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Abstract

Self-testing is a method to characterise an arbitrary quantum system based only on its classical input-
output correlations. This usually requires the assumption that the system’s state is shared among multiple
parties that only perform local measurements and cannot communicate. Here, we replace the setting of
multiple non-communicating parties, which is difficult to enforce in practice, by a single computationally
bounded party. Specifically, we construct a protocol that allows a classical verifier to robustly certify that
a single computationally bounded quantum device must have prepared a Bell pair and performed single-
qubit measurements on it, up to a change of basis applied to both the device’s state and measurements.
This means that under computational assumptions, the verifier is able to certify the presence of entan-
glement inside a single quantum device. We achieve this using techniques introduced by Brakerski et al.
(2018) and Mahadev (2018) which allow a classical verifier to constrain the actions of a quantum device
assuming the device does not break post-quantum cryptography.
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1 Introduction

The device-independent approach to quantum information processing treats quantum devices as black boxes
which we can interact with classically to observe their input-output correlations. Based solely on these
correlations and the assumption that quantum mechanics is correct, the goal is to prove statements about
the devices, e.g., to show that they can be used for secure quantum key distribution (see e.g. [MY04]) or
delegated quantum computation (see e.g. [RUV13]).

Self-testing is a method in device-independent quantum information processing for characterising the
quantum state and measurements of multiple such black-box devices using only their classical input-output
correlations. In analogy to interactive proofs in computer science, the classical party observing the input-
output correlations is sometimes called the verifier, and the black-box quantum devices are called provers.
More specifically, the verifier can interact with multiple quantum provers by sending (classical) questions as
inputs and receiving (classical) answers as outputs. The provers can share any (finite-dimensional) entangled
quantum state at the start of the interaction and are computationally unbounded; however, it is assumed that
after having received the verifier’s questions, the provers can no longer communicate. Based on the question-
answer correlations, the verifier would like to deduce that the provers must have shared a certain initial state
and performed certain measurements on it, up to a local change of basis on each prover’s Hilbert space. We
will describe this scenario in more detail in Section 1.1.

The term self-testing was introduced by Mayers and Yao in [MY04], but the notion was already present
in earlier works [SW87, PR92]. More recently, it has been shown that any pure bipartite state can be
self-tested [CGS17]. For a review covering a large number of different self-testing protocols, as well as
applications such as randomness expansion and delegated quantum computation, see [ŠB19].

While the model of non-communicating quantum provers used in existing self-testing results is ap-
pealing in theory, it is difficult to enforce this non-communication assumption in practice. This motivates
the search for protocols that allow for a self-testing-like certification of a single untrusted quantum de-
vice. Self-testing protocols in the multi-prover setting are typically based on the violation of Bell inequal-
ities [Bel64], for which the non-communication assumption is necessary. Hence, different techniques or
additional assumptions are necessary when considering the single-device scenario. One recent approach
is to base the self-testing statement on non-contextuality inequalities [BRV+19a, BRV+19b]. The viola-
tion of non-contextuality inequalities is a uniquely quantum phenomenon that is similar to the violation of
Bell inequalities, with the advantage that it only requires a single quantum device and therefore no non-
communication assumption. The downside of this approach is that it places additional assumptions, such as
memory constraints and compatibility relations between measurements, on the quantum device, limiting its
suitability for practical cryptographic applications.

In this paper, we construct a self-testing protocol for the arguably more practical setting of a single
computationally bounded quantum device. Our protocol is a three-round interaction between a classical
verifier and a quantum prover, at the end of which the verifier decides to either “accept” or “reject” the
prover. Informally, the guarantee provided by the protocol is the following:

Theorem (Informal). If a computationally bounded prover is accepted by the verifier with probability 1− ε,
then there exists an isometry V and a constant c > 0 such that under the isometry V:

(i) the prover’s state is O(εc)-close (in trace distance) to a Bell pair,

(ii) the prover’s measurements are O(εc)-close to single-qubit measurements in the computational or
Hadamard basis, where the measurement bases are chosen by the verifier. Here, “closeness” is mea-
sured in a distance measure suitable for measurements acting on a state.
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This means that a prover that succeeds with high probability must have prepared a Bell pair and per-
formed single-qubit measurements on it, up to a small error and a global change of basis applied to both the
prover’s state and measurements. The only assumption aside from the correctness of quantum mechanics is
that the prover is computationally bounded and cannot break the Learning with Errors (LWE) assumption
[Reg09], a common assumption in post-quantum cryptography.

For this setting of a single computationally bounded quantum prover, recent works [Mah18, BCM+18,
GV19] have introduced techniques that allow a classical verifier to leverage post-quantum cryptography
to control the quantum prover. We now give a brief overview of these works and explain their relation to
self-testing.

In [Mah18], Mahadev gives the first protocol for the important problem of verifying a delegated quantum
computation using a single quantum prover. The setting is the following: a classical verifier would like to
perform a quantum computation, but only has access to a single untrusted quantum prover. It is assumed that
the prover cannot break the LWE assumption. The verifier can send a description of the desired computation
to the prover, but a priori has no way of checking whether the result returned by the prover is correct; for
this, we need a verification procedure. More formally, consider a language L, which is decidable by a BQP-
machine (i.e., a polynomial-time quantum computer). The verifier is given an instance x and would like to
decide whether x ∈ L or x /∈ L by interacting with the quantum prover. The prover always tries to convince
the verifier that x ∈ L. At the end of the interaction, the verifier either “accepts” or “rejects” the prover.
The guarantee achieved by Mahadev’s protocol is that if x ∈ L, the probability that the verifier accepts is
negligibly close to 1, whereas if x /∈ L, the verifier accepts with probability at most 3/4 (up to negligible
quantities). We say that the protocol has completeness 1 and soundness 3/4.

The outline of Mahadev’s protocol is the following: given an instance x, the verifier constructs a local
Hamiltonian (a Hermitian matrix that admits a certain decomposition which is not important here) and sends
a description of the Hamiltonian to the prover. To decide whether x ∈ L, the verifier needs to estimate the
smallest eigenvalue of the Hamiltonian, which can be done by measuring the qubits of a ground state (i.e.,
an eigenstate with the smallest eigenvalue) in the computational and Hadamard bases. If the verifier could
perform computational and Hadamard basis measurements, she could ask the prover to construct the ground
state, send it to her, and then perform the measurements herself (this is the idea of the Morimae-Fitzsimons
protocol [MF16], but the verifier for this is not fully classical). The central ingredient in Mahadev’s ver-
ification protocol is a “measurement protocol” that allows the verifier to delegate these measurements to
the prover. This means that the verifier decides which qubits of the prover’s state should be measured in
which bases, and can decode the prover’s answers to obtain the measurement results. The guarantee of Ma-
hadev’s measurement protocol is this: if the prover is accepted in the protocol, there exists a quantum state
such that the distribution over the prover’s answers could have been produced by performing computational
and Hadamard basis measurements on this state. In other words, all of the prover’s answers must be self-
consistent in the sense that they could have originated from performing different measurements on (copies
of) the same quantum state.

To verify a quantum computation, the statement that the prover’s answers are consistent with measure-
ments on a quantum state is sufficient. However, in self-testing, we seek to make a stronger statement:
we want to certify that the prover actually constructed the desired quantum state and performed the de-
sired measurements on it (up to an isometry). While the honest prover in Mahadev’s protocol does indeed
construct the desired quantum state, the protocol does not guarantee that an arbitrary prover must do, too.
Hence, our self-testing protocol is stronger in the sense that it allows for a more stringent characterisation
of the prover’s actions, namely its actual states and measurements; however, this comes at the cost that we
are only able to certify Bell pairs, while Mahadev’s measurement protocol works for measurements on any
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state.
Another closely related work is that of Brakerski et al. [BCM+18], who give a protocol between a

classical verifier and a quantum prover that allows the verifier to generate certified information-theoretic
randomness, again assuming that the prover does not break the LWE assumption; in other words, their
protocol generates information-theoretic randomness from a computational assumption. For this, the authors
show that two of the prover’s measurements must be maximally incompatible, as defined by a quantity that
they call the “overlap”. Informally, one can think of two maximally incompatible measurements as being
close to a computational and Hadamard basis measurement, up to some global change of basis. Hence,
this result already resembles self-testing in the sense that the verifier can make a statement about the actual
measurements used by the prover.

Building on [BCM+18] and using techniques from [Mah18], Gheorghiu and Vidick construct a proto-
col for verifiable remote state preparation (RSP) [GV19]. They consider a set of single-qubit pure states
{|ψ1〉, . . . , |ψn〉}.1 Under the same LWE assumption as before, the protocol enables the verifier to certify
that the prover has prepared one of these states, up to a global change of basis (i.e., some isometry V that
is applied to all |ψi〉). More precisely, the verifier cannot decide beforehand on a particular |ψi〉, but after
executing the protocol, the verifier knows which |ψi〉 the prover has prepared, and the distribution over i can
be made uniform. The prover, on the other hand, does not know which |ψi〉 he has prepared.

This result resembles a self-testing statement even more than that of [BCM+18] because it explicitly
characterises a family of single-qubit quantum states, one of which is certified to be present in the prover’s
space. However, it differs from a standard self-testing statement in that it is defined for a family of states,
not an individual state: because the prover’s isometry V is arbitrary, any individual state |ψi〉 can be mapped
to another arbitrary state. Hence, what is certified in RSP is not any individual state, but the relationships
(e.g., orthogonality) between different states in some family. Alternatively, one can also take the view that
RSP characterises the relationships between the prover’s states and measurements. We return to this issue in
more detail in Section 1.1. The idea of certifying a family of states has also been considered by Cojocaru et
al. [CCKW19], who call this notion “blind self-testing”. They analyze a different protocol under a restricted
adversarial model and conjecture that their protocol yields similar guarantees as [GV19] for single-qubit
states and tensor products of single-qubit states.

The self-testing protocol presented here builds on [GV19]. Whereas the RSP protocol in [GV19] pre-
pares a single-qubit state, our self-testing protocol certifies that the qubits of an entangled 2-qubit state have
been measured individually. Moving from a single-qubit state to an entangled two-qubit state means that
the verifier has to enforce a tensor product structure on the prover’s space, which is one of the main diffi-
culties in our soundness proof (Section 4). On a technical level, it requires the certification of compatibility
relations between different measurements meant to act on different qubits. Additionally, having two qubits
instead of one prevents us from using Jordan’s lemma, a standard tool in self-testing also used in [GV19], to
characterise the prover’s measurements; in Section 4.7, we show how to characterise the prover’s measure-
ments using a different method starting with a partial characterisation of the prover’s measurements, using
that to partially characterise the prover’s states, which in turn is used for a stronger partial characterisation
of the measurements, etc., until we reach the full statement that shows that the prover makes single-qubit
measurements on a Bell pair.

1The protocol in [GV19] is designed for a specific set of ten pure states that are useful for delegated quantum computation, but
for the purposes of this overview it is not important which specific states these are.
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1.1 Self-testing in the multi- and single-prover settings

In this section, we give a brief overview of the standard multi-prover self-testing scenario, and explain how
it can be extended to a single prover. For more details on the multi-prover scenario, see [ŠB19] or [Sca19,
chapter 7]. For simplicity, let us consider the case of two provers A and B, with Hilbert spaces HA and
HB, respectively. Hence, the total Hilbert space is HA ⊗ HB. The verifier interacts with A and B by
sending questions and receiving answers. The question-answer correlations can be described by a family
of probability distributions {p(a, b|x, y)}x,y, where for each choice of questions x and y sent to A and B,
respectively, p(a, b|x, y) is a probability distribution over their answers a and b. We say that a quantum state
|ψ〉AB ∈ HA ⊗HB is compatible with the correlations p(a, b|x, y) if there are local measurements {P(a)

x }a

onHA for every input x, and {Q(b)
y }b onHB for every input y, that realise the correlations p(a, b|x, y), i.e.,

p(a, b|x, y) = 〈ψ|P(a)
x ⊗Q(b)

y |ψ〉AB for all x, y, a, b.

Definition 1.1 (Self-testing of states, informal). The correlations p(a, b|x, y) self-test a state |φ〉AB if for
any state |ψ〉AB compatible with these correlations, there exists a local isometry V = VA ⊗ VB (with VA
only acting on HA, and VB only acting on HB) such that V|ψ〉AB = |φ〉AB|AUX〉 for some ancillary state
|AUX〉.

A more operational view of this statement is that it must be possible to “extract” the state |φ〉AB from
|ψ〉AB only by performing local operations. The condition that the isometry must be local is crucial: if we
would allow a global isometry, we could map any state |ψ〉AB to the desired state |φ〉AB. In the two-prover
case, the notion of a local isometry is natural, since the separation between the two provers induces a tensor
product structure H = HA ⊗HB on the global Hilbert space H. However, for a single prover, no such
tensor product structure exists and we cannot define local isometries in a meaningful way.

In Definition 1.1, we only dealt with the provers’ state, not his measurements. A stronger notion of
self-testing is to characterise both the provers’ state and measurements. This is the version of self-testing
originally considered by Mayers and Yao [MY04], and we will see that it can be meaningfully extended to
the single-prover setting.

Definition 1.2 (Self-testing of states and measurements, informal). The correlations p(a, b|x, y) self-test a
state |φ〉AB and measurements {M(a)

x }, {N(b)
y } if for any state |ψ〉AB and measurements {P(a)

x }, {Q(b)
y }

that realise the correlations p(a, b|x, y), there exists a local isometry V = VA ⊗VB such that

(i) V|ψ〉AB = |φ〉AB|AUX〉,

(ii) V(P(a)
x ⊗Q(b)

y )|ψ〉AB =
(
(M(a)

x ⊗ N(b)
y )|φ〉AB

)
|AUX〉, for some ancillary state |AUX〉.

The first condition is the same as in Definition 1.1. The second condition roughly says that the “physical”
measurements {P(a)

x } and {Q(b)
y } used by A and B, respectively, act on the state |ψ〉AB in the same way

that the desired measurements {M(a)
x } and {N(b)

y } act on the desired state |φ〉AB.
Self-testing of states and measurements still has meaning in the single-prover setting. In this setting, one

can imagine that the verifier sends both questions x and y to the same prover, and the prover replies with
two answers a and b. To compute his answers, the prover prepares a quantum state |ψ〉 and, on inputs x, y,
performs a measurement {P(a,b)

x,y }a,b to obtain answers a, b.

Definition 1.3 (Self-testing for a single prover, informal). The correlations p(a, b|x, y) self-test a state |φ〉
and measurements {K(a,b)

x,y }a,b if for any state |ψ〉 and measurements {P(a,b)
x,y }a,b that realise the correlations

p(a, b|x, y), there exists an isometry V such that
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(i) V|ψ〉 = |φ〉|AUX〉,

(ii) VP(a,b)
x,y |ψ〉 =

(
K(a,b)

x,y |φ〉
)
|AUX〉, for some ancillary state |AUX〉 ∈ H′.

This definition is rather informal because whenever the number of possible questions and answers is
fixed and independent of the security parameter (as is the case in this paper), single-round question-answer
correlations p(a, b|x, y) alone cannot be sufficient: a prover can always succeed in the protocol simply
by answering the verifier’s questions according to a look-up table; such a prover is classical and does not
actually perform any computation. Instead, additional interaction between the verifier and the prover will be
required, based on which the verifier decides whether or not to “accept” the prover.

To obtain a statement that is more similar to the two-prover scenario, we consider the stronger constraint
that the desired measurements have a tensor product form K(a,b)

x,y = M(a)
x ⊗ N(b)

y . In particular, this means
that answer a only depends on question x and b only depends on y, and it enforces a natural tensor product
structure on the prover’s space.2 Specifically, we define Hilbert spaces HA,HB and H′ and deduce the
existence of an isometry V from the prover’s physical space H to HA ⊗ HB ⊗ H′ such that under the
isometry, the measurements operators P(a,b)

x,y act on |ψ〉 in the same way that tensor product measurement

operators of the form M(a)
x ⊗ N(b)

y act on |φ〉AB, where M(a)
x acts only on HA, N(b)

y acts only on HB, and
|φ〉AB is the state that we are self-testing for (e.g., a Bell state).

Definition 1.4 (Self-testing of tensor product strategies for a single prover, informal). The correlations
p(a, b|x, y) self-test a state |φ〉AB and measurements {M(a)

x } on system A and {N(b)
y } on system B if for

any state |ψ〉 ∈ H and measurements {P(a,b)
x,y }a,b onH that realise the correlations p(a, b|x, y), there exists

an isometry V : H → HA ⊗HB ⊗H′ such that

(i) V|ψ〉 = |φ〉AB|AUX〉,

(ii) VP(a,b)
x,y |ψ〉 =

(
(M(a)

x ⊗ N(b)
y )|φ〉AB

)
|AUX〉, for some ancillary state |AUX〉 ∈ H′.

Again, this definition is informal for the same reason as for Definition 1.3. A formal statement of such a
single-prover self-testing result with a tensor product structure is given in Theorem 4.38, the main result of
this paper.

1.2 Cryptographic primitives

The main cryptographic primitive underlying our self-testing protocol is a so-called extended noisy trapdoor
claw-free function family (ENTCF family). ENTCF families were introduced by Mahadev in [Mah18],
building on the construction of noisy trapdoor claw-free function families by Brakerski et al. in [BCM+18].
Here, we only give a brief informal description of the main properties of an ENTCF family (see Section 2.2
for references and details).

An ENTCF family consists of two families F and G of function pairs. A function pair ( fk,0, fk,1) ∈ F
is called a claw-free pair and is indexed by a public key k. Similarly, an injective pair is a pair of functions
( fk,0, fk,1) ∈ G, also indexed by a public key k. Informally, the most important properties are the following:

2In quantum foundations, it has been argued that the emergence of a tensor product structure on a Hilbert space should always be
viewed as being induced by measurements. More precisely, one considers different operationally accessible measurements, some
of which are compatible with one another (i.e., one measurement does not affect the outcome of the other measurement), and it is
these compatibility relations that induce a tensor product structure [ZLL04].
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(i) For fixed k ∈ KF , fk,0 and fk,1 are bijections with the same image, i.e., for every y in their image
there exists a unique pair (x0, x1), called a claw, such that fk,0(x0) = fk,1(x1) = y.

(ii) Given a key k ∈ KF for a claw-free pair, it is quantum-computationally intractable (without access
to trapdoor information) to compute both a preimage xi and a single generalised bit of x0 ⊕ x1 (i.e.,
d · (x0 ⊕ x1) for any non-trivial bit string d), where (x0, x1) forms a valid claw. This is called the
adaptive hardcore bit property.

(iii) For fixed k ∈ KG , fk,0 and fk,1 are injective functions with disjoint images.

(iv) Given a key k ∈ KF ∪KG , it is quantum-computationally hard (without access to trapdoor informa-
tion) to determine the “function type”, i.e., to decide whether k is a key for a claw-free or an injective
pair. This is called injective invariance.

(v) For every key k ∈ KF ∪ KG , there exists a trapdoor tk, which can be sampled together with k and
with which (ii) and (iv) are computationally easy.

1.3 Self-testing protocol for a single computationally bounded prover

We now give an informal description of our self-testing protocol with the honest prover behaviour and
provide some intuition for its soundness. A full description of the protocol is given in Figure 1, and for a
more detailed overview of the soundness proof, see the introduction to Section 4.

On a very high level, one can view the protocol as first executing the RSP protocol from [GV19] twice
in parallel to prepare two qubits in the provers space. Then, the prover is asked to perform an entangling
operation on these two qubits. Because the prover does not know which states the qubits are in, and the
entangling operation acts differently on different states, to pass the checks in the protocol the prover has to
apply the entangling operation honestly.

In more detail, the protocol begins with the verifier sampling two uniformly random bits θ1, θ2, each bit
denoting a basis choice (either the computational or the Hadamard basis). The case where both bits denote
the Hadamard basis will be the one where the prover prepares a Bell pair, whereas the other basis choices
serve as tests that prevent the prover from cheating. Depending on these basis choices, the verifier then
samples two key-trapdoor pairs (k1, tk1) and (k2, tk2) from the ENTCF family: for the computational basis,
it samples an injective pair, and for the Hadamard basis a claw-free pair. The verifier sends the keys to the
prover and keeps the trapdoors private.

