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Abstract

Simple wavefunctions of low computational cost but which can achieve qualitative accuracy
across the whole potential energy surface (PES) are of relevance to many areas of electronic
structure as well as to applications to dynamics. Here, we explore a class of simple wavefunc-
tions, the minimal matrix product state (MMPS), that generalizes many simple wavefunctions
in common use, such as projected mean-field wavefunctions, geminal wavefunctions, and gen-
eralized valence bond states. By examining the performance of MMPSs for PESs of some
prototypical systems, we find that they yield good qualitative behavior across the whole PES,
often significantly improving on the aforementioned ansätze.

1 Introduction

Simple qualitative wavefunctions, such as the Slater determinants used in Hartree-Fock (HF) and
Kohn-Sham theory, play essential roles in the theory of electronic structure.1–3 For example, they
provide qualitative understanding about bonding and structure, and are a starting point for more
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sophisticated numerical treatments, via perturbation theory or as the dominant component in a
more flexible ansatz. In addition, because computations with such wavefunctions are cheap (often
N3 or N4 cost where N is proportional to system size) such wavefunctions may be used both to
study large systems, and to study dynamics, where cheap electronic structure methods are essential.

Beyond Slater determinants, other simple wavefunctions in common use can be thought of as
small generalizations. One class is obtained by breaking and restoring the symmetries in a Slater
determinant.1,2,4–10 For example, typical Hamiltonians conserve particle number (N), spin symme-
try (S2, Sz), and time reversal symmetry, in addition to various point group symmetries. Rather
than using a Slater determinant that obeys all these symmetries, one can break the symmetries in or-
der to capture essential correlations, and then restore them using projectors. This leads to a variety
of wavefunctions, such as projected unrestricted Hartree-Fock8–10 (broken and restored spin sym-
metry), the antisymmetrized geminal power (AGP) (broken and restored number symmetry),1,2,11,12
and, as an extension to AGP, projected Hartree-Fock-Bogoliubov (HFB).1,5,13 These wavefunctions
are easy to compute with, because their mean-field origin means that matrix elements can be ob-
tained by a modified Wick’s theorem. Another way to create a simple wavefunction is to construct
a product state not of orbitals, but of multi-electron objects. The generalized valence bond (GVB)
state is one such example, corresponding to a product state of strongly orthogonal two-particle
(geminal) wavefunctions.3,14–22

In this work, we describe another convenient way to generate simple wavefunctions using the
formalism of matrix product states (MPSs), the wavefunction ansatz of the density matrix renor-
malization group (DMRG).23–28 Matrix product states provide several ways to generalize the above
pictures. First, they allow for expectation values to be efficiently evaluated without the structure of
a generalized Wick’s theorem. Second, it is natural to work with products of many-particle objects
in the MPS form. Third, by increasing the MPS bond dimension D (defined below) one can easily
incorporate correlations beyond those purely from symmetry projection, or contained within the
individual wavefunction components (be they orbitals, geminals, or more complex objects). Given
the second quantized Hamiltonian, the cost of a MPS calculation scales like K4 (where K is the
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number of orbitals) with a prefactor that depends polynomially on the dimensionD of the matrices
that are the variational parameters of the state.28–31 While in typical DMRG calculations, the bond
dimension is made very large in order to provide near exact answers, in the current work we focus
on the opposite limit where D is very small, e.g. (1), and thus the prefactor in front of K4 is
very small. We shall call such states minimal matrix product states (MMPS). As we shall see, in
conjunction with symmetry projection, even the smallest minimal matrix product state withD = 1

already encompasses the simple wavefunctions in common use, while generalizing to new classes
of simple wavefunctions that have not previously been considered.

The remainder of this article is organized as follows: Section 2 gives an overview of the MMPS
ansatz in (Section 2.1), its connection to geminal and related ansätze (Section 2.2), and describes
the algorithmic implementation of the MMPS ansatz (Section 2.3). Section 3 presents MMPS
results for some prototypical systems and compares them to results from related ansätze. Section 4
concludes and gives our outlook on future applications.

2 Theory

2.1 Minimal matrix product state ansatz

A matrix product state is obtained by writing the amplitude of a wavefunction as a product of
matrices Ani , namely, for K orbitals

|ΨMPS⟩ =
∑

{n}
An1An2…AnK

|n1n2… nK⟩ (1)

where |n1n2… nK⟩ is an occupancy vector for sites 1…K .23,26,28 In the simplest case we consider,
we assume that the basis of site i is a single orbital, i.e. {|ni⟩} = {|vac⟩, |��i ⟩, |�

�
i ⟩, |�

�
i �

�
i ⟩}. In

a restricted formalism (used here) we further assume ⟨r�|��i ⟩ = ⟨r�|��i ⟩. The representational
power of the MPS is controlled by the bond dimension of the matrices, which isD×D save for the
first and last which are 1 ×D and D × 1.

