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A Scalable Approach to the Partition of QoS
Requirements in Unicast and Multicast
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Abstract—Supporting quality of service (QoS) in large-scale
broadband networks poses major challenges, due to the intrinsic
complexity of the corresponding resource allocation problems.
An important problem in this context is how to partition QoS re-
quirements along a selected topology (path for unicast and tree for
multicast). As networks grow in size, the scalability of the solution
becomes increasingly important. This calls for efficient algorithms,
whose computational complexity is less dependent on the network
size. In addition, recently proposed precomputation-based methods
can be employed to facilitate scalability by significantly reducing
the time needed for handling incoming requests.

We present a novel solution technique to the QoS partition
problem(s), based on a “divide-and-conquer” scheme. As opposed
to previous solutions, our technique considerably reduces the com-
putational complexity in terms of dependence on network size;
moreover, it enables the development of precomputation schemes.
Hence, our technique provides a scalable approach to the QoS
partition problem, for both unicast and multicast. In addition, our
algorithms readily generalize to support QoS routing in typical
settings of large-scale networks.

Index Terms—Multicast, performance-dependent costs, quality
of service (QoS) partition, resource allocation, routing.

I. INTRODUCTION

FUTURE communication networks are expected to support
applications with quality of service (QoS) requirements.

Supporting QoS poses major challenges due to the large size
and complex structure of networks. A key issue in the design of
broadband architectures is how to allocate network resources in
order to meet end-to-end QoS requirements in a way that maxi-
mizes the overall network performance. Several network mech-
anisms need to be introduced to support QoS. One is a QoS
routing mechanism, whose purpose is to find a suitable topology
(path for unicast, tree for multicast) that can support the con-
nection(s) QoS requirements. Then, a second mechanism is re-
quired, in order to optimally allocate resources (e.g., bandwidth
and buffer space) along the selected topology such that the re-
quired QoS can be guaranteed at minimal cost.

A network link (or element) can offer several levels of QoS
guarantees, each associated with a certain cost. The link’s
cost represents the consumption of local resources that must
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Fig. 1. (a) Original network. (b) Aggregated network; the subnetworks are
represented by link cost functions.

be reserved on the link in order to support the QoS guar-
antee. For example, in the DiffServ architecture [1], a service
provider can offer several types of service at different prices.
Moreover, links may aggregate subnetworks (e.g., according
to the ATM PNNI recommendations [2]), in which case each
link represents several paths that support different QoS re-
quirements at different cost values. Accordingly, we consider
a network model, in which each link is associated with a
performance-dependent cost function. For example, Fig. 1(b)
shows an aggregated network that corresponds to the original
network depicted on Fig. 1(a). Each link in the aggregated
network is associated with a cost-delay function that represents
the corresponding subnetwork.

The problem of optimal partition of QoS requirements was
formulated in [3] and has been the subject of several studies
[4]–[8]. Efficient optimal solutions for the special case of
convex cost functions for both unicast and multicast were es-
tablished in [3]. However, the convexity assumption is not valid
in many cases of practical interest. Since in the general case
the problem of optimal partition is intractable (i.e., -hard
[3]), suitable approximation schemes were presented in [4],
[7], and [8]. While the computational complexity of those
approximations is polynomial, it depends heavily on the size
of the topology, which renders these solutions unscalable. The
high complexity, in turn, results in a high response time to
each connection request, which adversely affects the service to
network users.

Accordingly, the purpose of this study is to provide scalable
solution schemes to the problem. This is achieved in two ways.
First, we establish algorithmic solutions that are considerably
less dependent on the size of the routing topology than pre-
vious proposals. Second (and independently), we employ a pre-
computation approach, in order to further enhance scalability.
We proceed to discuss each of these two contributions.

The major contribution of this study is a novel solution
technique that better exploits the specific structure of routing
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topologies (paths and trees). More specifically, we employ a
“divide-and-conquer” scheme, which first computes the costs
of supporting various QoS requirements through smaller com-
ponents (subpaths and subtrees) and then combines the results
in order to obtain solutions for larger components. With our
methods, the computational load can be efficiently distributed
along network nodes. Furthermore, it can be generalized to
handle the combined problem of routing and partition of QoS
in typical settings of large-scale networks.

Precomputation-based methods have recently been proposed
[9], [10] (in the context of QoS routing) as an instrument to facil-
itate scalability, improve response time, and reduce the compu-
tational load on network elements. The key idea is to reduce the
time needed to handle a request by performing a certain amount
of computations in advance, i.e., prior to the request’s arrival.
Such advance computations are performed as background pro-
cesses, i.e., when a network element is idle or underutilized, thus
resulting in better utilization of the computational capabilities
of network elements. In addition, when the rate of incoming re-
quests is high, a considerable reduction in overall computational
load is achieved. Accordingly, we employ the precomputation
approach in order to improve the scalability of our solutions.

Precomputation is performed by means of a two-phase pro-
cedure, referred to as a precomputation scheme. The first phase
is executed in advance and its purpose is to precompute the op-
timal partition a priori, for each delay constraint supported by
the path or tree. The computations performed at this phase are
then summarized into a database for later usage. The purpose of
the second phase is to provide an adequate solution on demand,
i.e., upon an incoming request. The second phase either selects
one of the solutions precomputed at the first phase or, if neces-
sary, performs additional computations.