The honest prover treats the two keys separately. For each key ki, he prepares the state

|ψi〉 =
1√

2|X | ∑
x∈X , b∈{0,1}

|b〉|x〉| fki ,b(x)〉 . (1.1)

Here, X is the domain of the ENTCF family. Note that even though the prover does not know which kind
of function (claw-free or injective) he is dealing with, the definition of ENTCF families still allows him to
construct this state. The prover now measures both image registers (i.e., the registers storing “ fki ,b(x)”),
obtains images y1, y2, and sends these to the verifier. (In the terminology of [Mah18], this is called a
“commitment”.) Depending on the choice of function family by the verifier, the prover’s post-measurement
state has one of two forms: if the verifier sampled the key ki from the injective family, the post-measurement
state is a computational basis state:

|ψ′i〉 = |b〉|xb〉 , (1.2)

8



where xb is the unique preimage of yi. If the key ki belongs to a claw-free family, the post-measurement
state is a superposition over a claw:

|ψ′i〉 =
1√
2
(|0〉|x0〉+ |1〉|x1〉) , (1.3)

where (x0, x1) form a claw, i.e., fk,0(x0) = fk,1(x1) = y.
At this point, the verifier selects a round type, either a “preimage round” or a “Hadamard round”, uni-

formly at random and sends the round type to the prover. For a preimage round, the honest prover measures
his entire state in the computational basis and returns the result; the verifier checks that the prover has indeed
returned correct preimages for the submitted y1, y2. The preimage round is an additional test that is required
for us to leverage the adaptive hardcore bit property, but we do not discuss this further in this overview.

For a Hadamard round, the honest prover measures both of his preimage registers (i.e., the registers
containing “xb”) in the Hadamard basis, obtains two bit strings d1, d2, and sends these to the verifier. This
results in the following states (using the notation from above):

|ψ′′i 〉 =
{
|b〉 if ki belongs to an injective family,

1√
2
(|0〉+ (−1)di ·(x0⊕x1)|1〉) if ki belongs to a claw-free family.

(1.4)

Note that the phase in the second case is exactly the adaptive hardcore bit from the definition of ENTCF
families. At this point, the verifier selects two additional bases q1, q2 uniformly at random (again from either
the computational or Hadamard basis), and sends these to the prover. In analogy to self-testing, we call these
bases “questions”. The honest prover now applies a CZ gate (an entangling two-qubit gate that applies a
σZ operation to the second qubit if the first qubit is in state |1〉) to its state |ψ′′1 〉|ψ′′2 〉. In the case where
both θ1 and θ2 specify the Hadamard basis, this results in a Bell state (rotated by a single-qubit Hadamard
gate). The prover measures the individual qubits of the resulting state in the bases specified by q1, q2. The
outcomes v1, v2 are returned to the verifier.

The verifier can use the prover’s answers y1, y2, d1, d2 and her trapdoor information tk1 , tk2 to deter-
mine which state CZ|ψ′′1 〉|ψ′′2 〉 the prover should have prepared. The verifier accepts the prover if his
answers v1, v2 are consistent with making the measurements specified by q1, q2 on the honest prover’s state
CZ|ψ′′1 〉|ψ′′2 〉.

We now give a brief intuition for the soundness of the protocol; the actual soundness proof is given in
Section 4. Let us first consider a version of the protocol where the prover is not supposed to perform a CZ
operation. As noted before, this would be (a simplified version of) the RSP protocol [GV19], executed twice
in parallel. For the purposes of this overview, let us assume that the only way for the prover to pass these two
parallel executions of the RSP protocol is to treat each execution separately, i.e., use a tensor product Hilbert
space H1 ⊗H2 and execute each instance of the RSP protocol on a different part of the space (enforcing
such a tensor product structure is actually one of the main difficulties in our soundness proof, but we leave
the details of this for Section 4). It now follows from the security of the RSP protocol that the prover must
have prepared one of {|0〉, |1〉, |+〉, |−〉} in each part of his space (up to a “local” change of basis for each
space), but he does not know which one.

Now consider how a CZ operation acts on these different states: if both states are Hadamard basis states
(e.g., |+〉|−〉), the CZ operation will entangle them and produce a Bell state (rotated by a single-qubit
Hadamard gate); in contrast, if at least one of the states is a computational basis state (e.g., |1〉|−〉), the
resulting state will still be a product state of computational and Hadamard basis states (albeit a different
one). This means that in the latter case, the CZ operation essentially only relabels the states. Therefore, if
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the verifier adapts her checks to account for the relabelling, in the latter case the guarantees from the RSP
protocol still hold. Because the prover does not know which bases the verifier has selected, we can extend
these guarantees to the case of two Hadamard basis states, too. We stress that this only provides a rough
intuition, and that the actual proof proceeds quite differently from this because we cannot just assume the
existence of a tensor product structure on the prover’s Hilbert space.

1.4 Discussion

Self-testing has developed into a versatile tool for quantum information processing and presents one of the
strongest possible black-box certification techniques of quantum devices. The standard self-testing setting
involves multiple non-communicating quantum provers, which is difficult to enforce in practice. The main
contribution of this paper is the construction of a self-testing protocol that allows a classical verifier to
certify that a single computationally bounded quantum prover has constructed a Bell state and measured the
individual qubits of the state in the computational or Hadamard basis, up to a global change of basis applied
to both the state and measurements. This means that we are able to certify the existence of entanglement in
a single quantum device.3

Due to the interactive nature of our protocol, this certification remains valid even if it turned out that
any quantum computation is classically simulable, i.e., BQP = BPP.4 It therefore constitutes a “test of
quantumness” in the sense of [BCM+18] and differs from proposals for testing quantum supremacy such as
[BFNV19], which only certify the “quantumness” of a device under the assumption that BQP 6= BPP.5

Beyond the conceptual appeal of gaining more fine-grained control over untrusted quantum devices, our
self-testing protocol presents a first step towards translating multi-prover protocols for applications such as
delegated computation [RUV13, CGJV19], randomness expansion [Col06, VV12, MS17], or secure multi-
party quantum computation [CGS02, BCG+06] to a single-prover setting. There are already computation-
ally secure single-prover protocols for delegated quantum computation [Mah18] and randomness expansion
[BCM+18]; however, establishing a more general link between self-testing-based multi-prover protocols
and computationally secure single-prover protocols is still desirable as it might lead to conceptually simpler
single-prover protocols and be useful for constructing single-prover protocols for other applications without
resorting to a low-level cryptographic analysis.

Existing multi-prover self-testing protocols are typically based on non-local games, e.g., the CHSH
game [MYS12]. Our self-testing protocol follows a more “custom” approach guided by the available crypto-
graphic primitives. While this enables us to construct a single-prover self-test for single-qubit measurements
on a Bell state, arguably the most important quantum state for many applications, it does not allow us to
extend the result to other states for which multi-prover self-tests are known [CGS17]. To better make use of
the extensive existing self-testing literature, it would be desirable to construct a procedure that allows for the
“translation” of multi-prover non-local games to single-prover games with computational assumptions. In

3The freedom of applying a global change of basis means that the entangled Bell state can be mapped to a product state.
However, then the prover’s measurements are mapped to entangling measurements, so entanglement is still present. We point out
that conceptually, the certification of entanglement in multi-prover games still differs from this in that it can often be used to make
statements about local realism [Bel64].

4Note that the LWE assumption is independent of whether BQP = BPP or not, since LWE is assumed to be hard for both
quantum and classical computers.

5Intuitively, the reason for this is the following: in our protocol and in [BCM+18], the quantum prover has to be able to compute
either a preimage or a pair (u, d) such that u = d · (x0⊕ x1), where (x0, x1) forms a claw. If a classical prover was able to correctly
compute a preimage or a pair (u, d), it could be rewound to compute both at the same time, contradicting the adaptive hardcore bit
property. In a quantum prover, the collapsing nature of quantum measurements prevents us from rewinding the prover.
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classical cryptography, similar attempts have been made to construct single-prover argument systems from
multi-prover proof systems using fully homomorphic encryption [ABOR00, KRR14, DHRW16].

Another approach to constructing single-prover self-tests for a larger class of states might be to strengthen
Mahadev’s measurement protocol [Mah18] from guaranteeing the existence of a state compatible with the
measurement results to certifying that the prover actually has prepared this state. Such a strengthened version
of Mahadev’s measurement protocol would constitute a Proof of Quantum Knowledge, a concept recently
introduced in [CVZ19, BG19], while only requiring classical communication.

Organisation. The paper is organised as follows. In Section 2, we give preliminary definitions and tech-
nical lemmas, most importantly involving the state-dependent distance between operators. In Section 3, we
describe our self-testing protocol and show that it has completeness negligibly close to 1, i.e., that there
exists an honest prover that is accepted with all but negligible probability. In Section 4, we show that
our protocol is sound, meaning that any prover that is accepted with high probability must use states and
measurements close to the desired ones. The main result that formalises this statement is Theorem 4.38.
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2 Preliminaries

This section establishes a number of definitions and technical lemmas that we will use in the soundness
proof in Section 4. We assume basic familiarity with quantum mechanics and start with a description of the
notation in this paper.

2.1 Notation

For a bit b ∈ {0, 1}, b denotes the flipped bit, i.e., b = b⊕ 1.
A function n : N → R+ is called negligible if limλ→∞ n(λ)p(λ) = 0 for any polynomial p. We use

negl(λ) to denote an arbitrary negligible function.
We use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to differentiate be-

tween distinct spaces. The set of linear operators on a Hilbert spaceH is denoted L(H), and the set of uni-
tary operators is U (H). The map Tr : L(H) → C denotes the trace, and TrB : L(HA ⊗HB) → L(HA)
is the partial trace over subsystem B. Pos(H) denotes the set of positive semidefinite operators on H, and
D(H) = {A ∈ Pos(H) | Tr[A] = 1} is the set of density matrices onH.

For A ∈ L(H) and p ∈ N, the Schatten p-norm is ‖A‖p = Tr
[
|A|p

]1/p with |A| =
√

A† A, and
‖A‖∞ is the operator norm (largest singular value). For A, B ∈ L(H), we use the commutator [A, B] =
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AB− BA and the anti-commutator {A, B} = AB + BA. The single qubit Pauli operators are σX =
(

0 1
1 0

)
and σZ =

(
1 0
0 −1

)
. The Hadamard basis states are written as |(−)b〉 = 1√

2
(|0〉+ (−1)b|1〉).

An observable on H is a Hermitian linear operator on H. A binary observable is an observable that
only has eigenvalues ∈ {−1, 1}. For a binary observable O and b ∈ {0, 1}, we denote by O(b) the projector
onto the (−1)b-eigenspace of O.

The self-testing protocol that we will introduce in Section 3 has a security parameter λ. The quantities
in the rest of the paper are typically families indexed by this security parameters, but we leave this implicit
most of the time.

2.2 Extended trapdoor claw-free functions

As mentioned in Section 1.2, we rely on a cryptographic primitive called extended noisy trapdoor claw-
free function families (ENTCF families) [BCM+18, Mah18], a brief description of which was also given
in Section 1.2. We refer the reader to [Mah18, section 4] for the formal definition of ENTCF families, and
we will use the notation therein throughout the rest of this paper.6 For the construction of ENTCF families
from the Learning with Errors problem [Reg09], see [BCM+18, section 4] and [Mah18, section 9]. For
convenience, we define the following maps that “decode” the output of an ENTCF.

Definition 2.1 (Decoding maps).

(i) For a key k ∈ KG and a y ∈ Y , we define b̂(k, y) by the condition y ∈ ∪xSUPP( fk,b̂(k,y)(x)). (This
is well-defined because fk,1 and fk,2 form an injective pair.)

(ii) For a key k ∈ KG ∪KF and a y ∈ Y , we define x̂b(k, y) by the condition y ∈ SUPP( fk,b(x̂b(k, y))),
and x̂b(k, y) =⊥ if y /∈ ∪xSUPP( fk,b(x)). For k ∈ KG , we also use the shorthand x̂(k, y) =
x̂b̂(k,y)(k, y).

(iii) For a key k ∈ KF , a y ∈ Y , and a d ∈ {0, 1}w, we define û(k, y, d) by the condition d ·
(x̂0(k, y)⊕ x̂1(k, y)) = û(k, y, d).

2.3 Efficiency and computational indistinguishability

In this section, we define what it means for actions performed by a quantum device, e.g., unitaries or mea-
surements, to be efficient. We also define the notion of computational indistinguishability for quantum
states. In these definitions, we make the dependence on the security parameter λ explicit for the sake of
clarity.

Definition 2.2 (Efficient unitaries, isometries, measurements, and observables).

(i) We call a family of unitaries {Uλ ∈ U (Hλ)}λ∈N efficient if there exists a (classical) polynomial-
time Turing machine M that, on input 1λ, outputs a description of a circuit (with a fixed gate set) that
implements the unitary.

6The only exception to this is that Mahadev uses an additional bijection J between the domain X of the ENTCF family and bit
strings {0, 1}d. We leave this bijection implicit and directly identify any x ∈ X with its associated bit string. Also note that the
informal description in Section 1.2 described the functions as outputting a number, whereas in the formal description, each function
outputs a probability distribution.
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(ii) We call a family of isometries {Vλ : HAλ
→ HBλ

}λ∈N efficient if there exists an efficient family
of unitaries {Uλ ∈ U (HBλ

)}λ∈N such that Vλ = Uλ(1Aλ
⊗ |0k(λ)〉), where k(λ) = dim(HBλ

)−
dim(HAλ

).

(iii) We call a family of binary observables {Zλ ∈ Herm(HAλ
)}λ∈N efficient if there exists a family of

Hilbert spaces HBλ
with dimHBλ

= poly(λ), and a family of efficient unitaries {Uλ ∈ U (HAλ
⊗

HBλ
)}λ∈N such that for any |ψ〉A ∈ HA:

U†
λ(σZ ⊗ 1)Uλ(|ψ〉A|0〉B) = (Zλ|ψ〉A)⊗ |0〉B . (2.1)

(iv) We call a family of measurements {Mλ = {M(i)
λ ∈ L(HAλ)}i∈A}λ∈N efficient if the isometry

|ψ〉 7→ ∑
i∈A
|i〉 ⊗M(i)|ψ〉 (2.2)

is efficient.

Lemma 2.3. For any efficient two-outcome measurement {M(0), M(1)}, O = M(0) −M(1) is an efficient
binary observable.

Proof. We have O† = O and O2 = M(0)+ M(1) = 1, so O is a binary observable. To see that O is efficient,
take U to be the unitary extension of the isometry |0〉 ⊗M(0) + |1〉 ⊗M(1). Because {M(0), M(1)} is an
efficient measurement, U is an efficient unitary. A direct calculation shows that

U†(σZ ⊗ 1)U |0〉|ψ〉 = |0〉 ⊗O|ψ〉 (2.3)

for any |ψ〉.

Lemma 2.4. Let A be an efficient binary observable. Then, the isometry

|ψ〉 7→ |0〉 ⊗ A(0)|ψ〉+ |1〉 ⊗ A(1)|ψ〉 (2.4)

is efficient.

Proof. Let U be the unitary associated with A. We can construct the desired isometry as follows: first,
we apply U to |ψ〉. Then, we apply a CNOT gate with the first qubit of U|ψ〉 being the control, and an
ancillary qubit in state |0〉 being the target. Finally, we apply U†. To see that this indeed implements the
correct isometry, note that A(b) = U†(|b〉〈b| ⊗ 1)U for b ∈ {0, 1} and that the CNOT gate can be written
as 12 ⊗ |0〉〈0|+ σX ⊗ |1〉〈1|

Lemma 2.5. Let A1 and A2 be efficient commuting binary observables. Then A1A2 is also an efficient
binary observable.

Proof. Let U1, U2 be the efficient unitaries such that Ai = U†
i (σZ ⊗ 1)Ui. We define the unitary U by the

following circuit:

√
Z

U1 U†
1 U2 U†

2
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We claim that U†(σZ ⊗ 1)U = 12 ⊗ A1A2. Using U†
i (|b〉〈b| ⊗ 1)Ui = A(b)

i for b ∈ {0, 1}, we can write
U as

U = (12 ⊗ A(0)
1 + σX ⊗ A(1)

1 )(12 ⊗ A(0)
2 + σX ⊗ A(1)

2 )(
√

σZ ⊗ 1) . (2.5)

Since we can write the binary observables Ai as Ai = (−1)b(2A(b)
i − 1), it follows from [A1, A2] = 0

that [A(b1)
1 , A(b2)

2 ] = 0 for any b1, b2 ∈ {0, 1}. Using this, the orthogonality of the projectors, and the
anti-commutation of σZ and σX, the lemma follows by a direct calculation.

Lemma 2.6. Let U1, U2 be efficient unitaries on H. Then, (U1 + U2)†(U1 + U2) and (U1 −U2)†(U1 −
U2) are observables and there exists an efficient procedure that, given a state ψ ∈ D(H), outputs a bit b
with

Pr[b = 0|ψ] = 1
4

Tr
[
(U1 + U2)

†(U1 + U2)ψ
]

, Pr[b = 1|ψ] = 1
4

Tr
[
(U1 −U2)

†(U1 −U2)ψ
]

.
(2.6)

(Note that (U1 + U2)†(U1 + U2) + (U1 −U2)†(U1 −U2) = 4 · 1.)

Proof. The fact that both operators are observables, i.e., Hermitian, is immediate. We construct the follow-
ing efficient procedure: given ψ, we (efficiently) prepare |ψ〉 ∈ H ⊗H′, a purification of ψ (this is only to
simplify the calculation). Because U1 and U2 are efficient unitaries, so are controlled versions of U1 and
U2. Therefore, using an ancilla in the state |0〉+|1〉√

2
as the control qubit, we can efficiently prepare the state

1√
2

(
U1 ⊗ 1H′ |ψ〉

)
|0〉+ 1√

2

(
U2 ⊗ 1H′ |ψ〉

)
|1〉 (2.7)

=
1
2
(
(U1 + U2)⊗ 1H′ |ψ〉

)
|+〉+ 1

2
(
(U1 −U2)⊗ 1H′ |ψ〉

)
|−〉 . (2.8)

Measuring the last qubit in the Hadamard basis produces the desired distribution:

Pr[+] =
1
4
〈ψ|(U1 + U2)

†(U1 + U2)⊗ 1H′ |ψ〉 =
1
4

Tr
[
(U1 + U2)

†(U1 + U2)ψ
]

, (2.9)

Pr[−] = 1
4
〈ψ|(U1 −U2)

†(U1 −U2)⊗ 1H′ |ψ〉 =
1
4

Tr
[
(U1 −U2)

†(U1 −U2)ψ
]

. (2.10)

Corollary 2.7. Let C, D be efficient binary observables on H and ψ a state on H. Then, {C, D}†{C, D}
and [C, D]†[C, D] are observables and there exists an efficient procedure that, given a state ψ ∈ D(H),
outputs a bit b with

Pr[b = 1|ψ] = 1
4

Tr
[
{C, D}†{C, D}ψ

]
, Pr[b = 0|ψ] = 1

4
Tr
[
[C, D]†[C, D]ψ

]
. (2.11)

Proof. Since C and D are efficient binary observables, they are also efficient unitaries by definition. Hence,
the result follows from Lemma 2.6 with U1 = CD and U2 = DC.

Definition 2.8. We call two (families of) states ψ, ψ′ ∈ D(H) computationally indistinguishable up to O(δ)
if for any efficient procedure (called a distinguisher) that takes as input ψ or ψ′ and produces an output bit
b, we have

Pr[b = 0|ψ] ≈δ Pr
[
b = 0|ψ′

]
. (2.12)

We use the notation
ψ

c≈δ ψ′ . (2.13)
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The following lemma states the simple fact that for an efficient measurement, the post-measurement
states of two indistinguishable states must also be indistinguishable.

Lemma 2.9. Let ψ, ψ′ ∈ D(H) such that ψ
c≈δ ψ′ for some δ. If {M(a)}a∈A is an efficient measurement

onH, then

∑
a∈A

M(a)ψMa c≈δ ∑
a∈A

M(a)ψ′Ma . (2.14)

Proof. The proof is a simple reduction: given an efficient distinguisher D that distinguishes ∑a∈A M(a)ψMa

and ∑a∈A M(a)ψ′Ma with advantage δ, the following distinguisher D′ is efficient and distinguishes ψ and
ψ′ with advantage δ: given ψ or ψ′, D′ applies the isometry associated with the measurement {M(a)}a∈A,
traces out the pointer register to create ∑a∈A M(a)ψMa or ∑a∈A M(a)ψ′Ma, and runs the distinguisher D
on this state.

2.4 Distance measures

In self-testing, the verifier wants to make statements about the states and measurements used by quantum
provers. The verifier can never make an “absolute” statement about any of the prover’s measurements (i.e.,
one that only depends on the prover’s measurement operators, not the state), since the only information
available to the verifier is the prover’s classical output, which he generates by applying his measurement
operators to his state. Therefore, to make statements about the prover’s operators, it is helpful to define a
state-dependent distance between operators. Informally, if the state-dependent distance between two opera-
tors is small, this means that the two operators act on the state in the same way. A more detailed motivation
of the state-dependent distance can be found in [Vid11, section 4.1], and a useful collection of many of its
properties is given in [NW19, section 4.5].