3

Page 3 of 33

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The smallest matrix product state is the simple product state with D = 1, i.e. Ani is a scalar for
each element of the site basis. Such a state will not generally respect the symmetries of the system.
Consequently, we define a minimal matrix product state as the state obtained from the product state
after an additional projection onto the pure symmetry sectors of the Hamiltonian. In this work,
we consider Hamiltonians where N , S2 and Sz are good quantum numbers. Thus we define the
minimal matrix product state to conserve one or more of these symmetries, e.g.

|ΨMMPS⟩ = P̂ |ΨMPS⟩ = P̂ S2,SzP̂N
|ΨMPS⟩ (2)

where e.g. P̂N denotes projection onto a given particle numberN . Note that the distinction between
MMPS and earlier projected matrix product states such as the spin-projected MPS4,32 is mainly
one of emphasis on using the smallest bond dimensions. While |ΨMMPS⟩ is itself an MPS of a
bond dimension given by that of the |ΨMPS⟩multiplied by that of the projector P̂ , the explicit larger
representation never needs to be formed in standard computations (see Section 2.3 for more details).

It is useful to contrast the above scheme with how symmetries are usually expressed in MPSs
without projection.23,28,30,33,34 For Abelian symmetries, such as N and Sz, so long as {|ni⟩} are
eigenstates of N̂ and Ŝz, one can ensure that |ΨMPS⟩ is an irrep of these symmetries by requiring that
the matricesAni have a block structure. Choosing reasonable sizes for such quantum number blocks
is a discrete optimization process that is challenging when the total bond dimension is small. In the
projection approach, the need to choose a block structure is avoided, which thus allows meaningful
calculations with very small bond dimension, as small as D = 1.

From the above definition of a MMPS, we can extend the ansatz in two natural ways. The first
way is to enlarge the definition of a site in the underlying MPS to capture the Hilbert space of
multiple spin orbitals. For example, we may consider grouping pairs of the above sites into single
sites, e.g. {|nini+1⟩} → {|ñi∕2⟩}, where the dimension of {|ñi∕2⟩} is now 16. The parent MPS is
then still a product state, but of more complex components, similar to e.g. a GVB state. We shall
refer to such MMPS as multisite MMPS. The second way is to increase the bond dimension of Ani
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(i.e. they become matrices) in the typical way that matrix product states are made more accurate.
As explained in the introduction, in this work we will focus on the case of small bond dimensions
e.g. D = 1 − 5, keeping the ansatz as minimal as possible. In the evaluation of the computational
costs (see Section 2.3), D thus enters only as a small prefactor.

It is important to note that, similar to normal MPS with insufficiently largeD, the MMPS is not
invariant to orbital transformations between sites (including the ordering of the sites). Thus, as is
the case for other simple wavefunctions, its quality depends heavily on the orbitals used to define
it. In numerical calculations, orbital optimization is thus often a necessary consideration.

2.2 Exponential form and connection to geminal powers and other ansätze

To more easily connect the D = 1MMPS to other commonly used simple wavefunctions, we first
write it in another explicit form. For the most direct correspondence, we first consider the case
where the sites are single orbitals. Then,

|ΨMMPS⟩ = P̂
∏

i
(ci + si�â

†
i� + si� â

†
i� + diâ

†
i�â

†
i�)|vac⟩ (3)

where the ordering operator  ensures that the non-commuting single creation operators are applied
in lexicographical order (note that the constants and double creation operators commute with each
other and all single creation terms) e.g.


∏

i�
â†i� = â

†
1�â

†
1� â

†
2�â

†
2�… (4)

For the sites where ci ≠ 0, we can rewrite the factors in Eq. (3) as exponentials since cec−1(s� â
†
�+s� â

†
�+dâ

†
� â
†
� ) =

c + s�â†� + s� â
†
� + dâ

†
�â
†
� . Thus if all ci ≠ 0, the D = 1 MMPS is an ordered exponential up to a

scaling factor,

|ΨMMPS⟩ = P̂ e
∑

i� si� â
†
i�+

∑

i diâ
†
i� â

†
i�
|vac⟩ (5)
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The general AGP ansatz in its canonical basis (i. e., after an appropriate orbital rotation) with
Ns singly occupied orbitals can be written as

|ΨAGP⟩ = P̂N
Ns
∏

i=1
â†i�

K
∏

i=Ns+1

(

1 + diâ
†
i�â

†
i�

)

|vac⟩ (6)

Comparing this to the MMPS form of Eq. (3) we see the MMPS reduces to the general AGP if
for Ns of the factors, we only have one coefficient si� per factor, while for the other factors, we
only have the constant ci and double creation di term, reproducing the geminal terms in Eq. (6).
Consequently, we refer to the latter factors as the geminal part of the MMPS wavefunction.

