










Distinct spatial locales within PPC encode goal information, a fact reflected in the variable weighting assigned to each 
voxel in a decoding algorithm. Roughly speaking, signals with high goal-related SNR are assigned weights of larger 
magnitude than those with lower SNR and consequently have a larger impact on decoder output. By training decoders 
that contain a mixed population of PPC neuronal populations, we measured and compared the relative value ascribed to 
regions, e.g. LIP and PRR, from the perspective of the decoding algorithm. We found that the spatial distributions of the 
decoder subspaces, i.e. the relative decoder weights across voxels, largely reflected the patterns we saw in the mean 
activation patterns and statistical maps (example map shown in Fig. 3e). That is, the decoder placed highest weightings in 
area LIP to maximally discriminate the monkey’s goal during the memory period. These weighting likely reflect goal-tuned 
physiological changes in blood volume induced by neural activity.  

Vascular signal and information content. A purported benefit of the increased spatiotemporal resolution and sensitivity 
afforded by fUS imaging is access to information content and neurovascular dynamics at scales previously difficult to 
access with established techniques, such as fMRI. To test these potential benefits, we classified movement goals from the 
memory phase after synthetically decreasing the resolution of the image. We resized the images using a low-pass filter in 
each of the dimensions of the imaging plane: x – across the probe surface and z – with image depth. Decoding accuracy 
continuously decreased as voxel sizes increased (Fig. 4a). This effect was isotropic, i.e. similar for both x and z directions. 
These results underscore the critical importance of fUS’s superior spatial resolution in enabling sophisticated decoding of 
neural activity. 

Figure 4: a, Decoding accuracy as a function of spatial resolution. Accuracy 
decreases with resolution in both the x-direction (across the imaging plane) 
and z-direction (depth in the plane) in an isotropic manner. b, A typical 
vascular map overlaid with contours dividing the image into deciles of mean 
power Doppler intensity. c, Decoding accuracy as a function of the mean 
power Doppler intensity. Information content is greatest in relatively low-
signal areas that correspond to vessel classes that are not individually resolved 
by fUS. Sub-cortical and primary unit vasculature, i.e. deciles 1 and 10, are 
least informative to decoding movement direction. 

Recent studies show that functional hyperemia starts in a vascular 
compartment referred to as the primary unit that comprises parenchymal 
arterioles and first order capillaries, i.e. vessels of diameter < 50 µm50. From 
there, blood flow velocity increases in downstream capillaries and upstream 
arterioles. We therefore hypothesized that most of the functional information 
used for decoding would be found in sub-resolution (<100 µm) vessels within 
the imaging plane. To test this hypothesis, we (spatially) segmented fUS 
vascular maps of the brain by rank ordering voxels by their mean power 
Doppler intensity and segmenting them by deciles. A representative spatial 
map of these ranked deciles is shown in Fig. 4b. Whereas deciles 1-2 mostly 
captured sub-cortical areas, deciles 3-8 mostly captured cortical layers where 
shallower layers exhibit higher mean intensity. Deciles 9 and 10 were largely 
restricted to primary unit vasculature, e.g. large arteries, commonly on the 
cortical surface and in the sulci. We then classified movement goals from 
individual trials from the memory phase using the rank-ordered voxels, one 
decile at a time. The resulting decode accuracy as a function of the power 
Doppler intensity is given in Fig. 4c. Accuracy is reported as a fraction of the 
maximum accuracy for each session. Beginning with the bottom 10% of voxels 
ordered by mean CBV magnitude, decode accuracies were near chance level. 
Accuracy increased with increasing Doppler power. Accuracy peaked when 
the regions of the image within the 3rd decile of mean Doppler power were 
used to decode movement intention. Finally, accuracy dropped toward 
chance level as Doppler power increased toward its maximum value for each 
recording. Thus, goal direction-tuned neurovascular activity, as measured by 
fUS, exists mostly in vascular anatomy occurring in the cortex. Much of the 
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cortical vasculature is at or below the limits of fUS resolution. Indeed, the 3rd decile regions of cerebral vasculature mostly 
consists of sub-resolution cortical vessel endings. This result is consistent with the hypothesis that functional hyperemia 
arises from sub-resolution vessels of the primary unit 20,51. This finding agrees with previous studies in rodents52 and 
ferrets24. These studies showed that the most important contribution to cortical fUS signals were derived from axial flow 
velocities ranging between 2-10 mm/s, corresponding to vessel diameters <50 µm. 