Definition 2.10 (State-dependent inner product and norm). LetH be a finite-dimensional Hilbert space and
A, B ∈ L(H) be linear operators on H. Let ψ ∈ Pos(H). We define the state-dependent (semi) inner
product of A and B w.r.t ψ as

〈A, B〉ψ = Tr
[

A†Bψ
]

. (2.15)

This induces the state-dependent (semi) norm

‖A‖2
ψ = 〈A, A〉ψ = Tr

[
A† Aψ

]
. (2.16)

Remark 2.11. The state dependent (semi) norm can also be expressed as a Schatten 2-norm (commonly
called the Hilbert-Schmidt norm):

‖A‖ψ =
∥∥∥Aψ1/2

∥∥∥
2

. (2.17)

Lemma 2.12. The state-dependent semi inner product satisfies the properties of a semi inner product.

Proof. We check the required properties.

(i) Symmetry:

〈A, B〉ψ = Tr
[

A†Bψ
]
= Tr

[
(A†Bψ)†

]∗
= Tr

[
ψ†B† A

]∗
= Tr

[
B† Aψ

]∗
= 〈B, A〉∗ψ . (2.18)

(ii) Linearity in the second argument: follows directly from the linearity of the trace.
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(iii) Positive semi-definite: Because ψ is positive, so is AψA†. Therefore,

〈A, A〉ψ = Tr
[

AψA†
]
≥ 0 . (2.19)

Remark 2.13. The Cauchy-Schwarz inequality holds for semi inner products, so we have∣∣〈X, Y〉ψ
∣∣ ≤ ‖X‖ψ · ‖Y‖ψ . (2.20)

We will frequently make statements about two quantities (e.g., two linear operators) being approxi-
mately equal. The following definition introduces a short-hand notation for making such statements more
compactly.

Definition 2.14 (Approximate equality). We overload the symbol “≈” in the following ways (leaving the
dependence on the security parameter implicit in the quantities on the left):

(i) Complex numbers: For a, b ∈ C we define:

a ≈ε b ⇐⇒ |a− b| = O(ε) + negl(λ) . (2.21)

(ii) Operators: For A, B ∈ L(H), we define:

A ≈ε B ⇐⇒ ‖A− B‖2
1 = O(ε) + negl(λ) . (2.22)

(We will most frequently use this for (possibly subnormalised) quantum states A, B ∈ Pos(H).)

(iii) Operators on a state: For A, B ∈ L(H) and ψ ∈ Pos(H), we define:

A ≈ε,ψ B ⇐⇒ ‖A− B‖2
ψ = O(ε) + negl(λ) . (2.23)

If we write ≈0, we mean that the quantities are negligibly close. All asymptotic statements are understood
to be in the limits ε→ 0 and λ→ ∞.

Remark 2.15. Note that we use a mixed convention, where the difference for states and operators is squared,
but the difference for complex numbers is not. This is so that we have

A ≈ε,ψ B ⇐⇒ Tr
[
(A− B)†(A− B)ψ

]
≈ε 0 (2.24)

with the same index on both sides.

2.4.1 Properties of the state-dependent distance

The following lemma will be useful for showing that two operators are close in the state-dependent distance,
up to an isometry.

Lemma 2.16. Let H1,H2 be Hilbert spaces with dim(H1) ≤ dim(H2) and V : H1 → H2 an isometry.
Let A and B be binary observables onH1 andH2, respectively, ψ1 ∈ Pos(H1), ψ2 ∈ Pos(H2), and ε ≥ 0.
Then:

Tr
[
V†BVAψ1

]
≈ε Tr[ψ1] =⇒ V†BV ≈ε,ψ1 A , (2.25)

Tr
[
VAV†Bψ2

]
≈ε Tr[ψ2] =⇒ VAV† ≈ε,ψ2 B . (2.26)
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Proof. We first show the first relation. By the definition of the state-dependent distance, we need to show
that

Tr
[(

V†BV − A
)† (

V†BV − A
)

ψ1

]
≈ε 0 . (2.27)

Expanding the left hand side yields:

Tr
[
V†BVV†BVψ1

]
+ Tr

[
A2ψ1

]
− Tr

[
V†BVAψ1

]
− Tr

[
AV†BVψ1

]
. (2.28)

For the first term, note that
(
VV†)2

= VV†, so VV† is a projector and in particular less than or equal to 1.
Therefore, we have

Tr
[
V†BVV†BVψ1

]
= Tr

[(
ψ1/2

1 V†B
)

VV†
(

ψ1/2
1 V†B

)†
]

(2.29)

≤ Tr
[(

ψ1/2
1 V†B

) (
ψ1/2

1 V†B
)†
]

(2.30)

= Tr[ψ1] , (2.31)

where we used B2 = 1 and V†V = 1 in the last line. Note that since

Tr
[(

V†BV − A
)† (

V†BV − A
)

ψ1

]
≥ 0 , (2.32)

this also upper-bounds the absolute value.
The second term equals Tr[ψ1] because A2 = 1. For the third and fourth terms, we can rewrite

Tr
[

AV†BVψ1

]
= Tr

[(
AV†BVψ1

)†
]∗

(2.33)

= Tr
[
V†BVAψ1

]∗
. (2.34)

Therefore, we can combine the third and fourth term and have

Tr
[(

V†BV − A
)† (

V†BV − A
)

ψ1

]
≤ 2 Tr[ψ1]− 2<Tr

[
V†BVAψ1

]
. (2.35)

Since ∣∣∣Tr
[
V†BVAψ1

]
− Tr[ψ1]

∣∣∣2 ≥ (<Tr
[
V†BVAψ1

]
− Tr[ψ1]

)2
, (2.36)

Tr
[
V†BVAψ1

]
≈ε Tr[ψ1] implies <Tr

[
V†BVAψ1

]
≈ε Tr[ψ1], which completes the proof of the first

relation.
The second relation follows analogously from the expansion

Tr
[
(VAV† − B)†(VAV† − B)ψ2

]
(2.37)

= Tr
[
VV†ψ2

]
+ Tr[ψ2]− 2<Tr

[
VAV†Bψ2

]
(2.38)

≤ 2 Tr[ψ2]− 2<Tr
[
VAV†Bψ2

]
. (2.39)
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Lemma 2.17 (Relation between state-dependent and operator norms). Let ψ ∈ Pos(H) with Tr[ψ] ≤ 1
and C ∈ L(H) a linear operator. Then we have:

‖C‖ψ ≤
√
‖C†C‖∞ ≤ ‖C‖∞ . (2.40)

Proof. Consider the spectral decomposition ψ = ∑i λi|ψi〉〈ψi|. Then

‖C‖2
ψ = Tr

[
C†Cψ

]
= ∑

i
λi〈ψi|C†C|ψi〉 . (2.41)

It is a standard result from linear algebra that for any Hermitian linear operator A:

‖A‖∞ = max
|φ〉∈H,〈φ|φ〉=1

〈φ|A|φ〉 . (2.42)

Since C†C is Hermitian and |ψi〉 normalised, this implies 〈ψi|C†C|ψi〉 ≤
∥∥C†C

∥∥
∞. Therefore, using

∑i λi = Tr[ψ] ≤ 1, we have

‖C‖2
ψ = ∑

i
λi〈ψi|C†C|ψi〉 ≤∑

i
λi

∥∥∥C†C
∥∥∥

∞
≤
∥∥∥C†C

∥∥∥
∞

. (2.43)

The second inequality,
√
‖C†C‖∞ ≤ ‖C‖∞, follows immediately from the standard properties ‖AB‖∞ ≤

‖A‖∞ ‖B‖∞ and
∥∥A†

∥∥
∞ = ‖A‖∞ for any linear operators A, B ∈ L(H).

We will require two further miscellaneous properties of the state-dependent distance.

Lemma 2.18.

(i) Let ψ ∈ Pos(H), and A, B ∈ L(H). For C ∈ L(H) such that C†C ≤ 1 we have

A ≈ε,ψ B =⇒ CA ≈ε,ψ CB . (2.44)

(ii) Let ψi ∈ Pos(H) for i ∈ {1, . . . , n} with constant n, and A, B ∈ L(H). Define ψ = ∑i ψi. Then:

∀i ∈ {1, . . . , n} : A ≈ε,ψi B ⇐⇒ A ≈ε,ψ B (2.45)

Proof.

(i) Since ψ is positive, we have ψ = ψ1/2ψ1/2. Therefore, we can use C†C ≤ 1 in the following bound:

Tr
[
(CA− CB)†(CA− CB)ψ

]
= Tr

[
ψ1/2(A− B)†C†C(A− B)ψ1/2

]
(2.46)

≤ Tr
[
(A− B)†(A− B)ψ

]
. (2.47)

(ii) Inserting the definition of ψ:

∑
i

Tr
[
(A− B)†(A− B)ψi

]
= Tr

[
(A− B)†(A− B)ψ

]
. (2.48)

The implication from left to right in the lemma follows because each term in the sum is O(ε) by
assumption and there are constantly many terms. The implication from right to left follows because
each Tr

[
(A− B)†(A− B)ψi

]
is positive.
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The following two lemmas state that if the outcome of measuring a binary observable on a state is
almost certain, then the observable is close to identity on the state. Informally, this can be viewed as a
variant of the gentle-measurement lemma (see e.g. [Wil11, lemma 9.4.1]) expressed in the formalism of the
state-dependent distance.

Lemma 2.19. Let ψ ∈ Pos(H), {M(a)}a∈A a projective measurement with index set A, and O a binary
observable

O = ∑
a
(−1)sa M(a) , (2.49)

where sa ∈ {0, 1}. Suppose there exists an a′ ∈ A for which

Tr
[

M(a′)ψ
]
≈ε Tr[ψ] . (2.50)

Then
O ≈ε, ψ (−1)sa′1 (2.51)

Proof. Using the fact that O is a binary observable, we can expand

Tr
[
(O− (−1)sa′1)† (O− (−1)sa′1)ψ

]
= 2 Tr[ψ]− 2 (−1)sa′ Tr[Oψ] . (2.52)

Inserting the definition of O and using Tr
[

M(a)ψ
]
≥ 0 for all a for the inequality, as well ∑a M(a) = 1 for

the last equality, we get

(−1)sa′Tr[Oψ] = ∑
a
(−1)sa′+sa Tr

[
M(a)ψ

]
(2.53)

= Tr
[

M(a′)ψ
]
+ ∑

a 6=a′
(−1)sa′+sa Tr

[
M(a)ψ

]
(2.54)

≥ Tr
[

M(a′)ψ
]
− ∑

a 6=a′
Tr
[

M(a)ψ
]

(2.55)

= 2 Tr
[

M(a′)ψ
]
− Tr[ψ] . (2.56)

Inserting this and using the assumption Tr
[

M(a′)ψ
]
≈ε Tr[ψ]:

Tr
[
(O− (−1)sa′ )† (O− (−1)sa′ )ψ

]
≤ 4 Tr[ψ]− 4 Tr

[
M(a′)ψ

]
≈ε 0 . (2.57)

We will often use the previous lemma together with the following simple statement:

Lemma 2.20. Let O be a binary observable onH and ψ ∈ Pos(H). Then:

O ≈ε,ψ (−1)b1 =⇒ O(b) ≈ε,ψ 1 and O(b) ≈ε,ψ 0 . (2.58)
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Proof. This follows immediately from the fact that since O is a binary observable, we have

O = (−1)b(2 O(b) − 1) .

The main feature of the state-dependent distance is that if two operators are close in the state-dependent
distance, we can replace one operator by the other acting on either side of the state. The following two
lemmas formalise this replacement step. In addition to replacing operators with one another, we will also
need to replace states, as shown in Lemma 2.21(ii).

Lemma 2.21 (Replacement lemma).

(i) Let ψ ∈ Pos(H), and A, B, C ∈ L(H). If A ≈ε,ψ B and ‖C‖∞ = O(1), then

Tr[CAψ] ≈ε1/2 Tr[CBψ] , (2.59)

Tr[ACψ] ≈ε1/2 Tr[BCψ] . (2.60)

(ii) Let ψ, ψ′ ∈ Pos(H), and A ∈ L(H). If ψ ≈ε ψ′ and ‖A‖∞ = O(1), then

Tr[Aψ] ≈ε1/2 Tr
[
Aψ′

]
. (2.61)

Proof.

(i) We show the first relation, the second one is analogous. We rewrite the expression as an inner product
and apply the Cauchy-Schwarz inequality (Remark 2.13):

|Tr[C(A− B)ψ]| =
∣∣∣〈C†, A− B〉ψ

∣∣∣ (2.62)

≤
∥∥∥C†

∥∥∥
ψ
· ‖A− B‖ψ (2.63)

= O(ε1/2) . (2.64)

In the last line, we used
∥∥C†

∥∥
ψ
≤
∥∥C†

∥∥
∞ = ‖C‖∞ from Lemma 2.17 and ‖C‖∞ = O(1) by

assumption.

(ii) By Hölder’s inequality: ∣∣Tr
[
A(ψ− ψ′)

]∣∣ ≤ ‖A‖∞ ·
∥∥ψ− ψ′

∥∥
1 . (2.65)

The result follows since ‖A‖∞ = O(1) and ‖ψ− ψ′‖1 = O(
√

ε) by assumption.

Lemma 2.22. Let A, B ∈ L(H) be linear operators, C ∈ L(H) a linear operator with constant operator
norm, and ψ ∈ D(H). Then, the following holds:

A ≈ε,ψ B =⇒ A ψ C ≈ε B ψ C and C ψ A† ≈ε C ψ B† . (2.66)
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Proof. We show the first relation, the second one is analogous. Suppose A ≈ε,ψ B. By Hölder’s inequality,
we have

‖(A− B)ψC‖2
1 ≤

∥∥∥(A− B)ψ1/2
∥∥∥2

2
·
∥∥∥ψ1/2C

∥∥∥2

2
(2.67)

= ‖A− B‖2
ψ · ‖C‖

2
ψ by Remark 2.11 (2.68)

≤ ‖A− B‖2
ψ · ‖C‖

2
∞ by Lemma 2.17 (2.69)

= O(ε) (2.70)

A self-testing statement always involves showing the existence of an isometry V from the prover’s
Hilbert space into some larger Hilbert space (see Section 1.1). The main technical difficulty that arises
from this is that the application of V†, i.e., the mapping from the larger space to the smaller space, cannot
be inverted in general: VV† 6= 1. The following two lemmas deal with how the state-dependent distance
behaves under the application of an isometry.

Lemma 2.23. Let H1,H2 be Hilbert spaces with dim(H1) ≤ dim(H2), V : H1 → H2 an isometry, and
A and B binary observables onH1 andH2, respectively. Then, the following holds for any ψ ∈ Pos(H1):

VAV† ≈ε,VψV† B =⇒ A ≈ε,ψ V†BV . (2.71)

A ≈ε,ψ V†BV =⇒ VAV† ≈ε1/2,VψV† B . (2.72)

Proof. We prove each relation in turn.

Proof of the first relation.
Using V†V = 1:

Tr
[(

A−V†BV
)† (

A−V†BV
)

ψ

]
= Tr

[
V†
(

VAV† − B
)

VV†
(

VAV† − B
)

Vψ
]

(2.73)

Since ψ is positive, we have ψ = ψ1/2ψ1/2:

= Tr
[
ψ1/2V†

(
VAV† − B

)
VV†

(
VAV† − B

)
Vψ1/2

]
(2.74)

We have
(
VSV†

S
)2

= VSV†
S , so VSV†

S is a projector and in particular less than or equal to 1. Since the
expression has the form Tr

[
MVSV†

S M†], we can bound it as:

≤ Tr
[
ψ1/2V†

(
VAV† − B

) (
VAV† − B

)
Vψ1/2

]
(2.75)

= Tr
[(

VAV† − B
) (

VAV† − B
)

VψV†
]

(2.76)

Since we are assuming VAV† ≈ε,VψV† B:

≈ε 0 . (2.77)
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Proof of the second relation.
By Lemma 2.16, we only need to show

Tr
[
VAV†BVψV†

]
= Tr

[
AV†BVψ

]
≈ε1/2 1 . (2.78)

This follows immediately from the replacement (Lemma 2.21(i)), the assumption V†BV ≈ε,ψ A, and the
fact that A2 = 1.

Lemma 2.24. Let H1,H2 be Hilbert spaces with dim(H1) ≤ dim(H2) and V : H1 → H2 an isometry.
Let A and B be binary observables on H1 and H2, respectively, ψ ∈ Pos(H1), and ε ≥ 0. Then for any
b ∈ {0, 1}:

V†BV ≈ε,ψ A =⇒ V†B(b)V ≈ε,ψ A(b) , (2.79)

B ≈ε,VψV† VAV† =⇒ B(b) ≈ε,VψV† VA(b)V† . (2.80)

Proof.

Proof of the first relation. For any binary observable O, we can write O = (−1)b
(

2 O(b) − 1
)

. There-
fore,

V†BV − A = (−1)bV†
(

2 B(b) − 1
)

V − (−1)b
(

2A(b) − 1
)

(2.81)

= (−1)b · 2 ·
(

V†B(b)V − A(b)
)

. (2.82)

This means that

Tr
[(

V†B(b)V − A(b)
)† (

V†B(b)V − A(b)
)

ψ

]
=

1
4

Tr
[(

V†BV − A
)† (

V†BV − A
)

ψ

]
≈ε 0 . (2.83)

Proof of the second relation. Similarly to the first case, we have

B−VAV† = (−1)b · 2 ·
(

B(b) −VA(b)V†
)
− (−1)b

(
1−VV†

)
. (2.84)

The result then follows from
(
1−VV†)VψV† = 0.

2.5 Lifting state-dependent operator relations using computational indistinguishability

The following lemma collects a number of statements that allow us to replace computationally indistin-
guishable states with one another in the state-dependent distance. This means that if two states are compu-
tationally indistinguishable and a state-dependent operator relation holds for one of the states, we can “lift”
this relation to the other state, provided the operators are efficient. We will make use of this many times
throughout the rest of the paper.

Lemma 2.25 (Lifting lemma). Let ψ, ψ′ ∈ D(H) such that ψ
c≈δ ψ′.

(i) Let A be an efficient observable onH. Then:

Tr[Aψ] ≈δ Tr
[
Aψ′

]
. (2.85)
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(ii) Let A, B be efficient binary observables onH. Then:

A ≈ε,ψ B =⇒ A ≈δ+ε,ψ′ B . (2.86)

(iii) Let A, B be efficient binary observables onH. Then:

[A, B] ≈ε,ψ 0 =⇒ [A, B] ≈δ+ε, ψ′ 0 . (2.87)

(iv) Let A, B be efficient binary observables onH. Then:

{A, B} ≈ε,ψ 0 =⇒ {A, B} ≈δ+ε, ψ′ 0 . (2.88)

(v) Let H′ be another Hilbert space with dim(H′) ≥ dim(H), A an efficient binary observable on H,
B an efficient binary observable onH′, and V : H → H′ an efficient isometry. Then:

A ≈ε, ψ V†BV =⇒ A ≈ε1/2+δ,ψ′ V†BV . (2.89)

(vi) Let H′ be another Hilbert space with dim(H′) ≥ dim(H). For this case, let ψ, ψ′ ∈ D(H′) such

that ψ
c≈δ ψ′. Let A be an efficient binary observable on H, B an efficient binary observable on H′,

and V : H → H′ an efficient isometry. Then:

VAV† ≈ε, ψ B =⇒ VAV† ≈ε1/4+δ,ψ′ B . (2.90)

Proof.

(i) Since A is efficient, the procedure that makes the measurement {A0, A1} and outputs the result is
efficient. The probability of outputting 0 given state ρ is Tr

[
A(0)ρ

]
. Therefore, by the definition of

computational indistinguishability (Definition 2.8), we have

Tr[Aψ] = 2 Tr
[

A(0)ψ
]
− 1 ≈δ 2 Tr

[
A(0)ψ′

]
− 1 = Tr

[
Aψ′

]
. (2.91)

(ii) By assumption,
Tr
[
(A− B)†(A− B)ψ

]
≈ε 0 . (2.92)

By Lemma 2.6 and Definition 2.8, we also have

Tr
[
(A− B)†(A− B)ψ

]
≈δ Tr

[
(A− B)†(A− B)ψ′

]
. (2.93)

The result follows by the triangle inequality.

(iii) As above, using Corollary 2.7.