Since the single siteD = 1MMPS is distinguished from the AGP by the way in which the single
creation operators enter into the ansatz, we can compare also to some other wavefunctions which are
related to the AGP but which introduce single creation operators in a different way. Fukutome and
coworkers introduced a generalization of the Bardeen-Cooper-Schrieffer wavefunction (the AGP
before projection) with single creation operators in an exponential,35,36 written as

|ΨF⟩ = e
∑

i(�iâ
†
i−�

∗
i âi)e

∑

i diâ
†
i� âi�

|vac⟩ (7)

where �i are complex numbers. However, note that e∑i(�iâ
†
i−�

∗
i âi) = c0 +

∑

i(ciâ
†
i − c∗i âi) for some

constants c0, ci, thus this is very different from the MMPS where there is an ordered exponential;
in particular, unlike in the MMPS, if di = 0 it is not possible for the single creation operators to
create a state with more than a single particle. Finally we note that exponentials of single creation
operators also occur in fermion coherent states similarly to in Eq. (7), but there �i, �∗i are Grassman
numbers.2 This ensures that expectation values with fermion coherent states satisfyWick’s theorem
for expectation values (i.e. expectation values of fermionic operators can be expressed in terms of
sums of products of single-particle density matrices) but it also means that the amplitude of a
fermionic coherent state is not physically meaningful, as it is a Grassman number.

To understand the variational freedom introduced by the single creation operators in theMMPS,
we can consider a simple limiting case where the geminal coefficients di are 0 in Eq. (5). This
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corresponds to assuming all wavefunction amplitudes can be factorized as

⟨

�
�i1
i1
�
�i2
i2
…�

�iN
iN

|

|

|

Ψ
⟩

= si1�i1si2�i2 … siN�iN (8)

The representational power of such a form is highly limited; it is not possible to doubly occupy any
spatial orbital. There are nonetheless some non-trivial states that can be captured in this way. In
general, if we assume each � and � orbital has the same spatial component, then the single creation
operators create an orbital of rotated spin (a generalized spin orbital),

∑

�
si�â

†
i�|vac⟩ =

√

∑

�
|si�|2|�

�̄i
i ⟩ (9)

where �̄ denotes the rotated spin. Incorporating projection onto fixedN , then the MMPS becomes
a weighted distribution overN-particle products of generalized spin orbitals

|Ψ⟩ =
K
∑

i1=1

K
∑

i2=2
i2≠i1

K
∑

i3=3
i3∉{i1,i2}

⋯
K
∑

iN=N
iN∉{i1,i2,⋯,iN−1}

ci1ci2⋯ ciN |�
�̄i1
i1
�
�̄i2
i2
…�

�̄iN
iN

⟩

(10)

where ci =
√
∑

� |si�|2. For any K > N , this represents a non-trivial linear combination; for
example, for K = 3 and N = 2, we get |Ψ⟩ = c1c2|�

�̄1
1 �

�̄2
2 ⟩ + c1c3|�

�̄1
1 �

�̄3
3 ⟩ + c2c3|�

�̄2
2 �

�̄3
3 ⟩. Thus

even this artifically simple (di = 0) example of an MMPS describes physics different than that of
other mean-field and projected mean-field states.

As another example, note that an AGP state is written as a linear combination of all doubly
occupied determinants but the AGP ansatz does not include determinants from higher seniority
sectors. In the MMPS, the inclusion of the single creation operators via the ordering operator 
yields a state that can formally access all determinants in the Hilbert space.

Multisite MMPS, as well as bond dimensions with D > 1 have the potential to compactly
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represent even more qualitative electronic structures beyond that captured by the AGP language.
For example, the perfect pairing GVB wavefunction3,18 can be written (up to normalization) as

|ΨGVB⟩ =
K∕2
∏

i=1
(â†i�â

†
i� + diâ

†
ī�â

†
ī�)|vac⟩ (11)

where indices i, ī index the perfect pairing orbitals. As this is a product state, it is clearly a matrix
product state, and if the MPS sites are chosen to consist of the paired orbitals {�i�, �ī�′} then it is a
MPS (and thus MMPS) of bond dimension 1. However, it is easy to generalize the perfect pairing
GVB wavefunction now also to include broken pairs by including the linear terms in the MMPS
ansatz, or to include broken and restored symmetries, or to include clusters of larger sites. The key
point is that formulating the ansatz in the matrix product language provides a simple organization
of the computation, which does not require the unprojected state to obey Wick’s theorem for ex-
pectation values (as for projected mean-field and AGP states) or to be a single product state (as for
GVB).

As with many of the other wavefunction ansätze discussed, MMPS (and MPS) are not size con-
sistent in general. For normal MPS, size consistency requires an appropriate choice of orbitals and
their ordering. For the MMPS, size consistency is broken by the projector but recovered (for the
appropriate choice of orbitals and ordering) in the large D limit. Nonetheless, in many cases of
interest the extensive scaling of the correlation energy is less important than the treatment of the
intensive changes in the correlation energy in a local region where bonds are changing, which the
MMPS can recover using orbitals localized to that region. In addition, by imposing local particle
number constraints on the projector, global size consistency can be restored, as has been demon-
strated with the Jastrow-AGP ansatz.37 However, this is beyond the scope of this work.
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2.3 Implementation

The variationally minimized energy of the MMPS ansatz Eq. (2) can be carried out using the fol-
lowing functional1

E = minΨMPS
⟨ΨMPS|ĤP̂ |ΨMPS⟩
⟨ΨMPS|P̂ |ΨMPS⟩

, (12)

where we have used the fact that P̂ commutes with Ĥ and idempotency of P̂ . Note that |ΨMMPS⟩

does not explicitly appear in Eq. (12) and thus does not need to be constructed. In the following,
we describe possible numerical choices of P̂ and the implementation of Eq. (12).