Memory delayed reaches. To demonstrate the generalizability of fUS BMI, we collected fUS signals while one NHP 
(monkey H) performed memory reaches via joystick for 6 runs over 4 days. The task was largely similar to that of saccades, 
but the animal’s gaze remained fixated throughout the trial, including during the fixation, memory, and reach execution 
phases (Fig. 5a). ERAs on the lateral bank of IPS in putative LIP areas reveal populations with direction-specific tuning (Fig. 
5, b-c). Populations on the medial bank in putative parietal reach region (PRR) do not exhibit such tuning but do show 
bilateral tuning to the movement (Fig. 5d). These results are consistent with electrophysiological recordings, in which the 
PRR neurons as a population encode both hemispaces, whereas LIP neurons encode largely encode the contralateral 
space53. Decoding accuracy and its temporal evolution was like those observed in the saccade experiments (Fig. 5e). 
Specifically, cross-validated reach goal decodes accuracies ranged from 72.96% (p<0.001) to 94.64% (p<0.001) on a given 
30-minute run. The mean accuracy across all sessions and runs was 88.54% (p<0.001). 

Figure 5: a, Memory-guided reaching task. A 2D 
joystick was positioned in front of the sitting 
animal, with the handle at the level of his knee. 
A trial started with the animal fixating on a 
central cue (red diamond) and positioning the 
joystick to its center (green circle). Next, a 
reaching target (green circle) was presented 
either on the left or the right visual field. The 
target disappeared after 0.2 s and the animals 
had to memorize its location while continuing to 
fixate eye and hand on the center cue. When the 
hand fixation cue was extinguished (go-signal), 
the animals performed a reach to the 
remembered peripheral target location within 
0.5 s and maintained the position for another 1 
s before receiving a reward. Importantly, eye 
fixation was maintained through the reaching 
trial. b, A vascular map with ROIs on the lateral 
and medial banks of the IPS whose ERA 
waveforms are shown in c and d, respectively. c, 
Waveforms in LIP reveals direction-specific 
tuning in reaching movements. d, Waveforms in 
the medial bank of IPS exhibit a population with 
bilateral tuning to reaching movements, 
consistent with neurophysiological studies in 
NHPs. e, Decoding accuracy as a function of 
time across all reaching datasets. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2020. . https://doi.org/10.1101/2020.05.12.086132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.086132


DISCUSSION 
Although fUS imaging has been successfully used to monitor brain activity in small (e.g., rodents) and large (e.g., NHP) 
mammals, the preponderance of previous studies focused on exploring the spatial and temporal responses of behavior 
across many trials. The present study provides the first direct evidence that fUS imaging is capable of detecting difference 
in neurovascular response to differing motor goals on a single-trial basis. Two NHPs were trained to perform memory-
guided saccade movements to peripheral targets while we recorded fUS activity from the PPC region. One of the animals 
was also trained to reach to the targets using a joystick. Consistent with previous neurophysiological and brain imaging 
studies30–32,35,39, we found brain areas within PPC that exhibited significant contralateral memory-delayed activity for 
saccades and reaches. Overall, our findings indicate that the fUS signal from PPC contains information related to planning 
and execution of motor actions. Importantly, we successfully decoded the intended direction of eye and hand movements 
on a single-trial basis with significant cross-validated accuracy. This is an essential demonstration for potential application 
of fUS in developing BMI systems. These results present for the first time a proof of concept that fUS could serve as the 
basis for brain prosthetics applications, whose portability and minimally invasive nature could vastly expand the user base 
and applications possible with BMIs. 