(iv) As above, using Corollary 2.7.
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(v) We first remark that the result of (ii) does not directly apply here, since V†BV is in general not a
binary observable. Let U ∈ U (H′) be an efficient unitary such that V = U(1⊗ |0k〉), where k =
dim(H′)/ dim(H) (assuming that dim(H) divides dim(H′), which is without loss of generality
since we can add extra dimensions to H′ if necessary). Then by Lemma 2.6 and because we can
efficiently prepare the state |0k〉〈0k|, there exists an efficient procedure that outputs a bit b with

4 · Pr
[
b = 0|ψ′

]
= Tr

[
(A⊗ 1k −U†BU)2(ψ′ ⊗ |0k〉〈0k|)

]
. (2.94)

By the assumption ψ
c≈δ ψ′, we therefore have

Tr
[
(A⊗ 1k −U†BU)2(ψ′ ⊗ |0k〉〈0k|)

]
≈δ Tr

[
(A⊗ 1k −U†BU)2(ψ⊗ |0k〉〈0k|)

]
. (2.95)

Since we are assuming A ≈ε,ψ V†BV, it now suffices to show

Tr
[
(A⊗ 1k −U†BU)2(ψ⊗ |0k〉〈0k|)

]
≈ε1/2 Tr

[
(A−V†BV)2ψ

]
. (2.96)

Multiplying out the expression on the left hand side and using that we can move |0k〉 and 〈0k| past
A⊗ 1k, we get

Tr
[
(A⊗ 1k −U†BU)2(ψ⊗ |0k〉〈0k|)

]
= 1 + 1− Tr

[
AV†BVψ

]
− Tr

[
AV†BVψ

]
. (2.97)

Expanding the right hand side of Equation (2.96), one gets the same terms, except for Tr
[
V†BVψV†BV

]
instead of 1. However, using the assumption A ≈ε,ψ V†BV and the replacement lemma (Lemma 2.21)
twice:

Tr
[
V†BVψV†BV

]
≈ε1/2 Tr[AψA] = 1 . (2.98)

The last equality is true because A squares to identity and ψ is normalised.

(vi) Let U be as in (v), again assuming without loss of generality that dim(H) divides dim(H′). By the
same reasoning as in (v), we have

Tr
[
(U(A⊗ 1k)U† − B)2ψ′

]
≈δ Tr

[
(U(A⊗ 1k)U† − B)2ψ

]
, (2.99)

so it suffices to show

Tr
[
(U(A⊗ 1k)U† − B)2ψ

]
≈ε1/4 Tr

[
(VAV† − B)2ψ

]
. (2.100)

As a first step, we show VV† ≈ε1/2,ψ 1. For this, observe that since V†V = 1:

Tr
[
(VV† − 1)2ψ

]
= Tr

[
(VV†VV† + 1− 2 VV†)ψ

]
(2.101)

= 1− Tr
[
VV†ψ

]
(2.102)

Using that B2 = 1, V†V = 1, and ψ is normalised:

= 1−
(

Tr
[
(VAV† − B)2ψ

]
− 1 + Tr

[
VAV†Bψ

]
+ Tr

[
BVAV†ψ

])
(2.103)
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Since by assumption VAV† ≈ε,ψ B, the first trace is O(ε). For the other two traces, we can use the
replacement lemma (Lemma 2.21) to replace VAV† with B:

≈ε1/2 2− 2 Tr
[
B2 ψ

]
(2.104)

= 0 . (2.105)

This allows us to show Equation (2.100) as follows. On the one hand we have from expanding as in
Lemma 2.16:

Tr
[
(U(A⊗ 1k)U† − B)2ψ

]
= 2− 2<Tr

[
BU(A⊗ 1k)U†ψ

]
(2.106)

Using VV† ≈ε1/2 1 and the replacement lemma (Lemma 2.21):

≈ε1/4 2− 2<Tr
[

BU(A⊗ 1k)U†VV†ψ
]

(2.107)

Rewriting V = U(1⊗ |0k〉), using U†U = 1, and evaluating (A⊗ 1k)(1⊗ |0k〉) = (1⊗ |0k〉)A:

= 2− 2<Tr
[

BU(1⊗ |0k〉)AV†ψ
]

(2.108)

= 2− 2<Tr
[

BVAV†ψ
]

. (2.109)

On the other hand, expanding in the same manner as in Equation (2.106):

Tr
[
(VAV† − B)2ψ

]
= 1 + Tr

[
VV†ψ

]
− 2<Tr

[
BVAV†ψ

]
(2.110)

Using VV† ≈ε1/2,ψ 1:

≈ε1/2 2− 2<Tr
[

BVAV†ψ
]

. (2.111)

The result follows from the triangle inequality.

3 Self-testing protocol

In this section, we introduce the self-testing protocol and describe the behaviour of an honest prover that
succeeds with probability negligibly close to 1. The protocol is described in detail in Figure 1, an informal
description was already given in the introduction (Section 1.3).

3.1 Completeness of self-testing protocol

Proposition 3.1. There is an efficient quantum prover that is accepted in the self-testing protocol with
probability negligibly close to 1 (as a function of the security parameter).

25



Let λ be a security parameter and (F ,G) an ENTCF family.

1. The verifier selects bases θ1, θ2 ∈R {0, 1}, where 0 corresponds to the computational and 1 to the
Hadamard basis. We call the basis choices (0, 1) and (1, 0) the test case, and the basis choice (1, 1)
the Bell case.

2. The verifier samples keys and trapdoors (k1, tk1 ; k2, tk2) using{
(ki, tki)← GENKG (1

λ) if θi = 0 ,
(ki, tki)← GENKF (1

λ) if θi = 1 .

The verifier sends (k1, k2) to the prover (but keeps the trapdoors tki private).

3. The verifier receives y1, y2 ∈ Y from the prover.

4. The verifier selects a round type ∈ {preimage round, Hadamard round} uniformly at random and
sends the round type to the prover.

(i) For a preimage round: The verifier receives (b1, x1; b2, x2) from the prover, with bi ∈ {0, 1}
and xi ∈ X . The verifier sets flag← failPre if CHK(ki, yi, bi, xi) = 0 for i = 1 or i = 2.

(ii) For a Hadamard round: The verifier receives d1, d2 ∈ {0, 1}w from the prover (for some w
depending on the security parameter). The verifier selects questions q1, q2 ∈R {0, 1}, sends
these to the prover, and receives answers v1, v2 ∈ {0, 1}. Depending on the basis choice, the
verifier performs the following checks:

Basis choice (θ1, θ2) Verifier’s check
(0, 0) None

(0, 1) Set flag← failTest if one of the following is true:
q1 = 0 and b̂(k1, y1) 6= v1.
q2 = 1 and û(k2, y2, d2) 6= v2 ⊕ b̂(k1, y1).

(1, 0) Set flag← failTest if one of the following is true:
q1 = 1 and û(k1, y1, d1) 6= v1 ⊕ b̂(k2, y2).
q2 = 0 and b̂(k2, y2) 6= v2.

(1, 1) Set flag← failBell if one of the following is true:
(q1, q2) = (0, 1) and û(k2, y2, d2) 6= v1 ⊕ v2
(q1, q2) = (1, 0) and û(k1, y1, d1) 6= v1 ⊕ v2

Figure 1: The self-testing protocol. Some of the verifier’s checks, such as that for (θ1, θ2) = (1, 0),
û(k1, y1, d1) must equal v1 ⊕ b̂(k2, y2), not v1, might look counter-intuitive. They are defined this way
because the verifier must effectively “decode” the CZ gate that the honest prover applies.
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Proof. We describe the honest strategy. Given keys k1, k2, the prover initially treats each key separately
(i.e., it prepares a product state). For each ki, the prover prepares the state

1√
2 · |X | ∑

b∈{0,1}
∑

x∈X , y∈Y

√
fki ,b(x)(y)|b〉|x〉|y〉 . (3.1)

Preparing this state can be efficiently done (up to negligible error) using the SAMP procedure from the
definition of ENTCF families ([BCM+18, definition 3.1] and [Mah18, definition 4.2]). The prover then
measures the two “image registers” (i.e., the ones where y is stored) to obtain images y1, y2 ∈ Y and sends
these back to the verifier. The post-measurement for each i ∈ {1, 2} is{

|b̂(ki, yi)〉|x̂(ki, yi)〉 if ki ∈ KG ,
1√
2
(|0〉|x̂0(ki, yi)〉+ |1〉|x̂1(ki, yi)〉) if ki ∈ KF .

(3.2)

If the verifier selects a preimage round, the prover measures both registers in the computational basis
and returns the result. From the states in Equation (3.2) it is clear that the prover succeeds with probability
negligibly close to 1 in the preimage round.

If the verifier selects a Hadamard round, the prover measures both “x-registers” in the Hadamard basis
to obtain strings d1, d2 and returns these to the verifier. We introduce the shorthand bi = b̂(ki, yi) and
xb,i = x̂b(ki, yi). At this point, the prover’s state for each i ∈ {1, 2} is (up to a global phase){

|bi〉 if ki ∈ KG ,
|(−)di ·(x0,i⊕x1,i)〉 if ki ∈ KF .

(3.3)

Now the prover applies a controlled-Z gate (CZ) between the two qubits (with i = 1 being the control
and i = 2 being the target qubit). This results in the state (again up to global phases)

|b1〉|b2〉 if k1, k2 ∈ KG ;
|b1〉|(−)b1⊕d2·(x0,2⊕x1,2)〉 if k1 ∈ KG , k2 ∈ KF ;
|(−)b2⊕d1·(x0,1⊕x1,1)〉|b2〉 if k1 ∈ KF , k2 ∈ KG ;

|φ(d2·(x0,2⊕x1,2), d1·(x0,1⊕x1,1))
H 〉 if k1, k2 ∈ KF ,

(3.4)

with the (Hadamard-rotated) Bell states

|φ(a,b)
H 〉 = (σa

X ⊗ σb
X)(|00〉+ |01〉+ |10〉 − |11〉) . (3.5)

When the prover receives questions q1, q2 ∈ {0, 1} from the verifier, he measures each qubit individually
in the computational (if qi = 0) or Hadamard (if qi = 1) basis and returns the outcomes v1, v2. For the first
three cases in Equation (3.4), it is easy to see that the prover will be accepted. For the last case, this follows
from

(σZ ⊗ σX)|φ(a,b)〉 = (−1)a|φ(a,b)〉 , (3.6)

(σX ⊗ σZ)|φ(a,b)〉 = (−1)b|φ(a,b)〉 . (3.7)
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4 Soundness of self-testing protocol

The goal of this section is to prove the soundness of the self-testing protocol in Figure 1, i.e., to show that any
computationally bounded prover that succeeds in the protocol must have prepared a Bell state and measured
the individual qubits in the computational or Hadamard basis, up to a global change of basis. This statement
is made formal in Theorem 4.38. All statements in this section are under the assumption that no efficient
quantum device can break the LWE assumption [Reg09]. Informally, the main steps of the soundness proof
are the following:

1. We first formalise the actions of a quantum prover as a device (Section 4.1). A device is essentially
a collection of states and measurements used by the prover to compute his answers to the verifier.
These states and measurements are the ones that the verifier can characterise with the self-testing
protocol. We then express the success probability of a device in terms of its states and measurements
in section 4.2.

2. In the self-testing protocol, the verifier chooses which type of function (claw-free or injective) to use.
We show that because it is computationally hard to determine the function type given only the key,
different states prepared by the prover for different key choices are computationally indistinguish-
able. This will allow us to use different key choices to characterise different aspects of the prover’s
behaviour, and “lift” these characterisations to another key choice using the lifting lemma (Lemma
2.25).

3. We show that different observables used by the prover either anti-commute (Section 4.5) or commute
(Section 4.6) on the prover’s state.7

4. In the self-testing protocol, the prover gets two questions indicating the measurement bases for the
first and second “qubit” (though at this point in the proof, we do not yet have a characterisation of the
prover’s states in terms of qubits). Depending on whether the bases for both “qubits” are the same
or different, the prover’s measurements are described by different observables, which we call “non-
tilde observables” if the questions are the same, and “tilde observables” if they are different. To fully
characterise the prover’s measurements, we need to characterise both tilde and non-tilde observables.
In particular, to analyse the “Bell case” in the protocol, the tilde observables are required. For technical
reasons, characterising non-tilde observables is easier. Hence, the next step is to characterise the non-
tilde observables as follows:

(i) We define an isometry VS (Definition 4.24), which is a single-prover version of the two-prover
“swap isometry” in [MYS12]. The isometry is defined in terms of the prover’s non-tilde ob-
servables. This is the isometry for which we will show that it maps the prover’s states and
observables to the desired Bell states and two-qubit Pauli observables.

(ii) We show that under this isometry, the prover’s observables on the first “qubit” are close to Pauli
observables (Equation (4.79) and Lemma 4.27).

(iii) We use this characterisation of the observables to obtain a characterisation of the prover’s first
qubit in the “test case” of the self-testing protocol (Lemmas 4.28 and 4.29).

7This step is also common for proving self-testing results in the multi-prover model (see e.g. [NV17, theorem 13]) and provides
the basis for showing that the prover’s observables are approximately equal to Pauli operators (under some isometry).
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(iv) We use the characterisation of the prover’s first qubit to show that the prover’s observables on
the second qubit are also approximately equal to Pauli observables (Lemma 4.30).8

5. We show that non-tilde observables and tilde observables are approximately equal on the state (Lemma
4.32), and hence tilde observables are also close to Pauli observables under the isometry VS (Corollary
4.33).

6. We use the characterisation of the prover’s observables to also characterise the prover’s second “qubit”
in the “test case” (Lemma 4.35). The computational indistinguishability of the verifier’s basis choices
allows us to extend this characterisation to the Bell case (Corollary 4.36).

7. The characterisation of both of the prover’s “qubits” allows us to show that products of the prover’s
observables are close to tensor products of Pauli observables (Lemma 4.37).

8. Using this characterisation of products of observables, we can show that in the Bell case, the prover
must have produced a Bell pair and measured its individual qubits in the computational or Hadamard
basis (Theorem 4.38).

4.1 Devices

We model the actions of a general prover by a “device”. This formalises all possible actions that can be
taken by the prover to compute his answers y1, y2, d1, d2, and v1, v2 to the verifier. By Naimark’s theorem,
up to adding dimensions to the prover’s Hilbert space, we can assume without loss of generality that the
prover only performs projective measurements (instead of more general POVMs).

Definition 4.1 (Devices). A device D = (S, Π, M, P) is specified by the following:

(i) A set S = {ψ(θ1,θ2)}θ1,θ2∈{0,1} of states ψ(θ1,θ2) ∈ D(HD ⊗HY), where dim(HY) = |Y|2 and the
states are classical onHY:

ψ(θ1,θ2) = ∑
y1,y2∈Y

ψ
(θ1,θ2)
y1,y2 ⊗ |y1, y2〉〈y1, y2|Y . (4.1)

In the context of the self-testing protocol, ψ(θ1,θ2) is the prover’s state after returning y1, y2 for the case
where the verifier makes basis choices θ1, θ2. Each ψ(θ1,θ2) also implicitly depends on the specific keys
chosen by the verifier (not just the key type); all the statements we make hold on average over key
choices.

(ii) A projective measurement Π onHD ⊗HY:

Π =

{
Π(b1,x1; b2,x2) = ∑

y1,y2

Π(b1,x1; b2,x2)
y1,y2 ⊗ |y1, y2〉〈y1, y2|Y

}
b1,b2∈{0,1}; x1,x2∈X

. (4.2)

8The main difficulty in dealing with observables on the second “qubit” is the following: the isometry VS is defined in terms
of the prover’s non-tilde observables Z1, X1, Z2, X2. In the isometry, the observables Z1 and X1 are applied first, followed by the
observables Z2 and X2 (in addition to other operations involving ancilla qubits). This means that the observables Z2 and X2 do
not act directly on the prover’s state |ψ〉, but on a state of the form X1Z1|ψ〉. This prevents us from using the commutation and
anti-commutation relations derived in step 3 directly, since they are in the state-dependent distance with respect to |ψ〉. Already
having a characterisation of Z1, X1 and the prover’s “first qubit” allows us to extend these commutation and anti-commutation
relations to a state of the form X1Z1|ψ〉.
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This is the measurement used by the prover to compute his answer (b1, x1; b2, x2) in the preimage
challenge.

(iii) A projective measurement M onHD ⊗HY

M =

{
M(d1,d2) = ∑

y1,y2

M(d1,d2)
y1,y2 ⊗ |y1, y2〉〈y1, y2|Y

}
d1,d2∈{0,1}w

. (4.3)

This is the measurement used by the prover to compute his answer (d1, d2) in the Hadamard challenge.
We use an additional Hilbert spaces HR to record the outcomes of measuring M and write the post-
measurement state after applying M to ψ(θ1,θ2) as

σ(θ1,θ2) := ∑
y1,y2,d1,d2

M(d1,d2)
y1,y2 ψ

(θ1,θ2)
y1,y2 M(d1,d2)

y1,y2 ⊗ |y1, y2; d1, d2〉〈y1, y2; d1, d2|YR . (4.4)

(iv) A set P = {P0,0, P0,1, P1,0, P1,1}, where for each q1, q2 ∈ {0, 1}, Pq1,q2 is a projective measurement
onHD ⊗HY ⊗HR:

Pq1,q2 =

{
P(v1,v2)

q1,q2 = ∑
y1,y2,d1,d2

P(v1,v2)
q1,q2; y1,y2; d1,d2

⊗ |y1, y2; d1, d2〉〈y1, y2; d1, d2|YR

}
v1,v2∈{0,1}

.

(4.5)
In the context of the self-testing protocol, given questions q1, q2, the prover will measure {Pq1,q2} and
return the outcomes v1, v2 as his answer.

Definition 4.2 (Efficient devices). A device is called efficient if the states ψ(θ1,θ2) can be prepared efficiently
and the measurements Π, M, and Pq1,q2 can be performed efficiently (as defined in Definition 2.2)

4.1.1 Marginal measurements

In the standard self-testing scenario for a single Bell pair (as in e.g. [MYS12]), each prover returns a single
bit. Therefore, for a fixed question, the measurement performed by each prover can be described by a
binary observable. In contrast, in the single-prover setting, the prover sees both questions at once. Hence,
for fixed questions q1, q2, its measurements are described by the 4-outcome measurements {P(v1,v2)

q1,q2 }v1,v2 .
We relate the single-prover scenario to the two-prover scenario by defining marginal observables. These
intuitively correspond to the observables used by each prover in the two-prover setting. However, in the
single-prover setting, the observable used to obtain the first answer bit v1 can also depend on the second
question bit q2. Therefore, there are two different sets of marginal observables: the “non-tilde observables”,
which result from marginalising over projectors with q1 = q2 ; and the “tilde observables”, which result
from marginalising over projectors with q1 6= q2. A formal definition follows.

Definition 4.3 (Marginal observables). For a device D = (S, Π, M, P), we define the following binary
observables:

Z1 := ∑
i,j
(−1)i P(i,j)

0,0 , Z2 := ∑
i,j
(−1)j P(i,j)

0,0 , X1 := ∑
i,j
(−1)i P(i,j)

1,1 , X2 := ∑
i,j
(−1)j P(i,j)

1,1 ,

Z̃1 := ∑
i,j
(−1)i P(i,j)

0,1 , Z̃2 := ∑
i,j
(−1)j P(i,j)

1,0 , X̃1 := ∑
i,j
(−1)i P(i,j)

1,0 , X̃2 := ∑
i,j
(−1)j P(i,j)

0,1 .

Remark 4.4. By the same reasoning as in Lemma 2.3, all of the above are efficient binary observables.
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4.1.2 Partial post-measurement states

In Equation (4.4), we defined the prover’s post-measurement state as

σ(θ1,θ2) = ∑
y1,y2,d1,d2

M(d1,d2)
y1,y2 ψ

(θ1,θ2)
y1,y2 M(d1,d2)

y1,y2︸ ︷︷ ︸
:=σ

(θ1,θ2)
y1,y2; d1,d2

⊗|y1, y2; d1, d2〉〈y1, y2; d1, d2|R . (4.6)

Depending on the values of y1, y2, d1, d2, the prover has to give different answers v1, v2 to the verifier in
order to be accepted in the self-testing protocol. For the analysis, it will be useful to split the state σ(θ1,θ2)

according to these correct answers. A formal definition follows.