2.3.1 Choice of projector

There are many ways to evaluate the expectation value of a projected wavefunction occurring in
Eq. (12). For example, in variational Monte Carlo, one samples the wavefunction using states that
have the desired symmetries.38–43 Here, we use an explicit operator representation of the projector.
Formally, a projector is a delta distribution that selects the eigenstates to project on.1,44 For example,
P̂N = �(N̂ − N) where N̂ =

∑

i n̂i =
∑

i â
†
i âi. We consider two explicit constructions of the

projector: a matrix-product-operator23 (MPO) construction, and an integral-based construction.
To illustrate the idea behind the MPO construction, we consider the representation of P̂N . We

define our MPO projector such that applying P̂N to the MPS formally yields an MMPS with the
same structure as ordinary MPS with quantum numbers, i.e. the matricesAni have a block-structure
labelled by particle number. A pictorial example is shown in Fig. 1.

To obtain the projector, we first, as in conventional DMRG,28,45 construct all possible particle
sectors for a given bond such that the initial site starts with 0 and the last site ends withN electrons
(compare with Fig. 1 for N = 2). The number of particle sectors on the bond corresponds then to
the dimension of the MPO on that bond. The MPO tensor on a site i is a matrix for each bra, ket
pair ni, n′i in the basis of site i, and to satisfy particle number balance the elements of the tensor
take the form

[Mni,n′i]lr = �nin′i�N(l)+N(ni),N(r), (13)

9
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Figure 1: Diagram of the matrix-product-operator (MPO) based projector P for constraining
particle-number symmetry in the minimal matrix product state (MMPS). Applying P̂ to the MPS
(right-hand side) generates a MMPS (left-hand side). The MMPS formally corresponds to a MPS
whose matrices are in block-sparse form with equally sized blocks, where each block is labelled by
the combinations of particle numbers along the arrows. The arrows denote the “flow” of particles.
The sets denote the particle number sectors on a particular bond in the MPS. An example is shown
forN = 2 and four spin orbitals/sites.

where N(ni) is the number of particles in state |ni⟩ i.e, {0, 1} for one spin orbital, and N(l) and
N(r) are the number of particles associated with the left bond index l and right bond index r of the
MPO tensor.

For P̂N , the maximal bond dimension (maximal number of particle sectors at a given bond)
is D(N)

P = N + 1 (this is the total number of partitions of N between the left and right halves of
the system, i.e. (0, N), (1, N − 1),…(N, 0)). Generalizing to a projector that fixes both Sz and
N , P̂N� P̂N� = P̂ SzP̂N , the maximal bond dimension becomes D(N� ,N� )

P =(N� + 1)(N� + 1). The
projector can be generalized to S2 symmetry by defining the tensor elements in Eq. (13) in terms
of the Wigner 3j symbols. The MPO projector form has the property that the symmetry is directly
encoded in the block structure of the MPO. However, while it works well in its exact form, we have
found that it is not so easy to approximate at lower cost, as “pruning” the projector does not preserve
the commutation betwen Ĥ and P̂ , required for the variational bound on the energy functional in
Eq. (12).

Alternatively, the projector can be constructed in an integral representation.1,12 For P̂N , this

10
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takes the form

P̂N = 1
2� ∫

2�

0
exp[i�(N̂ −N)]d�. (14)

Discretizing the integral withNgrd grid points gives

P̂N = 1
Ngrd

Ngrd−1
∑

n=0
exp[i�n(N̂ −N)] = �N̂,N , (15)

with �n = 2�n∕Ngrd. Since exp(i�N̂) = exp(i�∑i n̂i) =
∏

i exp(i�n̂i), P̂N can be written as sum
of products i.e., a sum of MPOs with D = 1, or a single sparse MPO with bond dimension Ngrd.4
This allows for an embarrassingly parallel implementation. While the overall P̂N is real-valued,
the individual terms exp(i�N̂) in Eq. (15) are complex-valued. However, to avoid complex algebra,
Eq. (15) can be recast into a sum over Ngrd∕2, D = 2 real-valued MPOs, plus one D = 1 MPO
term (or a single block-sparse MPO with bond dimension Ngrd + 1) by using only the real-valued
part of the individual terms:

P̂N = 1
Ngrd

Ngrd−1
∑

n=0
cos[�n(N̂ −N)] (16)

= 1
Ngrd

1̂ + 2
Ngrd

Ngrd∕2
∑

n=1
cos[�n(N̂ −N)] (17)

where we made use of the periodicity and the even symmetry of the cos function and assumed odd
Ngrd.1 cos[�n(N̂ −N)] can then be written as an MPO via