Electrophysiological studies have also shown that PPC subregions, such as LIP and PRR, can be used as neural basis for the 
control of oculomotor and reach BMI systems, respectively46,54–56. However, there are several very clear advantages of fUS 
monitoring. The first advantage is a much lower level of invasiveness compared to intracortical electrodes. fUS BMI does 
not require penetration of the dura mater. This is powerful because penetration of this protective tissue greatly increases 
the risk level of the implant. Potential infections of the CSF can lead to meningitis, cerebritis, and empyema. In contrast, 
neurosurgery in the epidural space is significantly less complex and risky, which may better facilitate adoption of epidural 
approaches. In addition, our approach is highly adaptive thanks to the reconfigurable electronic focusing of the ultrasound 
beam. This makes it much easier to record from target regions of interest. Electrode arrays are typically inserted only once 
and can suffer from suboptimal positioning due to poor localization or to avoid piercing major vasculature. Implanted 
electrode arrays are difficult to reposition as it requires additional surgery. fUS also provides access to cortical areas deep 
within sulci and subcortical brain structures that are exceedingly difficult to target with electrophysiology. While tissue 
reactions degrade the performance of chronic electrodes, fUS BMI can, in principle, operate through the dura indefinitely. 
Fundamentally, the risks of infection, missing targets, and gradual device failure greatly limit the range of scenarios in 
which intracortical electrical BMIs are considered an option. An epidural fUS BMI would vastly expand the applicable 
patient populations and research scenarios that could benefit from BMI technology. 

A potential limitation of ultrasonic BMI is the temporal latency of the hemodynamic response to neural activity. Increased 
BMI latency decreases throughput. However, information transfer rate (ITR) can be improved with higher dimensionality 
decoding and decreased error rates12,57. A benefit of fUS imaging is the ability to record the activity of multiple brain areas 
in parallel. fUS can discriminate responsiveness of neighboring voxels with a functional resolution as fine as 100 μm during 
auditory stimuli in awake ferrets24. The combination of wide field of view and high discriminative resolution provides a 
very large number of independent voxels for BMI decoders. In the present work, we showed that saccade and reach 
movements can be decoded from subregions of PPC. Future BMIs can leverage multiple brain areas representing multiple 
effectors and task variables to increase the dimensionality of the decoder and thus BMI throughput. 

The impact of hemodynamic latency also depends greatly on the BMI application being developed. Here, we decoded 
goals from high-level cognitive areas. Goal decoding circumvents the need for instantaneous updates; goals are formed 
ahead of an action and remain constant throughout its execution (Fig. 3d). While electrophysiology-based BMIs that 
decode velocity of intended limb movements require as little latency as possible, our results suggest that goal-based 
decoding is achievable with a fUS based BMI. The development and dissemination of a fUS BMI would be transformative 
for cognitive BMIs more generally, especially those that operate over large areas of the brain (coverage) on time scales 
compatible with hemodynamics, including keyboard interfaces or state decoding of mood and other psychiatric states. 
The extension from 2D fUS to 3D volumetric fUS imaging based on matrix arrays58 or row column arrays59 would likely 
improve decoding accuracy24 and further expand the impact of fUS for BMI. Finally, there is future potential for faster fUS 
decoding. For example, a recent study found information present at 20 ms resolution by exploiting fast lag-correlation 
between neighboring voxels of fUS imaging data in awake and behaving NHPs26. 

In addition to the technological innovations presented to attain single-trial decoding of movement goals, the data therein 
were also physiologically meaningful. Typical activation maps and decoder subspaces revealed many active regions within 
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PPC, in scale from ~100 μm to mm to nearly 1 cm, during saccade planning. These responses were more active to 
contralateral targets; ipsilateral targets did not elicit such activity. The contralateral tuning of these regions during 
memory-delay is consistent with the findings from previous fMRI studies in our lab, showing that that LIP exhibits stronger 
changes in BOLD signal for contralateral targets in a similar memory-guided saccade task39,44. These results are also 
consistent with the extensive evidence from electrophysiological recordings in NHPs that show LIP is involved in planning 
and executing saccadic movements35,53,60. Notably, the ERA waveforms display significantly larger target-specific 
differences compared to fMRI memory-delayed saccade task, i.e., 2-5% vs 0.1-0.5%39,44, and have much finer spatial 
resolution. This sensitivity was possible despite the deepest sub-regions of interest extending >16 mm below the probe 
surface. At this depth, signal attenuation is approximately -7.2 dB (assuming uniform tissue using a 15 MHz probe). Still, 
we found significant visuomotor event-related activity (Fig. 2b). Using a probe with a lower center frequency would allow 
for increasing depths at the cost of spatiotemporal resolution. Use of microbubbles61 or biomolecular contrast agents51 
may enhance hemodynamic contrast allowing for deeper imaging without sacrificing resolution. 