Definition 4.5 (Notation for partial post-measurement states). We define the following states:

σ(0,v1; 0,v2) = ∑
d1,d2

∑
y1 : b̂(k1,y1)=v1
y1 : b̂(k2,y2)=v2

σ
(0,0)
y1,y2; d1,d2

⊗ |y1, y2, d1, d2〉〈y1, y2, d1, d2| (4.7)

σ(0,v1; 1,v2) = ∑
d1,y2

∑
y1 : b̂(k1,y1)=v1

d2 : û(k2,y2,d2)=v2⊕b̂(k1,y1)

σ
(0,1)
y1,y2; d1,d2

⊗ |y1, y2, d1, d2〉〈y1, y2, d1, d2| (4.8)

σ(1,v1; 0,v2) = ∑
y1,d2

∑
d1 : û(k1,y1,d1)=v1⊕b̂(k2,y2)

y2 : b̂(k2,y2)=v2

σ
(1,0)
y1,y2; d1,d2

⊗ |y1, y2, d1, d2〉〈y1, y2, d1, d2| (4.9)

σ(1,s1; 1,s2) = ∑
y1,y2

∑
d1 : û(k1,y1,d1)=s2
d2 : û(k2,y2,d2)=s1

σ
(1,1)
y1,y2; d1,d2

⊗ |y1, y2, d1, d2〉〈y1, y2, d1, d2| (4.10)

Note that for any θ1, θ2 ∈ {0, 1}:
σ(θ1,θ2) = ∑

v1,v2

σ(θ1,v1; θ2,v2) . (4.11)

Remark 4.6. This indexing scheme has slightly different interpretations for the test case and the Bell case.
In the test case, i.e., for (θ1, θ2) = (0, 1) or (θ1, θ2) = (1, 0), v1 and v2 are the bits that the prover has to
return to pass both of the verifier’s checks (provided the questions ask for a measurement in the basis chosen
at the start, i.e., qi = θi). In the Bell case, only the sum v1⊕ v2 of the bits returned by the prover is checked.
Here, σ(1,s1; 1,s2) is that part of the state for which s1 is the accepted sum v1 ⊕ v2 on question (0, 1), and s2
is the accepted sum on question (1, 0).

In particular, for the honest prover, we have (after tracing out the classical registers Y and R):

TrYR

[
σ(0,v1; 0,v2)

]
=

1
4
|v1, v2〉〈v1, v2| ,

TrYR

[
σ(0,v1; 1,v2)

]
=

1
4
|v1, (−)v2〉〈v1, (−)v2 | ,

TrYR

[
σ(1,v1; 0,v2)

]
=

1
4
|(−)v1 , v2〉〈(−)v1 , v2| ,

TrYR

[
σ(1,s1; 1,s2)

]
=

1
4
|φ(s1,s2)

H 〉〈φ(s1,s2)
H | , φ

(s1,s2)
H = (σs1

X ⊗ σs2
X )(|00〉+ |01〉+ |10〉 − |11〉) .

We now prove a simple technical lemma which we will frequently use in the soundness proof.
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Lemma 4.7. Let D = (S, Π, M, P) be an efficient device. For any binary observable O, bits θ1, θ2 ∈ {0, 1},
i ∈ {1, 2}, and ε ≥ 0:

∑
v1,v2

Tr
[
O(vi)σ(θ1,v1; θ2,v2)

]
≈ε 1 =⇒ ∀ v1, v2 ∈ {0, 1} : Tr

[
O(vi)σ(θ1,v1; θ2,v2)

]
≈ε Tr

[
σ(θ1,v1; θ2,v2)

]
.

(4.12)

Proof. Fix θ1, θ2, and i. For any v1, v2 ∈ {0, 1}, O(vi) is a projector and therefore less than or equal to 1,
and σ(θ1,v1; θ2,v2) is positive for any vi. Hence, there exist δv1,v2 ≥ 0 such that

Tr
[
O(vi)σ(θ1,v1; θ2,v2)

]
= Tr

[
σ(θ1,v1; θ2,v2)

]
− δv1,v2 . (4.13)

Summing over v1, v2 on both sides and using that σ(θ1,θ2) = ∑v1,v2
σ(θ1,v1; θ2,v2) is normalised, we get

∑
v1,v2

Tr
[
O(vi)σ(θ1,v1; θ2,v2)

]
= 1− ∑

v1,v2

δv1,v2 . (4.14)

By assumption, the left hand side is ≈ε 1, so ∑v1,v2
δv1,v2 ≈ε 0. Since all δv1,v2 are positive, this implies

δv1,v2 ≈ε 0 for all v1, v2, which completes the proof.

Corollary 4.8. Let D = (S, Π, M, P) be an efficient device. For any binary observable O, bits θ1, θ2 ∈
{0, 1}, i ∈ {1, 2}, and ε ≥ 0:

∑
v1,v2

Tr
[
O(vi)σ(θ1,v1; θ2,v2)

]
≈ε 1 =⇒ ∀ v1, v2 ∈ {0, 1} : O ≈ε, σ(θ1,v1; θ2,v2) (−1)vi 1 . (4.15)

Proof. This follows immediately by combining Lemmas 2.19 and 4.7.

4.2 Success probabilities of a device

During the self-testing protocol, the verifier applies certain checks to the answers given by the prover. If
the prover fails these checks, the verifier sets flag to failPre, failTest, or failBell. Here, we relate the
probabilities that the prover passes these checks to the states and measurements used in the definition of
devices (Definition 4.1).

Lemma 4.9 (Success probability). Let D = (S, Π, M, P) be a device.

(i) Preimage check: We define

1− γP(D) = min P , (4.16)

with

P =

(
∑

y1,y2,b2,x2

Tr
[
Π(b̂(k1,y1),x̂(k1,y1); b2,x2)

y1,y2 ψ
(0,θ)
y1,y2

]
, ∑

y1,y2,b1,x1

Tr
[
Π(b1,x1; b̂(k2,y2),x̂(k2,y2))

y1,y2 ψ
(θ,0)
y1,y2

]
,

∑
y1,y2,b1,x1,b

Tr
[
Π(b1,x1; b,x̂b(k2,y2))

y1,y2 ψ
(θ,1)
y1,y2

]
, ∑

y1,y2,b2,x2,b
Tr
[
Π(b,x̂b(k1,y1); b2,x2)

y1,y2 ψ
(1,θ)
y1,y2

] )
θ∈{0,1}

.

Then, γP(D) is bounded by the prover’s success probability as follows:

γP(D) ≤ 8 · Pr[flag = failPre] . (4.17)

Here, k1 and k2 are the keys chosen by the verifier. (As always, we take an implicit expectation value
over the keys chosen by the verifier.)
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(ii) Test case: We define

1− γT(D) = min T , (4.18)

with

T =

(
Tr

[
∑

v1,v2

Z(v1)
1 σ(0,v1; 1,v2)

]
, Tr

[
∑

v1,v2

Z̃(v1)
1 σ(0,v1; 1,v2)

]
,

Tr

[
∑

v1,v2

X(v1)
1 σ(1,v1; 0,v2)

]
, Tr

[
∑

v1,v2

X̃(v1)
1 σ(1,v1; 0,v2)

]
,

Tr

[
∑

v1,v2

Z(v2)
2 σ(1,v1; 0,v2)

]
, Tr

[
∑

v1,v2

Z̃(v2)
2 σ(1,v1; 0,v2)

]
,

Tr

[
∑

v1,v2

X(v2)
2 σ(0,v1; 1,v2)

]
, Tr

[
∑

v1,v2

X̃(v2)
2 σ(0,v1; 1,v2)

])
(4.19)

Then, γT(D) is bounded by the prover’s success probability as follows:

γT(D) ≤ 8 · Pr[flag = failTest] . (4.20)

(iii) Bell case: We define

1− γB(D) = min
(

∑
s1,s2

Tr
[
(Z̃1X̃2)

(s1)σ(1,s1;1,s2)
]

, ∑
s1,s2

Tr
[
(X̃1Z̃2)

(s2)σ(1,s1;1,s2)
] )

. (4.21)

Then, γT(D) is bounded by the prover’s success probability as follows:

γB(D) ≤ 2 · Pr[flag = failBell] . (4.22)

Proof. For a tuple P, we denote its elements by Pj.

(i) From the self-testing protocol, the definition of the CHK-procedure, and the fact that the verifier
chooses bases θ1, θ2 and questions q1, q2 uniformly at random, it is clear that

Pr[flag = failBell] = 1− 1
8

8

∑
j=1

Pj . (4.23)

Because each element of P is upper-bounded by 1, this implies

Pr[flag = failPre] ≥ 1− 7
8
− 1

8
min P =

γP(D)

8
. (4.24)

(ii) From the self-testing protocol and the definition of σ(θ1,v1; θ2,v2), it is clear that because the verifier
chooses bases θ1, θ2 and questions q1, q2 uniformly at random, and flag = failTest occurs if the
verifier’s check fails on at least one answer vi, we have

Pr[flag = failTest] ≥ 1− 1
8

8

∑
j=1

Tj . (4.25)

The result now follows as in (i).
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(iii) In the Bell case, the verifier checks one of

Z̃1X̃2 = P(0,0)
0,1 − P(0,1)

0,1 − P(1,0)
0,1 + P(1,1)

0,1 , X̃1Z̃2 = P(0,0)
1,0 − P(0,1)

1,0 − P(1,0)
1,0 + P(1,1)

1,0 (4.26)

uniformly at random. Considering the self-testing protocol and the definition of σ(1,s1; 1,s2), the result
now follows as in (i).

4.2.1 Reduction to perfect device

The purpose of this section is to show that for the rest of the soundness proof, we can restrict ourselves
to devices that pass the preimage round of the protocol with probability 1− negl(λ). This is primarily a
technical convenience that simplifies the arguments in later parts of the proof.

Definition 4.10 (Perfect device). We call a device D perfect if γP(D) = negl(λ).

The following lemma says that for any efficient device D, there exists another efficient perfect device
D′, which uses the same measurements as D, and whose initial state is close to the initial state of D. Since
we are ultimately interested in characterising the states and measurements of a device, this will allow us to
first replace the arbitrary device by a perfect one, characterise the states and measurements of the perfect
device, and finally argue that this characterisation also applies (up to some error) to the arbitrary device.

Lemma 4.11. Let D = (S, Π, M, P) be an efficient device with γP(D) < 1, where S =
{

ψ(θ1,θ2)
}

. Then

there exists an efficient perfect device D′ = (S′, Π, M, P), which uses the same measurements Π, M, P and

whose states S′ =
{

ψ′(θ1,θ2)
}

satisfy for any θ1, θ2 ∈ {0, 1}:∥∥∥ψ′(θ1,θ2) − ψ(θ1,θ2)
∥∥∥

1
≈γP(D)1/2 0 . (4.27)

Proof. The idea of the proof is the same as in [Mah18, claim 7.2] and [GV19, lemma 3.9]. We give a
construction of D′ as follows: D′ first prepares the states ψ(θ1,θ2) as D does. D′ then applies the efficient
unitary UΠ associated with the measurement Π:

|02(1+|X |)〉〈02(1+|X |)|R ⊗ ψ(θ1,θ2) UΠ7−→ |b1, x1; b2, x2〉〈b1, x1; b2, x2|R ⊗Π(b1,x1; b2,x2)ψ(θ1,θ2)Π(b1,x1; b2,x2) .

Now D′ coherently evaluates the (efficient) CHK-function on the Y-register of Π(b1,x1; b2,x2)ψ(θ1,θ2)Π(b1,x1; b2,x2)

and the new register containing bi, xi. If CHK succeeds, D′ applies U† to the state, traces out the ancillary
register R, and uses this as ψ′(θ1,θ2). Otherwise, D′ repeats the process up to polynomially (in the security
parameter) many times, and aborts if the CHK procedure never succeeds. Since the probability of CHK

failing is at most γP(D), the probability that it fails polynomially many times is negligible. (We remark that
the prover described by D′ has to run this checking procedure before actually returning the images y, y′ to
the verifier.)

It is clear that D′ is efficient and perfect. Fix θ1, θ2. We need to show
∥∥∥ψ′(θ1,θ2) − ψ(θ1,θ2)

∥∥∥
1
≈γP(D)1/2 0.

Since the probability of the CHK to succeed is at least 1− γP(D), by the gentle measurement lemma (see
e.g. [Wil11, lemma 9.4.1]), the post-measurement state after CHK has succeeded is O(γP(D)1/2)-close in
trace distance to U(|02(1+|X |)〉〈02(1+|X |)|R ⊗ ψ(θ1,θ2))U†. Because the trace distance is unitarily invariant,
this implies that the state ψ′(θ1,θ2) is also O(γP(D)1/2)-close in trace distance to ψ(θ1,θ2).
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4.3 Lifting relations from one basis choice to another

A lot of the leverage that the verifier has over the prover stems from the fact that the prover does not know
the verifier’s basis choices θ1, θ2. In particular, the prover does not know whether he is in the “Bell case”
θ1 = θ2 = 1, where the honest prover prepares an entangled state, or in the “test case” θ1 6= θ2, where the
honest prover prepares a product state. The test case is useful as a testing procedure because the two bits that
the prover has to return as an answer in the Hadamard round are determined by the y1, y2 and d1, d2 that the
prover returned in the previous rounds. Using the trapdoor, the verifier can check each answer individually.
In contrast, in the Bell case, only the sum of both answers is checked by the verifier.

In the soundness proof, we often want to “lift” approximate-equality relations that we can certify for
one of the test cases, e.g. θ1 = 0, θ2 = 1, to any other choices of θ1, θ2. Intuitively, this is possible because
the prover does not know which case it is in, so it cannot adapt its behaviour accordingly. We have already
shown in Lemma 2.25 that we can lift relations from one state to another if the states are computationally
indistinguishable and the relation only involves efficient quantities. Therefore, we only need to show that
the different σ(θ1,θ2) are computationally indistinguishable, which we do in the following simple lemma.

Lemma 4.12. Let D = (S, Π, M, P) be an efficient device. Given a state σ(θ1,θ2) with uniformly sampled
(θ1, θ2), no efficient procedure can correctly guess (θ1, θ2) with probability non-negligibly larger than 1/4.
The same holds for the states ψ(θ1,θ2).

Proof. The values for θi directly indicate whether ki ∈ KG or ki ∈ KF . Therefore, a procedure that correctly
guesses θ1, θ2 with probability non-negligibly larger than 1/4 would violate the injective invariance property
of the ENTCF family [Mah18, definition 4.3]. The same reasoning applies for ψ(θ1,θ2).

4.4 Uniform normalisation and answers

In Definition 4.5, we defined the partial post-measurement states σ(θ1,v1; θ2,v2). In this section we show that
in the test case (i.e., θ1 6= θ2), the normalisation of a certain marginalisation of these states is uniform,
i.e., the same for both v = 0 and v = 1. This is a weaker statement than showing that the normalisation of
σ(θ1,v1; θ2,v2) itself (without marginalising) is uniform, but it will be sufficient. The proof reduces the uniform
normalisation to the adaptive hardcore bit property of the ENTCF family (informally, item (ii) in the list in
Section 1.2).

Lemma 4.13. Let D = (S, Π, M, P) be an efficient perfect device. Then:

∑
v2

Tr
[
σ(1,0; 0,v2)

]
≈0 ∑

v2

Tr
[
σ(1,1; 0,v2)

]
, ∑

v1

Tr
[
σ(0,v1; 1,0)

]
≈0 ∑

v1

Tr
[
σ(0,v1; 1,1)

]
. (4.28)

Proof. We show the first relation, the second one is analogous. Assume for the sake of contradiction that

∑
v2

Tr
[
σ(1,0; 0,v2)

]
−∑

v2

Tr
[
σ(1,1; 0,v2)

]
≥ µ(λ) , (4.29)

for some non-negligible positive µ(λ). Here, we assumed for concreteness that the left hand side is positive,
but the proof is easily seen to also hold for the case where the left hand side is smaller than a non-negligible
negative function by flipping the final bit in the output of the procedure A below.

We want to show that this contradicts the adaptive hardcore bit property. To this end, we define the
following efficient procedure A: A is given a key k1 ∈ KF and samples another key and a trapdoor
(k2, tk2)← GENG(1λ). A first prepares the state ψ(θ1,θ2) by performing the same operations as the device D,
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obtaining y1, y2 in the process; this is efficient because D is efficient. Then, A performs the preimage mea-
surement Π, obtaining outcomes (b1, x1) and (b2, x2). Finally, it measures M, obtaining outcomes d1, d2.
Again, these measurements are efficient because D is efficient. A outputs the tuple (b1, x1, d1, b̂(k2, y2)).
Note that since the A has access to tk2 , computing b̂(k2, y2) is efficient.

We now argue that this indeed breaks the adaptive hardcore bit property. Because the device D is perfect,
the preimage measurement yields a correct preimage with probability negligibly close to 1. Then, by the
collapsing property [GV19, lemma A.7], the states before and after the preimage measurement are compu-
tationally indistinguishable. Since M is an efficient measurement, this means that the outcome distributions
obtained by measuring M directly on ψ(θ1,θ2) and measuring M on the post-measurement state after having
measured Π must be negligibly close. Hence, y1, y2, d1, d2 obtained by A have the same distribution (up to
negligible difference) as the images and equation strings obtained by the device D. Using the definition of
σ(1,v1; 0,v2), this means that on average over A’s distribution over ki, yi, di:

Pr
[
û(k1, y1, d1) = v1 ⊕ b̂(k2, y2)

]
= Tr

[
∑
v2

σ(1,v1; 0,v2)

]
. (4.30)

Combining this with the assumption in Equation (4.29), we see that A’s output (b1, x1, d1, b̂(k2, y2)) is
“correct” (i.e., in the set Hk1 in [BCM+18, definition 3.1(iv)]) with non-negligible advantage.

As a corollary to the above lemma, we can also show that for a device that succeeds with high probability
in the test case, the answers returned on question q = 1 (i.e., a Hadamard basis measurement) must be close
to uniform.

Corollary 4.14. Let D = (S, Π, M, P) be an efficient perfect device. Then:

Tr
[

X1σ(θ1,θ2)
]
≈γT(D) 0 , Tr

[
X2σ(θ1,θ2)

]
≈γT(D) 0 . (4.31)

Proof. We show the first relation, the second is analogous. Since X1 is efficient, by the lifting lemma
(Lemma 2.25(i)) and the indistinguishability of σ(θ1,θ2) (Lemma 4.12), it suffices to show Tr

[
X1σ(1,0)

]
≈γT(D)

0. By the definition of γT(D) (Equation (4.18)) and Lemma 4.7, we have (using that X1 = (−1)v1(2X(v1)−
1) since X1 is a binary observable):

Tr
[

X1σ(1,0)
]
= ∑

v1,v2

Tr
[
(−1)v1(2X(v1) − 1)σ(1,v1; 0,v2)

]
(4.32)

≈γT(D) ∑
v1,v2

(−1)v1Tr
[
σ(1,v1; 0,v2)

]
. (4.33)

The result now follow from Lemma 4.13.

4.5 Anti-commutation relations

The goal of this section is to prove the following proposition.

Proposition 4.15. For any efficient perfect device D = (S, Π, M, P), the following approximate anti-
commutation relations hold for any θ1, θ2 ∈ {0, 1} and i ∈ {1, 2}:

{Zi, Xi} ≈γT(D)1/2, σ(θ1,θ2) 0 . (4.34)
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The proof is given at the end of this section. We first show a number of auxiliary lemmas.

Lemma 4.16. For any efficient device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈ {0, 1} and
i ∈ {1, 2}:

∑
b

Tr
[

XiZ
(b)
i σ(θ1,θ2)Z(b)

i

]
≈γT(D)1/2 0 . (4.35)

Proof. To simplify the notation, we show this for i = 1; the proof for i = 2 is analogous. First note that
because Z1 is efficient, by Lemmas 2.4, 2.9, and 4.12, the states ∑b Z(b)

1 σ(θ1,θ2)Z(b)
1 are computationally

indistinguishable for different θ1, θ2. Because X1 is an efficient binary observable, by the lifting lemma
(Lemma 2.25(i)) and the indistinguishability of σ(θ1,θ2) (Lemma 4.12), it suffices to show the lemma for a
particular choice of θ1, θ2.

We choose θ1 = 0, θ2 = 1. By the definition of γT (Equation (4.18)), and Corollary 4.8 combined with
Lemma 2.20, we have that for all v1, v2 ∈ {0, 1}:

Z(v1)
1 ≈γT(D), σ(0,v1; 1,v2) 1 , Z(v1)

1 ≈γT(D), σ(0,v1; 1,v2) 0 . (4.36)

We can use this and Lemma 2.22 to obtain

∑
b

Z(b)
1 σ(0,v1; 1,v2)Z(b)

1 ≈γT(D) σ(0,v1; 1,v2) . (4.37)

Using this and the replacement lemma (Lemma 2.21(ii)), we get:

∑
b

Tr
[

X1Z(b)
1 σ(0,1)Z(b)

1

]
= ∑

b,v1,v2

Tr
[

X1Z(b)
1 σ(0,v1; 1,v2)Z(b)

1

]
(4.38)

≈γT(D)1/2 ∑
b,v1,v2

Tr
[

X1σ(0,v1; 1,v2)
]

(4.39)

= Tr
[

X1σ(0,1)
]

(4.40)

≈γT(D) 0 . (4.41)

In the last line, we used Corollary 4.14.