[

c(n̂′1�n) s(n̂′1�n)
]
⎡

⎢

⎢

⎣

c(n̂′2�n) s(n̂′2�n)

−s(n̂′2�n) c(n̂′2�n)

⎤

⎥

⎥

⎦

⋯
⎡

⎢

⎢

⎣

c(n̂′K�n)

−s(n̂′K�n)

⎤

⎥

⎥

⎦

(18)

where we have used the shorthand c(�) = cos�, s(�) = sin(�) and n̂′i = n̂i −N∕K .
While we found numerically, for the cases we have studied (up to K = 8 and N = 8), that the

1For evenNgrd, the last sum-term in Eq. (17) has to be multiplied by 1∕2.
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complex-valued sum can also be fitted into a real-valued sum (ofD = 1MPOs) with twice as many
terms, the numerical fitting procedure46 is difficult and not well-conditioned if K is large. Thus,
we leave the question of other simple, analytical real-valued descriptions of Eq. (15) for future
considerations. Instead, in the following we stick to the slightly more computationally demanding
real-valued D = 2-MPO-form, which has off-diagonal terms in each MPO.

Similarly to P̂N , a projector onto fixed Sz and S2 can also be constructed in integral form1,4,5

P̂ S2,Sz = P̂ Sz̂S2P̂ Sz , (19)
̂S2 = 2S + 1

2 ∫

�

0
sin(�)dSM,M (�) exp(−i�Ŝy)d�, (20)

where dSM,M is the small Wigner-D matrix.47 ̂S2 is not a true projector and mixes spin orbitals,
thus P̂ Sz has to be applied twice in Eq. (19) in order to ensure that P̂ S2,Sz is a projector. P̂ Sz is
defined analogously to P̂N and can be implemented in the same manner. P̂ S2 can be evaluated via
Gauß-Legendre quadrature and results in a real-valued sum of terms. The number of quadrature
points required to evaluate the integral exactly is stated in Ref. [4] and is proportional to the number
of singly occupied orbitals and the S value.

One advantage of the integral based construction is that one can easily obtain approximate
projectors of lower cost by reducing the number of grid points Ngrd in the integration. Although
the approximate projectors no longer commute with Ĥ exactly, we have found this to be less of an
issue in practice than for the MPO based projector. We note that sufficient grid points have to be
chosen for P̂ Sz in order to achieve idempotency of P̂ S2,Sz . In contrast, regardless of the number of
grid points, P̂ Sz and P̂N are always idempotent as they project onto Sz orN moduloNgrd.

2.3.2 DMRG algorithm

The standard way to optimize the energy of an MPS ansatz is the DMRG algorithm, where, similar
to an alternating least squares algorithm,46 one optimizes a small number of (neighboring) sites
{Ani ,Ani+1 ,… ,Ani+x} at a timewhile fixing the remaining sites {An1 ,… ,Ani−1 ,Ani+x+1 ,… ,AnK}.24,25
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This local optimization problem is quadratic and can be solved as an eigenvalue problem. After
some sites are optimized, the next neighboring sites are chosen until all sites in the MPS have been
optimized. This is called a sweep and repeated until convergence.

For quantum-chemical Hamiltonians, the DMRG algorithm can be efficiently implemented us-
ing complementary operators.29,31,48 The complementary operators consist of a precontraction of
some of the terms in the Hamiltonian which provide an optimal way to use the sparsity existing in
the Hamiltonian’s MPO representation.49,50 Here, to optimize the energy functional in Eq. (12) for
the MMPS, we implemented a new DMRG code. Specifically, we use a generalized implementa-
tion that evaluates Eq. (12) using the combined operator Ĥ × P̂ within the complementary operator
approach. P̂ is constructed using either theMPO or integral based construction as described in Sec-
tion 2.3.1 and is a sparse MPO of bond dimensionDP . Because of the sparsity of the representation
of P̂ , the MPO tensors have only (DP ) non-zero entries.

Compared to a conventional DMRG implementation without P̂ , for each complementary oper-
ator of the Hamiltonian on a given site, there are DP associated terms to be stored. (The number
of terms is proportional to DP rather than D2

P due to the MPO sparsity). Further, the individual

terms in [PH] are non-symmetric as, e.g. â†i P̂ ≠ P̂ â†i . Hence, compared to a normal DMRG imple-
mentation, 2DP more terms need to be computed. Note, however, that the formal bond dimension
of the MMPS, obtained by applying P̂ to the underlying MPS of bond dimension D, is D × DP ,
and the cost of optimizing the MMPS is much cheaper than the cost of a DMRG computation with
a general MPS of bond dimension D × DP . The reduced cost can be understood in terms of the
smaller number of parameters to be optimized (smaller matrices to be diagonalized) and by the
simple form of P̂ . Whereas in conventional DMRG, all DP blocks of size D ×D contain different
values in the block-sparse MPS, in the MMPS, the blocks are all generated via P̂ from a single
block. Essentially, introducing P̂ shifts some computational effort from the MPS to the operator,
at the cost of some restriction in the degrees of freedom.