In addition to well-studied PPC subregions, we also identified patches of activity in the medial parietal area (MP) located 
within PGm. These functional areas were much smaller in size and magnitude than those nearer to the IPS. This is one 
potential reason why MP activity was not reported in previous fMRI studies. However, electrophysiological studies have 
showed that stimulation of this area can elicit goal-directed saccades, indicating its role for eye movements47. The addition 
of the hemodynamic results presented here not only contribute to these findings but are the first hemodynamic evidence 
of MP function. A limitation of this finding is that we did not observe such activity in the second animal. This is likely due 
to a targeting problem: we optimized probe positioning to maximally intersect area LIP. Current efforts to develop 3D fUS 
imaging58 will eliminate this limitation, allowing us to identify new areas based on response properties. 

We also collected data during a memory-delayed reaching task in one animal. ERA waveforms identified increases in CBV 
during the memory phase for regions on the medial aspect of the IPS. The parietal reach region (PRR) is located on the 
medial bank of the IPS and is characterized by functional selectively to effector, i.e. the arm45. The responses we observed 
in this area were indeed effector specific – they did not appear in the saccadic data. However, they were not direction 
specific, i.e. increases in CBV activity were present for left-cued and right-cued trials. This bilateral reach response can be 
explained by the spatial scale of the recording method. Whereas single unit electrophysiology in PRR reveals single 
neurons that are tuned to contralateral hand movement planning, a significant portion of PRR neurons are also tuned to 
ipsilateral movement planning53. Within the limits of fUS resolution (~100 µm), each voxel records the neurovascular 
response to the summed activity of all cells within the voxel (~100 µm x 100 µm x 400 µm). Therefore, our results in the 
context of previous literature, provide evidence that 1) populations of ipsilaterally- and contralaterally-tuned neurons 
were roughly equivalent, and 2) these populations are mixed at sub-resolution scales. We also found activity on the lateral 
bank of IPS that encoded target direction for an upcoming reach. That is, responses were more robust to contralateral 
targets. Although this area is predominantly involved in saccade movements, neurophysiological studies have also 
reported neurons within the LIP area that encode reaches to peripheral targets35,62. 

Approximately 5.6 million US citizens live with paralysis. Paralysis can result from a multitude of conditions including spinal 
cord injury, stroke, traumatic brain injury, and neurodegenerative disorders. Brain-machine interfacing is a promising 
technique to restore movement to these populations. The contributions presented here required significant 
advancements in large-scale recording of neurovascular activity with single-trial sensitivity. These advancements will help 
to usher in a new era of BMIs that are less-invasive, high-resolution, and scalable. These BMIs will facilitate a direct link 
between mind and neuroprosthetic devices without damaging healthy brain tissue, significantly minimizing surgical risk. 
These tools will empower researchers to make unique insights into the function and malfunction of brain circuits. Such 
insights can be used to improve diagnostic and therapeutic approaches to neurological and psychiatric injury and disease. 
Furthermore, as future work translates these findings to high-performance minimally invasive BMIs, it will mark a 
significant advancement in the field of BMIs for people with paralysis. 
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METHODS 
Animal preparation, implant and probe for fUS imaging in awake behaving monkeys. All surgical and animal care 
procedures were done in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 
Animals and were approved by the California Institute of Technology Institutional Animal Care and Use Committee. We 
implanted two adult male rhesus macaques (Macaca mulatta) weighing 10–13 kg with polyether ether ketone head caps 
anchored to the skull with titanium screws. We then placed a custom stainless-steel head holder on the midline anterior 
aspect of the cap. Finally, we placed a unilateral square chamber (2.4 cm inner diameter, Ultem or Nylon) over a 
craniotomy over the left intraparietal sulcus. The dura underneath the craniotomy was left intact. To guide the placement 
of the chamber, we acquired high-resolution (700 µm) anatomical MRI images before the surgery using a Siemens 3T MR 
scanner, with fiducial markers to register the animals’ brains to stereotaxic coordinates. During each recording session, 
we placed the ultrasound probe (128 elements linear array probe, 15 MHz center frequency, 0.1 mm pitch, Vermon, 
France) in the chamber with acoustic coupling gel. This enabled us to acquire images from the posterior parietal cortex 
(PPC) with an aperture of 12.8 mm and depths up to 23 mm. This large field of view allowed us to image several PPC 
regions simultaneously. These superficial and deep cortical regions included, but were not limited to, area 5d, lateral 
intraparietal (LIP) area, medial intraparietal (MIP) area, medial parietal area (MP), and ventral intraparietal (VIP) area. 