For the proof of Proposition 4.15, Lemma 4.16 will not be sufficient. We will need the stronger statement
that e.g. ∑b,v2

Tr
[

XiZ
(b)
i σ(1,v1; 0,v2)Z(b)

i

]
is small for every v1, not just their sum. This is shown in Lemma

4.19. For the proof, we have to make use of the preimage test, which will enable us to relate the statement
of Lemma 4.19 to the adaptive hardcore bit property. This is achieved with the following lemma.

Lemma 4.17. We define the following projectors, which project onto the correct preimage answer (for given
keys k1, k2):

Π̃(b1,b2)
y1,y2 = Π

(b1,x̂b1
(k1,y1); b2,x̂b2 (k2,y2))

y1,y2 , (4.42)

with Π̃(b1,b2)
y1,y2 := 0 if ⊥∈ {x̂b1(k1, y1), x̂b2(k2, y2)}. We denote their marginals by

Π̃(b)
1,y1,y2

= Π̃(b,0)
y1,y2 + Π̃(b,1)

y1,y2 , Π̃(b)
2,y1,y2

= Π̃(0,b)
y1,y2 + Π̃(1,b)

y1,y2 . (4.43)
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For any efficient perfect device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈ {0, 1} and i ∈
{1, 2}:

∑
b,y1,y2,d1,d2

∥∥∥M(d1,d2)
y1,y2 Π̃(b)

i,y1,y2
− Z(b)

i,y1,y2,d1,d2
M(d1,d2)

y1,y2

∥∥∥2

ψ
(θ1,θ2)
y1,y2

≈γT(D) 0 . (4.44)

Note that each term in the sum is positive, so the statement also holds for any sums over subsets of b, yi, di.

Proof. We show this for i = 1, the proof for i = 2 is analogous. Inserting the definition of the state-
dependent norm and multiplying out the terms, we find that the left hand side of Equation (4.44) equals

∑
b,d1,d2

Tr
[

M(d1,d2)Π̃(b)
1 ψ(θ1,θ2)Π̃(b)

1 M(d1,d2)
]
+ Tr

[
Z(b)

1,d1,d2
M(d1,d2)ψ(θ1,θ2)M(d1,d2)Z(b)

1,d1,d2

]
− Tr

[
Z(b)

1,d1,d2
M(d1,d2)

(
Π̃(b)

1 ψ(θ1,θ2) + ψ(θ1,θ2)Π̃(b)
1

)
M(d1,d2)

]
, (4.45)

where we defined
Π̃(b)

i = ∑
y1,y2

Π̃(b)
i,y1,y2

⊗ |y1, y2〉〈y1, y2| . (4.46)

We treat each term in turn:

1st term. Since {M(d1,d2)}d1,d2 forms a projective measurement, this term equals

∑
b

Tr
[
Π̃(b)

1 ψ(θ1,θ2)
]

. (4.47)

With the definition of Π̃(b)
1,y1,y2

(Equation (4.43)) and γP (Equation (4.16)), one can see that this is negligibly
close to 1 for a perfect device.

2nd term. This term equals 1, since {M(d1,d2)}d1,d2 and {Z(b)
1,d1,d2

}b form projective measurements.

3rd term. To bound this term, first note that since Π̃(0)
1 + Π̃(1)

1 is a projector, we have

Tr
[
(Π̃(0)

1 + Π̃(1)
1 − 1)2ψ(θ1,θ2)

]
= 1− Tr

[
(Π̃(0)

1 + Π̃(1)
1 )ψ(θ1,θ2)

]
. (4.48)

Therefore, for a perfect device:
Π̃(0)

1 + Π̃(1)
1 ≈0,ψ(θ1,θ2) 1 . (4.49)

Using this, the replacement lemma (Lemma 2.21(i)), ∑b Z(b)
d1,d2

= 1 for any d1, d2, ∑d1,d2
M(d1,d2) = 1, and

Π(0)Π(1) = 0, we find

∑
b,d1,d2

Tr
[

Z(b)
1,d1,d2

M(d1,d2)
(

Π̃(b)
1 ψ(θ1,θ2) + ψ(θ1,θ2)Π̃(b)

1

)
M(d1,d2)

]
≈0 2 ∑

b,d1,d2

Tr
[

Z(b)
1,d1,d2

M(d1,d2)
(

Π̃(b)
1 ψ(θ1,θ2)Π̃(b)

1

)
M(d1,d2)

]
. (4.50)
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For (θ1, θ2) = (0, 1), it follows from the definitions of γT (Equation (4.18)) and Π̃(b)
1 (Equation (4.43)) that

∑
b,d1,d2

Tr
[

Z(b)
1,d1,d2

M(d1,d2)
(

Π̃(b)
1 ψ(0,1)Π̃(b)

1

)
M(d1,d2)

]
≈γT(D) 1 . (4.51)

By the lifting property (Lemma 2.25(i)), since the measurements Π, M and Z are efficient and the device
is perfect (so that the post-measurement after measuring Π is negligibly close to ∑b Π̃(b)

1 ψ(θ1,θ2)Π̃(b)
1 ), the

statement extends to any choice of θ1, θ2. Combining these statements completes the proof.

The following is a purely technical lemma that will be required for the proof of Lemma 4.19.

Lemma 4.18. For any efficient perfect device D = (S, Π, M, P), the following holds for any θ1, θ2, b1, b2 ∈
{0, 1}:

Π̃(b1,b2)ψ(θ1,0)Π̃(b1,b2) ≈0 0 , Π̃(b1,b2)ψ(0,θ2)Π̃(b1,b2) ≈0 0 , (4.52)

with Π̃(b1,b2) := Π̃(b1,b2)
y1,y2 ⊗ |y1, y2〉〈y1, y2|.

Proof. We show the first relation, the second one is analogous. Let k1, k2 be the keys used by the verifier
(which we usually leave implicit), and note that k2 ∈ KG because we are considering the state ψ(θ1,0).

Define Yb = {y2 ∈ Y | b̂(k2, y2) = b}. We claim that

Π̃(b1,b2) ≈0,ψ(θ1,0) ∑
y1∈Y ,

y2∈Yb2

Π̃(b1,b2)
y1,y2 ⊗ |y1, y2〉〈y1, y2| . (4.53)

This implies the lemma by the following argument. Making use of Lemma 2.22 and expanding ψ(θ1,0) =

ψ
(θ1,0)
y1,y2 ⊗ |y1, y2〉〈y1, y2|, all inner products between different y2 in Π̃(b1,b2)ψ(θ1,0)Π̃(b1,b2) equal 0, since Yb2

and Yb2
are disjoint for k2 ∈ KG .

Equation (4.53) can be shown as follows. We have

Tr


Π̃(b1,b2) − ∑

y1∈Y , y2∈Yb2

Π̃(b1,b2)
y1,y2 ⊗ |y1, y2〉〈y1, y2|

2

ψ(θ1,0)

 = ∑
y1∈Y , y2∈Y\Yb2

Tr
[
Π̃(b1,b2)

y1,y2 ψ
(θ1,0)
y1,y2

]
.

Comparing the definition of γP (Equation (4.16)) and the definition of Yb2 , the right hand side has to be
negligibly close to 0 for a perfect device.

We are now in a position to show that the statement of Lemma 4.16 also holds if we do not sum over
both v1 and v2, but only over the vi associated with a computational basis measurement.

Lemma 4.19. For any efficient perfect device D = (S, Π, M, P), the following holds for any v1, v2 ∈
{0, 1}:

∑
b,v′2

Tr
[

X1Z(b)
1 σ(1,v1; 0,v′2)Z(b)

1

]
≈γT(D)1/2 0 , (4.54)

∑
b,v′1

Tr
[

X2Z(b)
2 σ(0,v′1; 1,v2)Z(b)

2

]
≈γT(D)1/2 0 . (4.55)
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Proof. We show the first relation, the proof of the second is analogous. Define the shorthand

χ(v1) := ∑
b,v′2

Tr
[

X1Z(b)
1 σ(1,v1; 0,v′2)Z(b)

1

]
(4.56)

First note that by Lemma 4.16, we have χ(0) + χ(1) ≈γT(D)1/2 0. Therefore, to show this lemma, it suffices
to show

χ(0) ≈γT(D)1/2 χ(1) . (4.57)

Inserting the definition of σ(1,v1; 0,v2), we have

χ(v1) = ∑
b,y1,y2,d2

∑
d1: û(k1,y1,d1)=v1⊕b̂(k2,y2)

Tr
[

X1,y1,y2,d1,d2 Z(b)
1,y1,y2,d1,d2

M(d1,d2)
y1,y2 ψ

(1,0)
y1,y2 M(d1,d2)

y1,y2 Z(b)
1,y1,y2,d1,d2

]
.

Using the Cauchy-Schwarz inequality in a similar manner as in the proof of the replacement lemma (Lemma
2.21), one can show that Lemma 4.17 allows us to replace terms of the form ZM by terms of the form MΠ:

χ(v1) ≈γT(D)1/2 ξ(v1) , (4.58)

where

ξ(v1) := ∑
b,y1,y2,d2

∑
d1 : û(k1,y1,d1)=v1⊕b̂(k2,y2)

Tr
[

X1,y1,y2,d1,d2 M(d1,d2)
y1,y2 Π̃(b)

1,y1,y2
ψ
(1,0)
y1,y2 Π̃(b)

1,y1,y2
M(d1,d2)

y1,y2

]
. (4.59)

Expanding Π̃(b)
1,y1,y2

= ∑b2
Π̃(b,b2)

y1,y2 and using Lemma 4.18 to discard the cross-terms, we get

ξ(v1) ≈0 ∑
b,b2,y1,y2,d2

∑
d1 : û(k1,y1,d1)=v1⊕b̂(k2,y2)

Tr
[

X1,y1,y2,d1,d2 M(d1,d2)
y1,y2 Π̃(b,b2)

y1,y2 ψ
(1,0)
y1,y2 Π̃(b,b2)

y1,y2 M(d1,d2)
y1,y2

]
. (4.60)

It now suffices to show ξ(0) ≈0 ξ(1). For the sake of contradiction, assume ξ(0) − ξ(1) ≥ µ for a
non-negligible positive µ. As in the proof of Lemma 4.13, we assume that the left hand side is positive for
concreteness; if ξ(0) − ξ(1) ≤ −µ, the proof also holds, but we have to flip the final bit in the output tuple
of the procedure A below. We show that this enables us to construct an efficient procedure A that breaks
the adaptive hardcore bit property [BCM+18, definition 3.1(4.)].

The procedure A takes as input a key k ∈ KF . It sets k1 := k and samples (k2, tk2) ← GENKG (1
λ). It

then uses k1, k2 to construct the state ψ(1,0) in the same way as the device D, which is efficient by assumption.
In the process, it obtains images y1 and y2. It now performs the projective measurement {Π(b1,x1; b2,x2)},
obtaining outcome (b1, x1; b2, x2). Next, A performs the measurement M, obtaining outcomes d1, d2.
Finally, A measures X1 to get an outcome u. Since the device D is efficient, all measurements performed
by A are efficient. Because A sampled k2 itself, it has access to the trapdoor, so it can efficiently compute
b̂(k2, y2). The output of A is the tuple (b1, x1, d1, u⊕ b̂(k2, y2)).

Since D is a perfect device, with probability negligibly close to 1, A’s measurement outcomes (b1, x1),
(b2, x2) are valid preimages for y1, y2, respectively. Hence, after measuring M, A has prepared a state that
is negligibly close to one of{

∑
b1,b2,

y1,y2,d2

∑
d1 : û(k1,y1,d1)=v1⊕b̂(k2,y2)

M(d1,d2)
y1,y2 Π̃(b1,b2)

y1,y2 ψ
(1,0)
y1,y2 Π̃(b1,b2)

y1,y2 M(d1,d2)
y1,y2

}
v1

. (4.61)
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Since we assumed ξ(0) − ξ(1) ≥ µ, the bit u obtained by A from the X-measurement is equal to v1 with
non-negligible advantage over 1/2. Since A can compute b̂(k2, y2) correctly, A’s output u ⊕ b̂(k2, y2)
equals û(k1, y1, d1) with non-negligible advantage over 1/2. This contradicts the adaptive hardcore bit
property [BCM+18, definition 3.1(4.)] and completes the proof.

This lemma enables us to prove the main result of this section, Proposition 4.15, which establishes the
anti-commutation of Xi and Zi.

Proof of Proposition 4.15. To simplify the notation, we do the proof for the case {Z1, X1}. The other case
is analogous. By the lifting lemma (Lemma 2.25(iv)) and the indistinguishability of σ(θ1,θ2) (Lemma 4.12),
it suffices to show

Tr
[
{Z1, X1}2σ(1,0)

]
≈γT(D)1/2 0 . (4.62)

By the definition of γT (Equation (4.18)) and Corollary 4.8, we have

X1 ≈γT(D), σ(1,v1; 0,v2) (−1)v11 . (4.63)

Since Z1 is a binary observable, we can rewrite {Z1, X1} as follows:

Z1X1 + X1Z1 = (Z(0)
1 − Z(1)

1 )X1(Z(0)
1 + Z(1)

1 ) + (Z(0)
1 + Z(1)

1 )X1(Z(0)
1 − Z(1)

1 ) (4.64)

= 2 · Z(0)
1 X1Z(0)

1 − 2 · Z(1)
1 X1Z(1)

1 . (4.65)

Squaring this and making repeated use of X2
1 = 1, Z(1)

1 = 1 − Z(0)
1 , and the fact that Z(0)

1 , Z(1)
1 are

orthogonal projectors, a direct calculation shows

1
4
{Z1, X1}2 = X1Z(0)

1 X1Z(0)
1 + Z(1)

1 X1Z(1)
1 X1 . (4.66)

Inserting Equation (4.66), we have

1
4

Tr
[
{Z1, X1}2σ(1,0)

]
= ∑

v1,v2

Tr
[(

X1Z(0)
1 X1Z(0)

1 + Z(1)
1 X1Z(1)

1 X1

)
σ(1,v1; 0,v2)

]
(4.67)

Using Equation (4.63) and the replacement lemma (Lemma 2.21(i)), we can replace the outer X1 operators
by (−1)v11 (the condition of constant operator norm in Lemma 2.21 is clearly satisfied for products of
unitaries and projectors):

≈γT(D)1/2
1
2 ∑

v1,v2

(−1)v1Tr
[(

Z(0)
1 X1Z(0)

1 + Z(1)
1 X1Z(1)

1

)
σ(1,v1; 0,v2)

]
(4.68)

By Lemma 4.19:

≈γT(D)1/2 0 . (4.69)
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4.6 Commutation relations

Having shown that operators on the same “qubit” (i.e., with the same i) anti-commute, we now turn to
commutation relations. We have frequently referred to operators with different i as acting on different
“qubits”, but pointed out in the overview at the start of Section 4 that this intuition is not yet justified, since
we do not yet have a characterisation of the prover’s state in terms of qubits. In this section, we make
an important step towards showing that the intuition of different i’s corresponding to different qubits is
indeed valid: we show that observables with different i (approximately) commute. This is clearly required
if we want to think of the observables as acting on different qubits, since observables on different qubits
necessarily commute.

Lemma 4.20. For any device D = (S, Π, M, P), the following commutation relations hold:

[X1, X2] = 0 , [Z1, Z2] = 0 .

Proof. This follows immediately from Definition 4.3 and the fact that for fixed i, j ∈ {0, 1}, the elements
of {P(a1,a2)

i,j }a1,a2∈{0,1} are orthogonal projectors.

Proposition 4.21. For any efficient device D = (S, Π, M, P), the following approximate commutation
relations hold for any θ1, θ2:

[Z1, X2] ≈γT(D), σ(θ1,θ2) 0 , [Z2, X1] ≈γT(D), σ(θ1,θ2) 0 . (4.70)

Proof. For simplicity, we restrict ourselves to proving the first relation; the other one is analogous. Since
Zi, Xi are efficient, by the lifting lemma (Lemma 2.25(iii)) and the indistinguishability of σ(θ1,θ2) (Lemma
4.12), it suffices to show the statement for σ(0,1). We will split this state as σ(0,1) = ∑v1,v2

σ(0,v1; 1,v2) and
apply Corollary 4.8 to each part, i.e., replace Xi and Zi by ±1.

By the definition of γT (Equation (4.18)) and Corollary 4.8, we have for any v1, v2 ∈ {0, 1}:

Z1 ≈γT(D), σ(0,v1; 1,v2) (−1)v11 , X2 ≈γT(D), σ(0,v1; 1,v2) (−1)v21 . (4.71)

Because Z†
1 Z1 = X†

2 X2 = 1, Lemma 2.18(i) allows us to apply this repeatedly to the product Z1X2:

Z1X2 ≈γT(D), σ(0,v1; 1,v2) (−1)v2 Z1 (4.72)

≈γT(D), σ(0,v1; 1,v2) (−1)v1(−1)v21 (4.73)

≈γT(D), σ(0,v1; 1,v2) X2 · (−1)v11 (4.74)

≈γT(D), σ(0,v1; 1,v2) X2Z1 . (4.75)

This holds for every v1, v2. Since σ(0,1) = ∑v1,v2
σ(0,v1; 1,v2) and each σ(0,v1; 1,v2) is positive, the result

follows from Lemma 2.18(ii).

Remark 4.22. This proof relies on the fact that there is a basis choice for which there is only one accepted
answer for both Z1 and X2 (or Z2 and X1). For the tilde observables, we would have to show approximate
commutation of Z̃1, Z̃2, and X̃1, X̃2, since these cases are not covered in Lemma 4.20. However, there are no
basis choices for which there is only one accepted answer for both X̃1 and X̃2, since for the honest prover,
the basis choice (1, 1) results in an entangled state by application of a CZ gate. This prevents us from
applying this proof to [X̃1, X̃2].
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4.7 Approximate equality of non-tilde observables and Pauli observables

The goal of this section is to show that on the states σ(θ1,θ2), the non-tilde observables Zi, Xi used by the
prover are close to the respective Pauli matrices σZ, σX (under some isometry). The proof of this follows the
steps outlined in item (4.) of the introduction to Section 4.

Definition 4.23. To simplify the notation, we write

A ≈R, ψ B (4.76)

if there exists a constant c > 0 such that
A ≈γT(D)c,ψ B . (4.77)

We also use this notation for the other approximate equalities in Definition 2.14.

The convenient feature of this notation is that when we use the replacement lemma (Lemma 2.21), we
do not need to change the subscript.

The important results from the preceding sections are the commutation- and anti-commutation relations
for the non-tilde observables, which hold for any θ1, θ2 ∈ {0, 1} and can be expressed with the shorthand
notation as

{Zi, Xi} ≈R, σ(θ1,θ2) 0 . (Proposition 4.15)

[X1, X2] = 0 , [Z1, Z2] = 0 . (Lemma 4.20)

[X1, Z2] ≈R, σ(θ1,θ2) 0 , [Z1, X2] ≈R, σ(θ1,θ2) 0 . (Proposition 4.21)

We now define the “swap isometry”. This is the isometry which will map the prover’s states and observ-
ables to the desired Bell states and single-qubit Pauli observables.

Definition 4.24 (Swap isometry, [MYS12]). Given a device D = (S, Π, M, P) with Hilbert space H, we
define the swap isometry VS : H 7→ C4 ⊗H as

VS =
1
4 ∑

a,b∈{0,1}
|a, b〉 ⊗ Xb

2(1 + (−1)bZ2)Xa
1(1 + (−1)aZ1) . (4.78)

(Note that the superscripts here signify exponents, not projectors.)

Lemma 4.25. For an efficient device D = (S, Π, M, P), the swap isometry VS is efficient.

Proof. It can be verified by a simple calculation that the following circuit implements the swap isometry:

|0〉 H H

|0〉 H H

|ψ〉 Z1 X1 Z2 X2

We remark that this circuit is almost identical to that in [MYS12], but instead of applying Zi and Xi to dif-
ferent parts of the state (which only makes sense if we have a Hilbert space with a tensor product structure),
we apply all of them in sequence on the same Hilbert space. Also note that the swap isometry introduces an
asymmetry between the observables Z1, X1, which are applied first, and the observables Z2, X2, which are
applied afterwards.
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Our goal is to show that under the swap isometry, the prover’s observables Zi, Xi are mapped to single-
qubit Pauli observables. The following lemma collects the results of conjugating single-qubit Pauli observ-
ables by the swap isometry. Informally, the remainder of this section shows that in the state-dependent
distance, the right hand sides of the equalities in Lemma 4.26 are close to Z1, X1, Z2, and X2, respectively.