To allow for multisite MMPSs, we generalized the code to include an arbitrary selection of
determinants on a given site. For D = 1 this also enables AGP, GVB and similar wavefunction
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optimization, while for D > 1 one can optimize in the subspace of determinants included in the
AGP or GVB ansätze.

With the aforementionedmodifications, the remainder of the optimization can follow the normal
DMRG algorithm. Here, we used the one-site algorithm, where just one site is optimized at a time,
in combination with perturbative noise to avoid getting stuck in local minima.51 For optimizing a
particular site i, a generalized eigenvalue problem results from Eq. (12):

[HP]Ani = PAniE. (21)

Due to the null space of P̂ , the matrices [HP] and P are indefinite and share the same null space.
For some methods, this null space needs to be projected out.52 Here, this costly projection can
be avoided by using the Davidson method53 for generalized eigenvalue problems and by using an
initial trial solution Ãns that is an element of the kernel of P̂ . Only for poor approximations of P̂
with insufficient quadrature points did we find numerical issues due to the null space of P̂ .

In most situations, even for a D = 1 MMPS with only four parameters per site, the one-site
DMRG algorithm performed well as an optimization algorithm in our studies. However, especially
when non-optimal orbitals were used for the MMPS, a gradient-based optimization of the MMPS
parameters instead of a DMRG optimization turned out to be more efficient in some cases. In
practice, for these difficult cases, we used a combination of both DMRG and gradient-based trust-
region methods.54 For difficult cases such as the H4 system with AGP orbitals, we also performed
basin hopping to avoid getting stuck in high-lying local minima.55

Orbital optimization was performed using the PYSCF quantum chemistry package,56,57 which
requires the one- and two-body density matrices as input.58 These we computed as expectation
values of the MMPS wavefunction.
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2.3.3 Computational cost

Following the scaling analysis of the standard quantum-chemistry DMRG algorithm,28,30,31 the
computational cost of evaluating and optimizing the MMPS energy in Eq. (12) (given the second
quantized integrals) scales as [C(K3D3 +K4D2)], where C is the cost of applying the projector.
Here, the bond dimension D is of (1) so we write the cost more succinctly as (CK4). This
scaling is the same as that of projected HFB, AGP, and other related methods. If orbital optimiza-
tion is performed, there is an additional K5 cost from the integral transformation in each orbital
optimization step.

Because the projector is sparse in both the MPO and integral construction, C is directly propor-
tional to the projector bond dimension DP . Thus for exact projectors, C depends on the number of
symmetries projected against. For example, if we use P̂ = P̂ SzP̂N , then for the MPO construction
C ∝ N�N� , while for the integral form C ∝ Ngrd = K2. As mentioned above, we observe that
approximate projectors constructed in the integral form by using a reduced number of grid points
Ngrd in practice work quite well. Indeed, for mean-field-like methods such as HFB it has been
observed that the required Ngrd scales better than linearly with system size for P̂N .5 Also sparse
cubature can reduceNgrd for spin projection in HF.59 However, we are not aware of rigorous studies
of the scaling of the approximation error with system size due to a reducedNgrd, and we leave this
question for future considerations.

3 Results

We now study the behavior of the MMPS and the multisite MMPS (i.e. where a single site spans
multiple orbitals) for some prototypical problems that exhibit static correlation, and compare to
results from similar ansätze such as GVB and AGP. The systems we study are the H4 ring (Sec-
tion 3.1), O2 dissociation (Section 3.2), and HF dissociation (Section 3.3).

If not mentioned otherwise, the projector used for the MMPS is P̂ = P̂ SzP̂N . For this projector,
we use the MPO form defined in Section 2.3.1. We will also use P̂ = P̂ S2,SzP̂N . In this case, we
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employ the integral form defined in Section 2.3.1 with Ngrd = 5 grid points for the N and Sz
integrations, and Ngrd = 2 grid points for the S2 integration. Unless stated otherwise, orbitals in
the MMPS calculations were ordered according to canonical order (energy order for HF orbitals,
natural orbital occupancy for AGP orbitals, and in the same order as the starting orbitals when using
optimized orbitals).

Both MMPS and GVB optimization used the code described in Section 2.3. AGP optimization
(except restricted open-shell (RO)-AGP) used code developed by one of the authors (CAJH). Unless
stated otherwise, we refer to restricted AGP when we use the term AGP and will explicitly state
when we use unrestricted (U)-AGP.

3.1 H4 ring

TheH2+H2 system is a prototypical system that at certain geometries exhibits strongmultireference
character.60–65 In the following, we place H4 on a ring of radius 3.3 a0 and scan the bond angle �
to obtain a potential energy curve (PEC; see Fig. 2).63 The bond distances R1 and R2 are equal at
the transition state (TS; � = 90◦), and the ground and the first excited states are nearly degenerate
when using a minimal basis STO-3G66(as used here).