Behavioral tasks and processing. During each recording session, the monkeys were placed in a dark anechoic room. They 
sat in a custom designed primate chair, head fixed, facing an LCD monitor ~30 cm away. The animals performed memory-
guided eye movements to peripheral targets (Fig. 2a). Each trial started with a fixation cue (red diamond; 1.5 cm side 
length) presented in the center of screen (fixation period). After the animal had fixated for 6.3 s, a single cue (red diamond; 
1.5 cm side length) appeared either on the left or the right hemifield for 200 ms, indicating the location of the target. Both 
targets were located equidistantly from the central fixation cue (23° eccentricity). After the cue offset, the animals were 
required to remember the location of the targets for a mean of 5.1 s (memory period), while maintaining eye fixation. The 
memory period varied across sessions from 3.7 to 6.5 s depending on the animals’ training and success rate. Once the 
central fixation cue disappeared (i.e., go signal), the animals performed a direct eye movement (saccade) within 500 ms 
to the remembered location of the target. If the eye position arrived within a radius of 5° of the targets, it was re-
illuminated and stayed on for the duration of the hold period (1 s). If the animal broke eye fixation before the go signal 
(i.e., shifted their gaze outsize of a window of 7.5 cm, corresponding to 14° of visual angle), the trial was aborted. 
Successful trials were followed by a liquid reward. The fixation and memory periods were subject to 400 ms of jitter 
sampled from a uniform distribution to preclude the animal from anticipating the change(s) of the trial phase. 

One of the animals (monkey H) also performed memory-guided reach movements to peripheral targets using a 2-
dimensional joystick positioned in front of the chair with the handle at knee level. Each trial started with two fixation cues 
presented at the center of the screen. The animal fixated his eyes on the red diamond cue (1.5 cm side length) and acquired 
the green cue by moving a square cursor (0.3 cm side length) controlled by the joystick (fixation period). After 5.3 s, a 
single green target (1.5 cm side length) was presented either on the left or the right visual field for a short period of time 
(300 ms). After the cue offset, the animal was required to remember the location of the targets for a mean of 5.6 s 
(memory period), while maintaining eye and hand fixation. The memory period varied across sessions from 4.3 to 6.9 s. 
Once the central green cue disappeared, the animal performed a direct reach to the remembered target location within 
500 ms, without breaking eye fixation. If he moved the cursor to the correct goal location, the target was re-illuminated 
and stayed on for duration of the hold period (1 s). Targets were placed at the same locations as in saccade trials. If the 
cursor moved out of the target location, the target was extinguished, and the trial was aborted. Any trial in which the 
animal broke eye fixation or initiated a reaching movement before the go signal or failed to arrive at the target location 
was aborted. Successful trials were followed with the same liquid reward as in saccade trials. 

Visual stimuli were presented on an LCD monitor using custom Python software based on PsychoPy63. Eye position was 
monitored at 60 Hz using a miniature infrared camera (Resonance Technology, Northridge, CA, USA) and ViewPoint pupil-
tracking software (Arrington Research, Scottsdale, AZ, USA). Reaches were performed using a 2-dimensional joystick 
(Measurement Systems). Both eye and cursor positions were recorded simultaneously with the stimulus and timing 
information and stored for offline access. Data analysis was performed in Matlab 2019b (MathWorks, Natick, MA, USA) 
using standard desktop computers. 