Lemma 4.26. Conjugating Pauli-operators by VS yields the following

V†
S (σZ ⊗ 12 ⊗ 1)VS = Z1 , (4.79)

V†
S (σX ⊗ 12 ⊗ 1)VS =

1
4 ∑

a∈{0,1}
(1 + (−1)aZ1)X1(1 + (−1)aZ1) , (4.80)

V†
S (12 ⊗ σZ ⊗ 1)VS =

1
4 ∑

a∈{0,1}
(1 + (−1)aZ1)Xa

1Z2Xa
1(1 + (−1)aZ1) , (4.81)

V†
S (12 ⊗ σX ⊗ 1)VS =

1
16 ∑

a,b∈{0,1}
(1 + (−1)aZ1)Xa

1(1 + (−1)bZ2)X2(1 + (−1)bZ2)Xa
1(1 + (−1)aZ1) .

(4.82)

Proof. Inserting the definition of VS, these can be verified by direct calculation.

The following lemma shows item 4(ii) from the overview at the start of Section 4, namely that the swap
isometry maps the prover’s observable X1 to a Pauli σX observable on the first qubit.

Lemma 4.27. For any efficient perfect device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈
{0, 1}:

V†
S (σX ⊗ 12 ⊗ 1)VS ≈R, σ(θ1,θ2) X1 . (4.83)

Proof. By Lemma 2.16, it suffices to show

Tr
[
V†

S (σX ⊗ 12 ⊗ 1)VSX1σ(θ1,θ2)
]
≈R 1 . (4.84)

We expand V†
S (σX ⊗ 12 ⊗ 1)VS (Equation (4.80)) and get

Tr
[
V†

S (σX ⊗ 12 ⊗ 1)VSX1σ(θ1,θ2)
]
=

1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aZ1)X1(1 + (−1)aZ1)X1σ(θ1,θ2)

]
. (4.85)

At this point we would like to use {Z1, X1} ≈R, σ(θ1,θ2) 0 (Proposition 4.15) to anti-commute the right-most
X1 and Z1. Since (1+ (−1)aZ1)X1 has constant operator norm, this can be achieved using the replacement
lemma (Lemma 2.21(i)):

(4.85) ≈R
1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aZ1)X1X1(1 + (−1)aZ1)σ

(θ1,θ2)
]

(4.86)

= 1 . (4.87)

In the last line we used ∑a∈{0,1}(1+ (−1)aZ1)X1X1(1+ (−1)aZ1) = 4, which follows from X2
1 = Z2

1 =
1.
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Having established a characterisation of the prover’s operators Z1 and X1, we now use this to partially
characterise the prover’s state. In particular, we will show that in the test case, the swap isometry maps the
prover’s state to a product state, where the first qubit is in the computational or Hadamard basis, depending
on the verifier’s basis choice (Lemma 4.28). We will then show that the auxiliary states that the prover holds
in addition to the first qubit must be computationally indistinguishable (Lemma 4.29). This is similar to the
result of [GV19] (but with fewer different single-qubit states).

Lemma 4.28. Let D = (S, Π, M, P) be an efficient perfect device. Then, for v1, v2 ∈ {0, 1}, there exist
positive matrices α(0,v1; 1,v2) and α(1,v1; 0,v2) such that the following holds:

VSσ(1,v1; 0,v2)V†
S ≈R |(−)v1〉〈(−)v1 | ⊗ α(1,v1; 0,v2) , (4.88)

VSσ(0,v1; 1,v2)V†
S ≈R |v1〉〈v1| ⊗ α(0,v1; 1,v2) . (4.89)

Proof. We show the first relation. The second one is analogous (but simpler, because we have V†
S (σZ ⊗

12 ⊗ 1)VS = Z1 (Equation (4.79)), whereas the corresponding statement for X1 only holds approximately
(Lemma 4.27)).

By Lemmas 4.27 and 2.18(ii), we have

X1 ≈R, σ(1,v1; 0,v2) V†
S (σX ⊗ 12 ⊗ 1)VS . (4.90)

By Lemma 2.24, this implies

X(v1)
1 ≈R, σ(1,v1; 0,v2) V†

S (|(−)v1〉〈(−)v1 | ⊗ 12 ⊗ 1)VS . (4.91)

Using this, the definition of γT (Equation (4.18)), and the replacement lemma (Lemma 2.21(i)) we get

∑
v1,v2

Tr
[
(|(−)v1〉〈(−)v1 | ⊗ 12 ⊗ 1)VSσ(1,v1; 0,v2)V†

S

]
≈R 1 . (4.92)

Using (a simple extension of) Corollary 4.8 combined with Lemma 2.20, this means that

|(−)v1〉〈(−)v1 | ⊗ 12 ⊗ 1 ≈R,VSσ(1,v1; 0,v2)V†
S

1 . (4.93)

Hence, by Lemma 2.22, we get

VSσ(1,v1; 0,v2)V†
S ≈R (|(−)v1〉〈(−)v1 | ⊗ 12 ⊗ 1)VSσ(1,v1; 0,v2)V†

S (|(−)v1〉〈(−)v1 | ⊗ 12 ⊗ 1) . (4.94)

Defining
α(1,v1; 0,v2) =

(
〈(−)v1 | ⊗ 12 ⊗ 1

)
VSσ(1,v1; 0,v2)V†

S
(
|(−)v1〉 ⊗ 12 ⊗ 1

)
(4.95)

yields the result.

Lemma 4.29. Let D = (S, Π, M, P) be an efficient perfect device. Then, there exists a (normalised) state
α such that the following holds for v1 ∈ {0, 1}:

∑
v2

VSσ(1,v1; 0,v2)V†
S

c≈R
1
2
|(−)v1〉〈(−)v1 | ⊗ α , (4.96)

∑
v2

VSσ(0,v1; 1,v2)V†
S

c≈R
1
2
|v1〉〈v1| ⊗ α . (4.97)

Proof. We first prove the first relation, and then use that result to prove the second relation.
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Proof of the first relation. We need to show that {∑v2
α(1,v1; 0,v2)}v1 are computationally indistinguishable

up to O(γT(D)c) for some constant c. Combined with Lemma 4.28, this gives the first relation.
By Lemma 4.28, there exists a c > 0 and an ε = O(γT(D)c) such that for any v1, v2:∥∥∥VSσ(0,v1; 1,v2)V†

S − |v1〉〈v1| ⊗ α(0,v1; 1,v2)
∥∥∥2

1
≤ ε ,∥∥∥VSσ(1,v1; 0,v2)V†

S − |(−)v1〉〈(−)v1 | ⊗ α(1,v1; 0,v2)
∥∥∥2

1
≤ ε . (4.98)

For the sake of contradiction, assume that there is an efficient POVM {Λ(v1)}v1∈{0,1} such that

∑
v2

Tr
[
Λ(0)

(
α(1,0; 0,v2) − α(1,1; 0,v2)

)]
≥ 12 ε1/2 + µ(λ) , (4.99)

where µ(λ) is non-negligible. Define

Γ = ∑
u∈{0,1}

V†
S

(
|(−)u〉〈(−)u| ⊗Λ(u)

)
VS . (4.100)

The outcome of the POVM {Γ, 1− Γ} can be efficiently estimated as follows: apply VS; measure the first
register in the Hadamard basis, obtaining a bit a; measure {Λ(u)} on the remaining registers, obtaining a bit
u; output 0 if and only if a = u.

We now show that the POVM {Γ, 1− Γ} enables us to construct a distinguisher that can distinguish
σ(1,0) from σ(0,1) with non-negligible advantage, contradicting Lemma 4.12. Given σ(b,b) for b ∈ {0, 1},
the distinguisher measures the POVM {Γ, 1− Γ}. If the result of the measurement is “Γ”, the distinguisher
guesses “0”; if the result is “1−Γ”, the distinguisher guesses “1”. We calculate the distinguishing advantage:

Pr[Guess = 0|b = 0]− Pr[Guess = 0|b = 1]

= Tr
[
Γσ(1,0)

]
− Tr

[
Γσ(0,1)

]
= ∑

u
Tr
[(
|(−)u〉〈(−)u| ⊗Λ(u)

) (
VSσ(1,0)V†

S −VSσ(0,1)V†
S

)]
Using Equation (4.98) and the replacement lemma (Lemma 2.21(ii); the non-asymptotic statement used here
is easily seen to hold from the proof) to replace the state inside the trace:

≥ ∑
u,v1,v2

Tr
[(
|(−)u〉〈(−)u| ⊗Λ(u)

) (
|(−)v1〉〈(−)v1 | ⊗ α(1,v1; 0,v2) − |v1〉〈v1| ⊗ α(0,v1; 1,v2)

)]
− 8 ε1/2

= ∑
v1,v2

Tr
[
Λ(v1)α(1,v1; 0,v2)

]
− 1

2 ∑
u,v1,v2∈{0,1}

Tr
[
Λ(u)α(0,v1; 1,v2)

]
− 8 ε1/2

Using that Λ(0) + Λ(1) = 1:

= ∑
v2

Tr
[
Λ(0)

(
α(1,0; 0,v2) − α(1,1; 0,v2)

)]
+ ∑

v2

Tr
[
α(1,1; 0,v2)

]
− 1

2 ∑
v1,v2∈{0,1}

Tr
[
α(0,v1; 1,v2)

]
− 8 ε1/2 .

For the second term, we use Equation (4.98) and Lemma 4.13 to find

∑
v2

Tr
[
α(1,1; 0,v2)

]
≥ 1

2
− 2ε1/2 − negl(λ) . (4.101)
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For the third term, we use Equation (4.98) and ∑v1,v2∈{0,1} Tr
[
σ(0,v1; 1,v2)

]
= Tr

[
σ(0,1)

]
= 1 to get

∑
v1,v2∈{0,1}

Tr
[
α(0,v1; 1,v2)

]
≤ ∑

v1,v2∈{0,1}
Tr
[
σ(0,v1; 1,v2)

]
+ 4 ε1/2 = 1 + 4 ε1/2 . (4.102)

Inserting this and Equation (4.99), we get that

Pr[Guess = 0|b = 0]− Pr[Guess = 0|b = 1] ≥ µ(λ) , (4.103)

which is a contradiction.

Proof of the second relation. From the first part of the proof, we have

VSσ(1,0)V†
S

c≈R
1
2

12 ⊗ α (4.104)

From Lemma 4.12, we have σ(1,0) c≈0 σ(0,1). Since VS is efficient, this and the equation above imply

VSσ(0,1)V†
S

c≈R
1
2

12 ⊗ α . (4.105)

Expanding both sides of this (using Lemma 4.28 for the left hand side), we obtain

∑
v1

|v1〉〈v1| ⊗∑
v2

α(0,v1; 1,v2)
c≈R ∑

v1

|v1〉〈v1| ⊗
1
2

α . (4.106)

Since any distinguisher can start by (efficiently) measuring the first qubit in the computational basis, this
implies that for each v1:

∑
v2

α(0,v1; 1,v2)
c≈R

1
2

α . (4.107)

Combining this with the statement of Lemma 4.28 completes the proof.

At this point, we have established a characterisation of the prover’s observables Z1 and X1 as well as of
its state in the test case. As outlined in the introduction to Section 4, we will now use these results to show
that the prover’s observables Z2 and X2 are also close to Pauli observables (under the swap isometry VS).

Lemma 4.30. For any efficient perfect device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈
{0, 1}:

V†
S (12 ⊗ σZ ⊗ 1)VS ≈R, σ(θ1,θ2) Z2 , (4.108)

V†
S (12 ⊗ σX ⊗ 1)VS ≈R, σ(θ1,θ2) X2 . (4.109)

Proof. We prove each relation in turn.
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Proof of the first relation. By Lemmas 4.12 and 4.29, we have

VSσ(θ1,θ2)V†
S

c≈0 ∑
v1,v2

VSσ(0,v1; 1,v2)V†
S

c≈R
1
2

12 ⊗ α . (4.110)

This implies

σ(θ1,θ2) = ∑
v1,v2

σ(0,v1; 1,v2)
c≈R V†

S

(
1
2

12 ⊗ α

)
VS , (4.111)

since any distinguisher D′ for the latter problem can be used to construct a distinguisher D for the former
problem: given VSσ(θ1,θ2)V†

S or 1
2 12 ⊗ α, D′ first applies the inverse of the unitary extension of VS. D then

measures the ancillary registers: if the result is not the all-zero string, D guesses that it was given 1
2 12 ⊗ α;

if the result is the all-zero string, D runs D′ on the post-measurement state.
The binary observables 12 ⊗ σZ ⊗ 1 and Z2 as well as the isometry VS are all efficient. Therefore, by

Lemma 2.25(v) we can replace σ(θ1,θ2) by V†
S
( 1

2 12 ⊗ α
)

VS in the statement of this lemma, so we need to
show

V†
S (12 ⊗ σZ ⊗ 1)VS ≈R, V†

S (
1
2 12⊗α)VS

Z2 . (4.112)

By Lemma 2.16, it suffices to show

Tr
[

Z2V†
S (12 ⊗ σZ ⊗ 1)VSV†

S

(
1
2

12 ⊗ α

)
VS

]
≈R 1 . (4.113)

Using the cyclicity of the trace, V†
S VS = 1, and Equation (4.81) to expand V†

S (12 ⊗ σZ ⊗ 1)VS, we get:

Tr
[

Z2V†
S (12 ⊗ σZ ⊗ 1)VSV†

S

(
1
2

12 ⊗ α

)
VS

]
=

1
4 ∑

a∈{0,1}
Tr
[

VSZ2(1 + (−1)aZ1)Xa
1Z2Xa

1V†
S VS(1 + (−1)aZ1)V†

S

(
1
2

12 ⊗ α

)]
(4.114)

At this point, we would like to replace the right-most operator VS(1 + (−1)aZ1)V†
S by 1 + (−1)aσZ ⊗

12 ⊗ 1. For this, we need

1 + (−1)aσZ ⊗ 12 ⊗ 1 ≈R, 1
2 12⊗α VS(1 + (−1)aZ1)V†

S . (4.115)

We delay the proof of this statement until Lemma 4.31 and continue with the main argument here.
Because for any a ∈ {0, 1}, the operator norm of the other operators inside the trace is constant, we can use
Equation (4.115) and the replacement lemma (Lemma 2.21(i)) to obtain:

(4.114) ≈R
1
4 ∑

a∈{0,1}
Tr
[

VSZ2(1 + (−1)aZ1)Xa
1Z2Xa

1V†
S (1 + (−1)aσZ ⊗ 12 ⊗ 1)

(
1
2

12 ⊗ α

) ]
The right-most operator only acts non-trivially on the first qubit, so we can commute it past the state and use
the cyclicity of the trace.

=
1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSZ2(1 + (−1)aZ1)Xa

1V†
S VSZ2Xa

1V†
S

(
1
2

12 ⊗ α

)]
.

(4.116)
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Now we would like to commute the right-most Xa
1 with Z2. We need

VS[Z2, X1]V†
S ≈R, 1

2 12⊗α 0 , (4.117)

the proof of which is given in Lemma 4.31.
We therefore have (using Lemma 2.21 as above):

(4.116) ≈R
1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSZ2(1 + (−1)aZ1)

Xa
1Xa

1Z2V†
S

(
1
2

12 ⊗ α

) ] (4.118)

Using X2
1 = 1, [Z1, Z2] = 0, and Z2

2 = 1:

=
1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aσZ ⊗ 12 ⊗ 1)VS(1 + (−1)aZ1)V†

S

(
1
2

12 ⊗ α

)]
(4.119)

Using Equation (4.115) in the same manner as above:

≈R
1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aσZ ⊗ 12 ⊗ 1)2

(
1
2

12 ⊗ α

)]
(4.120)

Using ∑a(1 + (−1)aσZ ⊗ 12 ⊗ 1)2 = 4 · 1 and the normalisation of α:

= 1 . (4.121)

This proves the first relation in the lemma, V†
S (12 ⊗ σZ ⊗ 1)VS ≈R, σ(θ1,θ2) Z2.

Proof of the second relation. The proof is similar to the first case. As in the first case, the proof reduces
to showing

Tr
[

X2V†
S (12 ⊗ σX ⊗ 1)VSV†

S

(
1
2

12 ⊗ α

)
VS

]
≈R 1 . (4.122)

For the proof, we will need the relation

σX ⊗ 12 ⊗ 1 ≈R, 1
2 12⊗α VSX1V†

S , (4.123)

which is analogous to Equation (4.115) and will be shown in Lemma 4.31. We proceed with proving
Equation (4.122). Throughout the proof, we will always use the replacement lemma (Lemma 2.21(i)) to
replace operators with one another. Expanding V†

S (12 ⊗ σX ⊗ 1)VS using Equation (4.82):

Tr
[

X2V†
S (12 ⊗ σX ⊗ 1)VSV†

S

(
1
2

12 ⊗ α

)
VS

]
=

1
16 ∑

a,b∈{0,1}
Tr
[

VSX2(1 + (−1)aZ1)Xa
1

(1 + (−1)bZ2)X2(1 + (−1)bZ2)Xa
1(1 + (−1)aZ1)V†

S

(
1
2

12 ⊗ α

) ]
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Using Equation (4.115) to replace VS(1 + (−1)aZ1)V†
S with (1 + (−1)aσZ ⊗ 12 ⊗ 1) and commuting it

past the state:

≈R
1

16 ∑
a,b∈{0,1}

Tr
[
(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSX2(1 + (−1)aZ1)Xa

1

(1 + (−1)bZ2)X2(1 + (−1)bZ2)Xa
1V†

S

(
1
2

12 ⊗ α

) ]
Using Equation (4.123) to replace VSX1V†

S with σX ⊗ 12 ⊗ 1 and commuting it past the state:

≈R
1

16 ∑
a,b∈{0,1}

Tr
[
(σa

X ⊗ 12 ⊗ 1)(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSX2(1 + (−1)aZ1)Xa
1

(1 + (−1)bZ2)X2(1 + (−1)bZ2)V†
S

(
1
2

12 ⊗ α

) ]
Anti-commuting Z2 and X2 (this can be shown analogously to Equation (4.117), making use of Proposition
4.15):

≈R
1
16 ∑

a,b∈{0,1}
Tr
[
(σa

X ⊗ 12 ⊗ 1)(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSX2(1 + (−1)aZ1)Xa
1

(1 + (−1)bZ2)
2X2V†

S

(
1
2

12 ⊗ α

) ]
Since Z2 is a binary observable, ∑b(1 + (−1)bZ2)2 = 4 · 1. Therefore, summing over b yields:

=
1
4 ∑

a∈{0,1}
Tr
[
(σa

X ⊗ 12 ⊗ 1)(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSX2(1 + (−1)aZ1)Xa
1X2V†

S

(
1
2

12 ⊗ α

)]
Commuting X2 and Xa

1, then replacing VSXa
1V†

S with σa
X ⊗ 12 ⊗ 1 using Equation (4.123) and commuting

it past the state:

≈R
1
4 ∑

a∈{0,1}
Tr
[
(σa

X ⊗ 12 ⊗ 1)2(1 + (−1)aσZ ⊗ 12 ⊗ 1)VSX2(1 + (−1)aZ1)X2V†
S

(
1
2

12 ⊗ α

) ]
We have σ2

X = 1. We can also commute X2 and Z1 using the analogous statement of Equation (4.117) with
reversed indices. Then we obtain (using X2

2 = 1):

≈R
1
4 ∑

a∈{0,1}
Tr
[
(1 + (−1)aσZ ⊗ 1)VS(1 + (−1)aZ1)V†

S

(
1
2

12 ⊗ α

)]
.

This expression is identical to Equation (4.119), so the result follows.

The following lemma shows the steps that we skipped in the proof above.

Lemma 4.31. With the notation from the proof of Lemma 4.30, we show the following statements:

(i) Equation (4.122):
σX ⊗ 12 ⊗ 1 ≈R, 1

2 12⊗α VSX1V†
S . (4.124)

(ii) Equation (4.115):

1 + (−1)aσZ ⊗ 12 ⊗ 1 ≈R, 1
2 12⊗α VS(1 + (−1)aZ1)V†

S . (4.125)
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(iii) Equation (4.117):
VS[Z2, X1]V†

S ≈R, 1
2 12⊗α(θ1, θ2) 0 . (4.126)

Proof.

(i) From Lemma 4.27, we have

V†
S (σX ⊗ 12 ⊗ 1)VS ≈R, σ(θ1,θ2) X1 . (4.127)

By Lemma 2.23, this implies

σX ⊗ 12 ⊗ 1 ≈R, VSσ(θ1,θ2)V†
S

VSX1V†
S . (4.128)

Recall that by Equation (4.110), we have

VSσ(θ1,θ2)V†
S

c≈R
1
2

12 ⊗ α .

The result follows by the lifting lemma (Lemma 2.25(vi)).