The MMPS energies (blue curves) using restricted AGP (R-AGP) natural orbitals are shown in
Fig. 3 and compared to restricted and unrestricted AGP (U-AGP) (dashed gray and black curves).
Compared to R-AGP, the D = 1 MMPS already significantly improves the energy, both in an
absolute sense and in terms of non-parallelity to FCI. Increasing the bond dimension slightly, we
find that the D = 2MMPS yields lower energies even than U-AGP. The curve retains an artificial
cusp at � = 90◦, but the D = 3 MMPS PEC is smooth and approximates the full configuration
interaction (FCI; dashed red curve) result very well.

Due to the near degeneracy of excited states in this system with different spin, spin contami-
nation is an issue for approximate methods. The D = 1MMPS actually describes the first excited
(triplet) state. In fact, when R-AGP orbitals are used, the lowest stable singlet solution within the
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�

R2

R1

Figure 2: Geometry of the H4 ring. The gray spheres denote the hydrogen atoms. � denotes the
angle to be scanned, which changes the bond distances R1 and R2 simultaneously.

D = 1MMPS form corresponds to the R-AGP state.2 While the D = 3 curve reproduces the PEC
well, spin contamination is still sizable and at the TS the D = 3 MMPS has ⟨Ŝ2⟩ = 0.1. Includ-
ing P̂ S2 in the projector for the D = 1 MMPS ensures that we find a singlet state (orange curve),
but when using R-AGP orbitals this leads to qualitatively wrong energetics with a minimum at the
actual TS. 3

We also performed MMPS calculations ordering the orbitals according to the Fiedler vector of
the exchange matrix as is commonly performed in standard DMRG calculations67,68 at � = 80◦.
For D = 1 (not shown), AGP natural orbital ordering is better and Fiedler ordering leads to an
MMPS with increased energy of ∼8 ⋅ 10−4 EH. However, for D = 2 (green curve) Fiedler ordering
greatly improves the energies and, already forD = 2, they have an absolute error of only∼10−5 EH,
compared to the FCI energies.

Besides orbital ordering, orbital optimization greatly improves all the MMPS results (Fig. 4),
2Note that when using the same orbitals, the AGP state always is a local extremum in the D = 1MMPS ansatz.
3This can partly be attributed to the poor character of the R-AGP orbitals which break the symmetry of the nuclear

framework.
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Figure 3: Potential energy scan for the H4 ring as depicted in Fig. 2. Shown are the results for (un-)restricted antisymmetrized geminal product, R(U)-AGP in dashed gray (black), minimal matrix
product state (MMPS) with different bond dimension, D, (blue, green, and orange) in comparison
to the full configuration interaction reference (FCI; dashed red curve). The MMPS curves use the
R-AGP natural orbitals and, as a projector, P̂ = P̂ SzP̂N (blue and green), and P̂ = P̂ S2,SzP̂N

(orange), respectively. The green curve (on top of the FCI curve) denotes the MMPS D = 2 result
with R-AGP orbitals but ordered according the Fiedler vector at � = 80◦. The STO-3G basis is
used.
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including for D = 1.4 Thus, when orbital optimization is included, the PEC of the D = 1 state
(pale green curve) is improved significantly and the correct singlet state is now described (with an
error in ⟨Ŝ2⟩ of ∼10−4). Similarly, while including P̂ S2 into theD = 1MMPS gave a qualitatively
wrong PEC when using the R-AGP orbitals above, after orbital optimization (dashed orange curve)
we obtain the correct qualitative behavior.

As discussed in Section 2.1 an alternative way to improve an MMPS other than increasingD is
to increase the size of the sites. We find that using a D = 1 multisite MMPS (grouping two spatial
orbitals into one site; dark green curve) and optimizing the orbitals greatly improves the energies,
compared to the GVB form, which makes a similar grouping but is more restricted (purple).5 (Note
that the GVB optimization included orbital optimization as well).

3.2 O2 dissociation

O2 is a prototypical open-shell multireference system. The PEC of O2 in a STO-3G basis is shown
in Fig. 5. For all bond distances shown, the FCI triplet state is the lowest state. We see that the
MMPS PECs (shown in green) are a significant improvement over the restricted open-shell AGP
PEC (dashed gray curve). The best energies are obtained by the multisite MMPS with one large
site (red curves) consisting of four spatial orbitals (to capture the minimal complete active space for
triplet O2 which needs to contain four 2p orbitals) and other large sites consisting of groups of two
spatial orbitals. ForD = 2, this ansatz gives energies with a relative error of about 10−5, compared
to FCI.

Remarkably, all MMPSs, including the ones with D = 1 and only 2 spin orbitals per site with
either ordering, capture much more correlation energy than the minimal complete active space
self-consistent field calculation, CASSCF(4o,6e), illustrating the compactness of the MMPS form.

4Additionally, with orbital optimization, the MMPS state optimization is easier as there seem to be fewer high-lying
local minima across the MPS parameter landscape, compared to when using non-optimal orbitals.