Functional Ultrasound (fUS) sequence and recording. We performed all acquisitions with a single 128-element 
piezoelectric ultrasound probe with a center frequency of 15.6 MHz. Scanning was performed with an ultrafast ultrasound 
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research scanner (Vantage 128 by Verasonics, Kirkland, WA). To image functional changes in the brain, we used ultrafast 
ultrasound Doppler sequences. As the source of contrast in Doppler images originates from red blood cell motion, regional 
changes in power Doppler intensity are proportional to cerebral blood volume (CBV) changes induced by neurovascular 
coupling17. Specifically, our sequence transmitted plane waves at five discrete angles: -6, -3, 0, 3, and 6 degrees. We then 
coherently compounded the radiofrequency (RF) data acquired along each angle into a single image with higher contrast. 
We acquired sets of 250 coherently compounded frames at 500 Hz every second (500 ms period of acquisition and 500 
ms of rest). 

Anatomical PPC regions were spatially located by their stereotaxic positions from the pre-surgical MRI. Response of these 
functional areas was confirmed by mapping activated voxels obtained during the experimental phase of this work. If 
necessary, the imaging plane was adjusted to record the most responsive area. Each acquisition consisted of 900-3600 
blocks of 250 frames where each block represented 1 second of data (equivalent to 15-60 minutes runtime). Finally, we 
stored the in-phase and quadrature sampled data to high-speed solid-state drive memory for offline processing. 

Beamforming and Doppler signal processing. We used singular value decomposition to discriminate red blood cell motion 
from tissue motion and extracted the Doppler signal in each ensemble of 250 coherently compounded frames 64,65. The 
resulting images were then stored in a 3D array of 2D images in time series. In some experiments, we observed motion of 
the entire imaging frame. These shifts were indicative of a change in the position of the probe/tissue interface due to 
uncommonly forceful movements of the animal. We corrected for these events using rigid-body image registration based 
on the open source NoRMCorre package66, using an empirical template created from the first 20 frames from the same 
session. We also tested nonrigid image registration but found little improvement, confirming that motion observed was 
due to small movements between the probe/dura interface rather than changes in temperature or brain morphology. 

We display event-related average (ERA) waveforms (Fig. 2, c-f,h-i; Fig. 5, c-d) of power Doppler change as percentage 
change from baseline. The baseline consists of the three seconds preceding the first Doppler image obtained after the 
directional cue was given on any given trial. ERA waveforms are represented as a solid line with surrounding shaded areas 
representing the mean and standard deviation. We generated activation maps (Fig. 2, a,g) by performing a two-sample t-
test for each voxel individually with false discovery rate (FDR) correction based on the number of voxels tested. In this 
test, we compared the area under the curve of the change in power Doppler during the memory phase of the event-
related response. The movement direction represented the two conditions to be compared, and each trial represented 
one sample for each condition. Voxels with values of p<0.01 are displayed as a heat map overlaid on a background vascular 
map for anatomical reference. 