(ii) First note that by the triangle inequality for the state-dependent norm, it suffices to show the following
two relations individually:

VSV†
S ≈R, 1

2 12⊗α 1 , (4.129)

σZ ⊗ 12 ⊗ 1 ≈R, 1
2 12⊗α VSZ1V†

S . (4.130)

The first relation follows from VSV†
S ≈0,VSσ(θ1,θ2)V†

S
1 by Equation (4.110) and the lifting lemma

(Lemma 2.25(vi)). The second relation follows by the same reasoning used for (i), making use of
Equation (4.79).

(iii) We have

Tr
[(

VS[Z2, X1]V†
S

)† (
VS[Z2, X1]V†

S

)(1
2

12 ⊗ α

)]
= Tr

[
[Z2, X1]

†[Z2, X1]V†
S

(
1
2

12 ⊗ α

)
VS

]
By Equation (4.111) and the lifting lemma (Lemma 2.25(iii)):

≈R Tr
[
[Z2, X1]

†[Z2, X1]σ
(θ1,θ2)

]
By Proposition 4.21

≈R 0 .
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4.8 Approximate equality of tilde observables and Pauli observables

The preceding section establishes that on the states σ(θ1,θ2), the non-tilde operators are approximately equal
to the corresponding Pauli operators. However, to certify Bell states, we need the prover to perform mea-
surements where its two “qubits” are measured in different bases, i.e., use measurement operators from P0,1
and P1,0. The observables associated to these mixed-basis projectors are the tilde observables. Recall that
for the tilde observables, we cannot get the required commutation relations, as explained in Section 4.6.
This prevents us from using the argument that we used for the non-tilde observables. Instead, we will show
that on the state, the tilde and non-tilde observables are approximately equal. Using the triangle inequal-
ity for the state-dependent distance, we can then conclude that the tilde observables are also close to Pauli
observables (under the same isometry VS and in the state-dependent distance).

Lemma 4.32. For any efficient device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈ {0, 1} and
i ∈ {1, 2}:

Z̃i ≈γT(D), σ(θ1,θ2) Zi , X̃i ≈γT(D), σ(θ1,θ2) Xi . (4.131)

Proof. We show Z̃1 ≈γT(D), σ(θ1,θ2) Z1, the other cases are analogous. Since Z1 and Z̃1 are both efficient,

by the lifting lemma (Lemma 2.25(ii)) and the indistinguishability of σ(θ1,θ2) (Lemma 4.12), it suffices to
show this for (θ1, θ2) = (0, 1). We can split σ(0,1) as σ(0,1) = ∑v1,v2

σ(0,v1; 1,v2), so by Lemma 2.18(ii)
it is sufficient to show that for all v1, v2 ∈ {0, 1}, Z̃1 ≈γT(D), σ(0,v1; 1,v2) Z1 . By the same reasoning as in
Proposition 4.21, where we showed the commutation relations, we have

Z1 ≈γT(D), σ(0,v1; 1,v2) (−1)v11 , Z̃1 ≈γT(D), σ(0,v1; 1,v2) (−1)v11 (4.132)

Therefore, by the triangle inequality, we also have

Z̃1 ≈γT(D), σ(0,v1; 1,v2) Z1 (4.133)

as desired.

Corollary 4.33. For any efficient perfect device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈
{0, 1}:

Z̃1 ≈R, σ(θ1,θ2) V†
S (σZ ⊗ 12 ⊗ 1)VS , (4.134)

X̃1 ≈R, σ(θ1,θ2) V†
S (σX ⊗ 12 ⊗ 1)VS , (4.135)

Z̃2 ≈R, σ(θ1,θ2) V†
S (12 ⊗ σZ ⊗ 1)VS , (4.136)

X̃2 ≈R, σ(θ1,θ2) V†
S (12 ⊗ σX ⊗ 1)VS . (4.137)

Proof. Using the triangle inequality, these follow from Lemma 4.32 with Equation (4.79) for Z̃1, Lemma
4.27 for X̃1, and Lemma 4.30 for Z̃2, X̃2.

4.9 Products of observables

We have shown in Corollary 4.33 that on the state, the tilde observables are approximately equal to the
corresponding Pauli matrices, under the isometry VS. To certify that the prover has a Bell state, we want to
show that the prover must possess, up to the isometry VS, a joint eigenstate of σZ ⊗ σX and σZ ⊗ σX, since
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the only such eigenstates are the Bell states (with the second qubit in the Hadamard basis). Therefore, we
have to be able to “round” not just individual tilde observables to Pauli matrices, but also products of tilde
observables. That is, we have to show, that e.g. Z̃1X̃2 is approximately equal to σZ ⊗ σX ⊗ 1 under the
isometry VS. Note that this does not directly follow from the above, since we can only round operators next
to the state (so for Z̃1X̃2, we are able to replace X̃2 with 12 ⊗ σX ⊗ 1, but this “blocks” us from applying
any approximate-equality relations to Z̃1). Instead, we rely on a characterisation of the states σ(θ1,θ2) that we
can deduce from the relations for the non-tilde observables derived in the previous sections. The following
lemmas, which are extensions of Lemmas 4.28 and 4.29, establish this characterisation.

Lemma 4.34. Let D = (S, Π, M, P) be an efficient perfect device. Then, for v1, v2 ∈ {0, 1}, there exist
positive matrices α̃(0,v1; 1,v2) and α̃(1,v1; 0,v2) such that the following holds:

Vσ(1,v1; 0,v2)V† ≈R |(−)v1〉〈(−)v1 | ⊗ |v2〉〈v2| ⊗ α̃(1,v1; 0,v2) , (4.138)

Vσ(0,v1; 1,v2)V† ≈R |v1〉〈v1| ⊗ |(−)v2〉〈(−)v2 | ⊗ α̃(0,v1; 1,v2) . (4.139)

Proof. We give the proof for the first relation, the second one can be shown analogously. Most of the proof
is analogous to that of Lemma 4.28, and we only sketch it here.

Starting from Lemma 4.30, by the same steps as in Lemma 4.28 we get

12 ⊗ |v2〉〈v2| ⊗ 1 ≈R, VSσ(1,v1; 0,v2)V†
S

1 . (4.140)

By Lemma 4.28 and the replacement lemma (Lemma 2.21(ii); to see that this also allows us to replace the
state in this case, it is enough to write out the definition of the state-dependent distance as a trace):

12 ⊗ |v2〉〈v2| ⊗ 1 ≈R, |(−)v1 〉〈(−)v1 |⊗α(1,v1; 0,v2) 1 . (4.141)

Therefore, by Lemma 2.22 we have:

Vσ(1,v1; 0,v2)V† ≈R
1
4
|(−)v1〉〈(−)v1 | ⊗ α(1,v1; 0,v2) (4.142)

≈R (12 ⊗ |v2〉〈v2| ⊗ 1)
(
|(−)v1〉〈(−)v1 | ⊗ α(1,v1; 0,v2)

)
(12 ⊗ |v2〉〈v2| ⊗ 1) (4.143)

Defining
α̃(1,v1; 0,v2) =

(
〈v2| ⊗ 1

)
α(1,v1; 0,v2)

(
|v2〉 ⊗ 1

)
(4.144)

yields the result

The following lemma can be shown to follow from the above by the exact same argument as in the proof
of Lemma 4.29.

Lemma 4.35. Let D = (S, Π, M, P) be an efficient perfect device. Then, there exists a (normalised) state
α̃ such that the following holds for v1, v2 ∈ {0, 1}:

VSσ(1,v1; 0,v2)V†
S

c≈R
1
4
|(−)v1〉〈(−)v1 | ⊗ |v2〉〈v2| ⊗ α̃ , (4.145)

VSσ(0,v1; 1,v2)V†
S

c≈R
1
4
|v1〉〈v1| ⊗ |(−)v2〉〈(−)v2 | ⊗ α̃ . (4.146)
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Corollary 4.36. Let D = (S, Π, M, P) be an efficient perfect device. Then, there exists a (normalised) state
α̃ such that for any θ1, θ2 ∈ {0, 1}:

VSσ(θ1,θ2)V†
S

c≈R
1
4

12 ⊗ 12 ⊗ α̃ . (4.147)

Proof. Summing over v1, v2 in Lemma 4.35 yields the statement for (θ1, θ2) = (0, 1) and (θ1, θ2) = (1, 0).
By Lemma 4.12, the states σ(θ1,θ2) are computationally indistinguishable. Since VS is efficient, the states
VSσ(θ1,θ2)V†

S can be computed efficiently from σ(θ1,θ2). Therefore, they must also be computationally indis-
tinguishable. The transitivity of computational indistinguishability then allows us to extend the statement to
any θ1, θ2.

We are now in a position to prove the statement about products of observables that we mentioned at the
beginning of this section.

Lemma 4.37. For any efficient perfect device D = (S, Π, M, P), the following holds for any θ1, θ2 ∈
{0, 1}:

VSZ1Z2V†
S ≈R, VSσ(θ1,θ2)V†

S
σZ ⊗ σZ ⊗ 1 , (4.148)

VSX1X2V†
S ≈R, VSσ(θ1,θ2)V†

S
σX ⊗ σX ⊗ 1 , (4.149)

VSZ̃1X̃2V†
S ≈R, VSσ(θ1,θ2)V†

S
σZ ⊗ σX ⊗ 1 , (4.150)

VSX̃1Z̃2V†
S ≈R, VSσ(θ1,θ2)V†

S
σX ⊗ σZ ⊗ 1 . (4.151)

Proof. We show the first relation, the others are analogous (using Corollary 4.33 for the tilde observables).
First note that because Z1 and Z2 are efficient binary observables, and [Z1, Z2] = 0 (Lemma 4.20), Z1Z2 is
also an efficient binary observable by Lemma 2.5. Since VS, Z1Z2, and σZ are efficient, we can use the lifting
lemma (Lemma 2.25(vi)) and Corollary 4.36 to replace VSσ(θ1,θ2)V†

S by 1
4 12 ⊗ 12 ⊗ α̃, so the statement that

we need to show is
VSZ1Z2V†

S ≈R, 1
4 12⊗12⊗α̃ σZ ⊗ σZ ⊗ 1 . (4.152)

Using Lemma 2.16, this reduces to showing

Tr
[
(σZ ⊗ σZ ⊗ 1)VSZ1Z2V†

S

(
1
4

12 ⊗ 12 ⊗ α̃

)]
≈R 1 . (4.153)

By Lemma 2.23, we have (loosening the bound on Z1 to match that of Z2):

VSZ1V†
S ≈R, VSσ(θ1,θ2)V†

S
σZ ⊗ 12 ⊗ 1 (from Equation (4.79)) , (4.154)

VSZ2V†
S ≈R, VSσ(θ1,θ2)V†

S
12 ⊗ σZ ⊗ 1 (from Lemma 4.30) . (4.155)

Since VS, Z1, Z2, and σZ are efficient, we can again use the lifting property (Lemma 2.25(vi)) and Corollary
4.36 to replace VSσ(θ1,θ2)V†

S by 1
4 12 ⊗ 12 ⊗ α̃, so we have:

VSZ1V†
S ≈R, 1

4 12⊗12⊗α̃ σZ ⊗ 12 ⊗ 1 , (4.156)

VSZ2V†
S ≈R, 1

4 12⊗12⊗α̃ 12 ⊗ σZ ⊗ 1 . (4.157)
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We can use this to show Equation (4.153) by the same method that we used in the proof of Lemma 4.30.
Using Equation (4.157), the replacement lemma (Lemma 2.21(i)), and commuting 12 ⊗ σZ ⊗ 1 past the
state:

Tr
[
(σZ ⊗ σZ ⊗ 1)VSZ1Z2V†

S

(
1
4

12 ⊗ 12 ⊗ α̃

)]
(4.158)

≈R Tr
[
(12 ⊗ σZ ⊗ 1)(σZ ⊗ σZ ⊗ 1)VSZ1V†

S

(
1
4

12 ⊗ 12 ⊗ α̃

)]
(4.159)

Similarly using Equation (4.156) and commuting σZ ⊗ 12 ⊗ 1 past the state:

≈R Tr
[
(σZ ⊗ 12 ⊗ 1)(12 ⊗ σZ ⊗ 1)(σZ ⊗ σZ ⊗ 1)

(
1
4

12 ⊗ 12 ⊗ α̃

)]
(4.160)

= 1 . (4.161)

4.10 Certifying Bell states

Having established this characterisation of products of observables, we can show the main result of this
paper, namely that the prover’s states and measurements in the Bell case must be close to Bell states and
single-qubit Pauli measurements.

Theorem 4.38. We label the (Hadamard-rotated) Bell states as follows:

|φ(a,b)
H 〉 = (σa

X ⊗ σb
X)(|0〉|+〉+ |1〉|−〉) . (4.162)

For b ∈ {0, 1}, we also use the notation

|b0〉 = |b〉 , |b1〉 = |(−)b〉 . (4.163)

Let D = (S, Π, M, P) be an efficient device, with γP(D), γT(D), and γB(D) as in Lemma 4.9.9 Let H be
the private Hilbert space of the device and let σ(1,s1; 1,s2) be as in Definition 4.5. 10

Then there exists a Hilbert space H′, an isometry V : H → C4 ⊗H′, and a constant c > 0, such that
there are states ξ(s1,s2) ∈ D(H′) for s1, s2 ∈ {0, 1} satisfying the following:

(i) Under the isometry V, the state of the prover in a Hadamard round is close to a Bell state:

Vσ(1,s1; 1,s2)V† ≈γP(D)c+γT(D)c+γB(D)c
1
4
|φ(s1,s2)

H 〉〈φ(s1,s2)
H | ⊗ ξ

(s1,s2)
H′ , (4.164)

and the different ξ
(s1,s2)
H′ are computationally indistinguishable.

9Roughly, γP(D), γT(D), and γB(D) are the device’s probabilities to fail the verifier’s checks in the preimage, test, and Bell
case, respectively.

10Note that using the trapdoor, the verifier can efficiently compute si from the image yi and equation string di that the prover has
returned.
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(ii) Under the isometry V, the prover’s measurements P(a,b)
q1,q2 act on σ(1,s1; 1,s2) in the same way that single-

qubit measurements in the computational or Hadamard basis act on a Bell state:

VP(a,b)
q1,q2 σ(1,s1; 1,s2)P(a,b)

q1,q2 V†

≈γP(D)c+γT(D)c+γB(D)c
1
4
(
|aq1 , bq2〉〈aq1 , bq2 |

)
|φ(s1,s2)

H 〉〈φ(s1,s2)
H |

(
|aq1 , bq2〉〈aq1 , bq2 |

)
⊗ ξ

(s1,s2)
H′

Proof. By Lemma 4.11, up to an additional error O(γP(D)1/2), we can assume that the device D is perfect.
(Note that the statement in Lemma 4.11 implies an analogous statement for σ(1,s1; 1,s2) by the fact that the
application of a CPTP map cannot increase the trace distance.)

(i) Take V to be the swap isometry VS defined in Definition 4.24. From Lemmas 4.37, 2.18(ii), and 2.24,
we have for a ∈ {0, 1}:

(Z̃1X̃2)
(a) ≈R, σ(1,s1; 1,s2) V†

S (σZ ⊗ σX ⊗ 1)(a)VS , (4.165)

(X̃1Z̃2)
(a) ≈R, σ(1,s1; 1,s2) V†

S (σX ⊗ σZ ⊗ 1)(a)VS , (4.166)

Using the definition of γB (Equation (4.21)) and Lemma 4.7, we have

Tr
[
(Z̃1X̃2)

(s1)σ(1,s1; 1,s2)
]
≈γB(T) Tr

[
σ(1,s1; 1,s2)

]
, (4.167)

Tr
[
(X̃1Z̃2)

(s2)σ(1,s1; 1,s2)
]
≈γB(T) Tr

[
σ(1,s1; 1,s2)

]
. (4.168)

By the replacement lemma (Lemma 2.21(i)), Equations (4.165) and (4.166), and V†
S VS = 1, we

therefore have

Tr
[
(σZ ⊗ σX ⊗ 1H′)

(s1)VSσ(1,s1; 1,s2)V†
S

]
≈R Tr

[
VSσ(1,s1; 1,s2)V†

S

]
, (4.169)

Tr
[
(σX ⊗ σZ ⊗ 1H′)

(s2)VSσ(1,s1; 1,s2)V†
S

]
≈R Tr

[
VSσ(1,s1; 1,s2)V†

S

]
. (4.170)

Using Lemmas 2.19 and 2.20, this implies

(σZ ⊗ σX ⊗ 1H′)
(a) ≈R,VSσ(1,s1; 1,s2)V†

S
δa,s11 , (4.171)

(σX ⊗ σZ ⊗ 1H′)
(b) ≈R,VSσ(1,s1; 1,s2)V†

S
δb,s21 . (4.172)

where δa,s1 is the Kronecker-δ. Expanding σ(1,1) = ∑s1,s2
σ(1,s1; 1,s2) and using Lemma 2.22 twice, we

get:

VSσ(1,s1; 1,s2)V†
S ≈R (σX ⊗ σZ ⊗ 1H′)

(s2)(σZ ⊗ σX ⊗ 1H′)
(s1)(VSσ(1,1)V†

S )

(σZ ⊗ σX ⊗ 1H′)
(s1)(σX ⊗ σZ ⊗ 1H′)

(s2) . (4.173)

A direct calculation shows

(σZ ⊗ σX ⊗ 1H′)
(s1)(σX ⊗ σZ ⊗ 1H′)

(s2) = |φ(s1,s2)
H 〉〈φ(s1,s2)

H | ⊗ 1H′ . (4.174)
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Using Corollary 4.36 and the two equations above, we get

VSσ(1,s1; 1,s2)V†
S ≈R (|φ(s1,s2)

H 〉〈φ(s1,s2)
H | ⊗ 1H′)VSσ(1,1)V†

S (|φ
(s1,s2)
H 〉〈φ(s1,s2)

H | ⊗ 1H′) (4.175)
c≈R

1
4
|φ(s1,s2)

H 〉〈φ(s1,s2)
H | ⊗ α̃H′ . (4.176)

Defining ξ
(s1,s2)
H′ to be the renormalised version of (〈φ(s1,s2)

H | ⊗ 1H′)VSσ(1,1)V†
S (|φ

(s1,s2)
H 〉 ⊗ 1H′),

Equation (4.175) implies that VSσ(1,s1; 1,s2)V†
S has the desired form, and Equation (4.176) implies

the normalisation of 1
4 and the computational indistinguishability of the different ξ

(s1,s2)
H′ .

(ii) To simplify the notation, we show this for (q1, q2) = (0, 0). The other cases are analogous.

We can write P(a,b)
0,0 as

P(a,b)
0,0 = Z(a)

1 Z(b)
2 . (4.177)

By Lemma 2.24, Equations (4.154) and (4.155) imply

VSZ(a)
1 V†

S ≈R, VSσ(θ1,θ2)V†
S
|a〉〈a| ⊗ 12 ⊗ 1H′ , (4.178)

VSZ(b)
2 V†

S ≈R,VSσ(θ1,θ2)V†
S

12 ⊗ |b〉〈b| ⊗ 1H′ . (4.179)

The argument now proceeds similarly to that in the proof of Lemma 4.37. We need to replace
VSσ(θ1,θ2)V†

S by 1
4 12⊗ 12⊗ α̃. This can be shown analogously to the lifting lemma (Lemma 2.25(vi),

which only deals with binary observables, not projectors), by noting that VV† ≈0,Vσ(θ1,θ2)V† 1. Using
the trick of commuting Pauli operators past the state in the same manner as before, we obtain

VSP(a,b)
0,0 V†

S = VSZ(a)
1 Z(b)

2 V†
S ≈R, VSσ(θ1,θ2)V†

S
|a〉〈a| ⊗ |b〉〈b| ⊗ 1H′ . (4.180)

Since each σ(θ1,v1; θ2,v2) is positive, this also holds if we replace VSσ(θ1,θ2)V†
S by VSσ(θ1,v1; θ2,v2)V†

S
(Lemma 2.18)(ii)). Therefore, using Lemma 2.22 we have

VSP(a,b)
q1,q2 σ(1,v1; 1,v2)P(a,b)

x,y V†
S = VSP(a,b)

q1,q2 V†
S VSσ(1,v1; 1,v2)V†

S VSP(a,b)
x,y V†

S (4.181)

≈R |a〉〈a| ⊗ |b〉〈b| ⊗ 1H′
(

VSσ(1,v1; 1,v2)V†
S

)
|a〉〈a| ⊗ |b〉〈b| ⊗ 1H′ .

(4.182)

Since applying projectors cannot increase the trace distance, we can replace VSσ(1,v1; 1,v2)V†
S by

1
4 |φ(s1,s2)〉〈φ(s1,s2)| ⊗ ξ

(s1,s2)
H′ using part (i). This completes the proof.
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