Supplementary Information

Direct Large-Area Growth of Graphene on Silicon for Ultra-Low-Friction and Silicon-Based Technologies

Wei-Shiu\-an Tseng1,2, Yen-Chun Chen3, Chen-Chih Hsu1, Chen-Hsuan Lu4, Chih-I Wu5, and Nai-Chang Yeh1,*

1 Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
2 College of Photonics, National Chiao-Tung University, Hsin-Chu 30013, Taiwan
3 Department of Physics, National Tsing-Hua University, Hsin-Chu 30013, Taiwan
4 Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
5 Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

* Corresponding author. Tel: 626 395-4313. E-mail: ncyeh@caltech.edu (N.-C. Yeh)
Figure S1: The PECVD setup for direct graphene growth on silicon, which includes the plasma generator, growth-tube, vacuum pumps, mass-flow-control (MFC) valves, and different gases for the growth. HF was used to remove native SiO₂ on the surface of Si substrates immediately before the substrates were inserted into the growth chamber. More details about our PECVD setup can be found in References 48 and 49.
Figure S2: (a) XPS and (b) UPS spectra of graphene nano-walls on Si substrates. These results were very similar to those obtained from horizontal graphene sheets on Si substrates.
Figure S3: Comparison of the RGA records of (a) CO and (b) CO$_2$ signals taken during the PECVD growth of graphene on Si and SiO$_2$ substrates, respectively. Here the sharp rise of CO and CO$_2$ signals corresponded to the time when plasma was ignited.
Figure S4: AFM studies of the cross-sectional profiles of (a) 3 and (b) 14 layers of graphene sheets grown on Si substrates. A sharp AFM tip was used to make scratches on graphene surfaces for cross-sectional studies. Some overshoots were formed due to the method used to create scratches, and so the steps were determined by the mean heights at distances far from the cuts.