Single trial decoding. Decoding single trial movement intention involved three parts: 1) aligning CBV image time series 
with behavioral labels, 2) feature selection, dimensionality reduction and class discrimination, and 3) cross validation and 
performance evaluation (Fig. 3a). First, we divided the imaging dataset into event aligned responses for each trial, resulting 
in a 4-dimensional data-task structure, i.e. 2D CBV images through time for each trial. We then separated trials into a 
training set and testing set according to a 10-fold cross validation scheme. The training set was attached to class labels 
that represented movement direction (i.e. Left vs. Right); the test set was stripped of such labels. Features were selected 
by ranking each voxel’s t-value comparing the memory-phase responses to target direction. Direction-tuned voxels (FDR 
corrected, q<0.05) up to 10% of the total image were kept as features. For dimensionality reduction and class separation, 
we used classwise principal component analysis (CPCA) and linear discriminant analysis (LDA)48, respectively. This decoding 
method has been implemented with success in many real-time BMIs16,67–70, and is especially useful in applications with 
high dimensionality. CPCA computes the principal components (PCs) in a piecewise manner individually for training data 
of each class. We retained principal components to account for >95% of variance. We improved class separability by 
running linear discriminant analysis (LDA) on the CPCA-transformed data. Mathematically the transformed feature for 
each trial can be represented by ! = #!"#Φ$%$#(&), where & ∈ ℝ& are the flattened imaging data for a single trial, Φ$%$# 
is the piecewise linear CPCA transformation, and #!"# is the LDA transformation. Φ$%$# is physically related to space and 
time and thus can be viewed within the context of physiological meaning (Fig. 3e). We subsequently used Bayes rule to 
calculate the posterior probabilities of each class given the observed feature space. Because CPCA is a piecewise function, 
this is done twice, i.e. once for each class, resulting in four posterior likelihoods, i.e. *!(+|!∗), *!(.|!∗), *((+|!∗),
*((.|!∗), where !∗ represents the observation, *! and *(  represent the posterior probabilities in the CPCA subspaces 
created with training data from left-directed and right-directed trials, respectively. Finally, we store the optimal PC vectors 
and corresponding discriminant hyperplane from the subspace with the highest posterior probability. We then used these 
findings to predict movement direction for each trial in the testing set. That is, we compute !∗ from fUS imaging data for 
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each trial in the testing set to predict the upcoming movement direction. Finally, we rotate the training and testing sets 
according to k-fold validation, storing the BMI performance metrics for each iteration. We report the mean decoding 
accuracy as a percentage of correctly predicted trials (Fig. 3b). In measures across multiple sessions where an independent 
variable is being tested (e.g. number of trials in training set), we use a normalized accuracy that is linearly scaled to [0, 1] 
where 0 is chance level, i.e. 50%, and 1 is the maximum accuracy across the set of values used in the independent variable 
(e.g. Fig. 3c). This was necessary to account for significant differences in raw accuracy values across multiple sessions and 
animals. 

As BMI models increase in complexity, their need for data also increases. To demonstrate the robustness of our piecewise 
linear decoding scheme to limited data, we systematically reduced the amount of data used in the training set (Fig. 3c). 
We used N-i trials in the training set and i trials in the testing set in a cross-validated manner, rotating the training/testing 
set i times for i = 1, 2,… N-10. We stop at N-10 because accuracy was diminished to chance level and when less than 10 
trials are used in the training set, it becomes increasingly likely that there will be an under- or non-represented class, i.e. 
few or no trials to one of the movement directions. We report the mean normalized accuracy standard error of the means 
(SEM) across both animals and all recording sessions as a function of the number of trials in the training set (N-i) (Fig. 3c). 

We also performed an analysis to determine the nature of hemodynamic encoding in PPC using a dynamic decoding 
technique. In this analysis, we used all temporal combinations of training and testing data, using a one second sliding 
window. We used 1 s of data from all trials to train the decoder and then attempted to decode from each of the 1 s 
windows of testing data throughout the trial. We then updated the training window and repeated the process. This 
analysis results in an n x n array of accuracy values where n is the number of time windows in the trial. We report the 10-
fold cross-validated accuracies as the percentage of correctly predicted trials (Fig. 3d). 

Part of the motivation for using fUS is its spatial resolution. To test the effects of increased resolution, we synthetically 
reduced the resolution of the in-plane imaging data using a Gaussian filter. We performed this analysis at all combinations 
of x and z direction (width and depth, respectively) starting at true resolution, i.e. 100 µm, up to a worst-case of 5 mm 
resolution. We report the 10-fold cross-validated accuracy values as a function of these decreasing resolutions as a 2D 
heat map and as 1D curves of mean accuracy in both the x and z directions with shaded areas representing SEM (Fig. 4a). 
A limitation of this approach is that we cannot downsample the out-of-plane dimension. Thus, the reported accuracy 
values are likely higher than those attainable by a technique with isotropic voxel size, e.g. fMRI. 

We also investigated the source of neurovascular information content by segmenting the images according to their mean 
power Doppler signal as a proxy for mean cerebral blood flow within a given area. Specifically, we segmented the image 
into deciles by mean power Doppler signal within a session, where higher deciles represented higher power and thus 
higher mean blood flow (Fig. 4b). Deciles were delineated by the number of voxels, i.e. the number of voxels was the same 
within each segment and did not overlap. Using only the voxels within each decile segment, we computed the mean 
accuracy for each recording session. We report the mean normalized accuracy across all recording sessions (Fig. 4c) where 
shaded error bars represent SEM.  
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