5For this system in the minimal basis, GVB and the multisite MMPS sites both correspond to partitioning the
wavefunction for the full problem into two fragments.
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Figure 4: Same as Fig. 3 but with orbital optimization (OO) for the minimal matrix product state
(MMPS) and comparing to generalized valence bond (GVB; purple) results. The dark green curve
denotes a multisite MMPS consisting of two spatial orbitals, a similar grouping to that used in the
GVB state.
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Figure 5: Potential energy curve of triplet O2 in STO-3G basis. Shown are results for restricted
open-shell HF (ROHF, orange), minimal matrix product state (MMPS) with orbital optimization
(green), multisite MMPS (blue), restricted open-shell AGP (dashed gray), and complete active
space-self consistent field, CASSCF, with a CAS consisting of four orbitals and six electrons (dotted
red). The D = 1 orbitals are employed for the D = 2 computations. The results are compared to
the full configuration interaction reference (FCI; dashed red curve). For the MMPS computation,
P̂ = P̂ SzP̂N is used as the projector.
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Figure 6: Potential energy curve (PEC) (left panel) and non-parallelity errors across the PEC (right
panel) for HF with the cc-pVDZ basis. The non-parallelity errors are shifted absolute errors such
that all PEC coincide at R = 0.9Å. The blue (green) curves denote the minimal matrix product
state, MMPS, with restricted Hartree-Fock, RHF, (D = 1 optimized) orbitals, whereD is the bond
dimension. The dashed gray curve denotes the restricted antisymmetrized geminal product (AGP)
curve. The dotted red curve corresponds to coupled cluster with singles and doubles (CCSD). The
results are compared to the full configuration interaction reference (FCI; dashed red curve). For the
MMPS computation, P̂ = P̂ SzP̂N is used as the projector.

3.3 HF dissociation

To study the behavior of MMPS in non-minimal basis sets, we present results for the HF PEC in
the cc-pVDZ basis.69 Fig. 6 shows the PEC and non-parallelity (shifted absolute) errors for this
system. While for the bond distances shown, the coupled cluster with singles and doubles (CCSD)
method gives good results, the D = 1 MMPS with just RHF orbitals (blue curve) actually yields
a similar non-parallelity error. There is a small “bump” for the D = 1 result with RHF orbitals at
R ∼ 1.37Å. This is near the Hartree-Fock Coulson-Fischer point, but although the curve is bumpy
we do not see a discontinuity in the MMPS solution (i.e. there is no sudden onset of symmetry
breaking). While an MMPS with D = 1 with AGP orbitals (not shown) optimizes to give back the
AGPwavefunction in this system (i.e. all single creation terms are zero), theMMPSwithD = 1 and
optimized orbitals (dark green curve) results in an improved PEC. Orbital optimization also makes
the “bumps” vanish. Based on the optimized orbitals at D = 1, increasing the bond dimension D
(pale green curves), gives additional substantial improvements both in the absolute (D = 2 and
D = 5) and non-parallelity errors (D = 2).
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4 Conclusions

To summarize, we have explored a set of simple qualitative wavefunctions that we term minimal
matrix product states (MMPS). We define the MMPS to be an MPS with small bond dimension of
D ∼ 1 combined with a projector onto the essential symmetries of the problem, e.g. particle, spin,
and other symmetries. Already for D = 1, this framework includes many other qualitative wave-
functions, such as symmetry broken and restored mean-field states, e.g. projected Hartree-Fock and
antisymmetrized geminal power states, and further extends them, e.g. to beyond the seniority-zero
sector in the case of the antisymmetrized geminal power. Importantly, it does so while retaining
the same computational scaling for energy evaluation and optimization as with such states. This is
because computations using the MMPS can use the density matrix renormalization group (DMRG)
without relying on the generalizations ofWick’s theorem to incorporate symmetry projection. Sim-
ilarly, the multisite version of theMMPS extends generalized valence bond and strongly-orthogonal
geminal wavefunctions and other related ansätze beyond their product state structure, via symmetry
breaking and projection, as well as for D > 1.

We examined the behaviour of MMPS in a number of prototypical systems, namely H4, O2 and
HF. The inclusion of the single creation operators is crucial to yield the observed improvements.
In all cases we found that the MMPS ansatz even with D = 1 gives correct qualitative behavior of
the potential energy landscape, often significantly improving on the aforementioned ansätze. We
also noted that orbital optimization, an essential ingredient also of the other methods, significantly
improves the MMPS wavefunction. In the cases where we increased D but still kept it “minimal”
(≤ 5) we also observed a rapid improvement of the results.

We expect the MMPS ansatz to be useful in two main scenarios. First, MMPS could improve
conventional DMRG calculations, which usually use large bond dimensions and do not invoke
projectors to restore symmetry, by serving as an initial guess state to improve optimization. An
example of this can be found in our previous work on spin-projectedMPS,4,32 which may be viewed
through the lens of this work as a type ofMMPS. Second, MMPS could serve as amethod on its own
for rapid exploration of the potential energy landscapes of molecular systems. This is especially
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useful for molecular dynamics simulations, where there is a great need for fast electronic structure
calculations. Possible extensions to treat dynamical correlation70–75 and excited states45,76–78 are
possible as well. Further, the methodology can straightforwardly be transferred to related domains,
most importantly in applications to quantum dynamics.79–82
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