, which leads to
less suppression overall. We find that F(ξ 0) is well approximated
by equation (25).

4 SU M M A RY

The effects of finite-amplitude electromagnetic waves leave inter-
esting imprints of the local (�1 pc) environment of FRB sources
on the DM, RM, and the ff absorption optical depth. We show that
bursts with an isotropic luminosity of 1045 erg s−1 will have DM
modulation up to 10−2 pc cm−3. We provide a classical calculation
of how the ff absorption is affected by finite-amplitude effects.
We find that sufficiently bright, low-frequency bursts are able to
avoid ff absorption by an otherwise optically thick plasma. The
DM/RM modulation and characteristic ff absorption frequency
provide information on the density and magnetization of the plasma
surrounding the FRB, and its distance from the source.
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