The rest of this paper is organized as follows. In Section II, we
formulate the network model and formally state the considered
problems. Section III deals with unicast topologies and presents
solutions both for performing on-demand computation as well
as precomputation. Section IV presents similar solutions for the
much more complex setting of multicast. Finally, conclusions
are presented in Section V.

II. MODEL AND PROBLEM FORMULATION

This section formulates the general model and main problems
addressed in this paper. For clarity of presentation, we focus
here on unicast; the definitions and terminology for multicast
are presented in Section IV.

A network is represented by a directed graph , where
is the set of nodes and is the set of links. Let

and . A path is a finite sequence of nodes
, such that, for

is then said to be the number of hops (or hop count)
of . The subpath of that extends from to is denoted by

. We assume that the connection’s topology, i.e., a path
, is given.
Each link offers different (integer) QoS guarantees

, whose significance depends on the type of considered
QoS requirement. For example, when the QoS requirement is an
upper bound on the end-to-end delay, the values are delay

Fig. 2. Instance of Problem OPQ.

guarantees supported by link . A QoS partition on a unicast path
is a set of local QoS requirements, which satisfies the

end-to-end QoS requirement .
QoS requirements may be additive, such as delay and jitter, or

bottleneck, such as bandwidth. As is easy to verify, the QoS par-
tition problem is straightforward for bottleneck metrics, hence
we focus on additive QoS requirements. In other words, a parti-
tion of a QoS requirement on a path is a set such
that . For clarity of presentation and without loss
of generality, we describe our model and problems in terms of
end-to-end delay requirements.

For each link , there is a link cost function which
assigns a cost to each delay guarantee that the link offers. We
assume the is higher for tighter delay constraints, i.e., the
function is monotonically decreasing. For clarity of pre-
sentation, we assume that, if a delay guarantee is not supported
by a link , then . The link cost function estimates
the quality of the link in terms of resource utilization; it may
depend on various factors, e.g., the link’s available bandwidth
and its location. The link cost function can be specified by ei-
ther an algebraic expression or by a table that specifies costs for
supporting various delay guarantees. In the latter case, we say
it is a discrete cost function. We shall assume that all param-
eters (both delay guarantees and costs) are (positive) integers.
The overall cost of a partition is the sum of the local
costs, i.e., .

The optimal QoS partition problem is then defined as follows.
Problem OPQ (Optimal Partition of QoS): Given a path

and a delay constraint , find a QoS par-
tition such that and is
minimized.

The solution of Problem OPQ is referred to as an
optimal partition of a QoS requirement along .

Fig. 2 demonstrates an instance of Problem OPQ. Suppose
we need to establish a connection with a delay require-
ment 8 between and . For this purpose, we use path

, with link cost functions, as depicted in
Fig. 2. The optimal partition for this instance is , i.e.,
the delay requirement for the first link is 2, for the second link
is 2, etc. The cost of the optimal partition is 17.

As mentioned in the Introduction, we devise efficient schemes
for precomputation of optimal partitions for a wide range of
delay constraints. The related problem is defined as follows.

Problem POPQ (Precomputation of OPQ): Given a path
, find, for each delay requirement , a QoS

partition such that and is
minimized.

For clarity of presentation, we make the following simpli-
fying assumptions.
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1) The number of links in path is a power of 2, i.e.,
, for some integer .

2) Given delay constraint , the cost of supporting by
link can be computed in time.

3) Given a cost , the minimum delay constraint supported
by link at cost , can be computed in time.

Dropping Assumption 1 requires a mild and straightforward
modification of our results, with no penalty in terms of compu-
tational complexity. Assumptions 2 and 3 require that the func-
tions and the corresponding inverse functions can be easily
computed. Since a value of the inverse function can be computed
through binary search, dropping Assumption 3 results in a small
penalty in terms of computational complexity.

The computational complexity of our solutions depends on
the maximum cost of supporting a delay constraint by
a link in . More specifically, let be the minimum delay
constraint supported by a link , i.e.,

. Then . For example, in the
instance of Problem POPQ depicted in Fig. 2 we have
and .

In general, Problem OPQ and Problem POPQ are intractable,
i.e., -hard [3]. Accordingly, in this work we resort to scal-
able -approximate solutions for fixed , i.e., solutions
of (low) polynomial complexity, whose cost is at most
times higher than the cost of the optimal solution. Specifically,
we present algorithms for Problems OPQ and POPQ whose
computational complexity is
and , respectively.

III. QoS PARTITION FOR UNICAST

In this section, we deal with the partition of QoS requirements
along unicast paths. We begin by presenting our novel approxi-
mation approach. Then, we present approximation schemes for
Problems OPQ and POPQ.

A. Our Approach

We observe that the optimal solution to the problem of
QoS partition on a path contains within it optimal solutions
for its subpaths. For example, in Fig. 2, the optimal partition

of delay constraint 8 for path
contains within it the optimal partition of delay con-
straint 4 for the subpath . Accordingly, we compute
the solutions to Problems OPQ and POPQ in the following
“divide-and-conquer” fashion. We recursively split the given
unicast path into two disjoint subpaths. We compute the set of
delay guarantees supported by each subpath at different costs.
These delay guarantees and the corresponding partitions are
summarized by means of delay functions, defined below. We
then obtain a solution to the original problem, i.e., a partition
of delay constraint on path , by recursively combining the
delay functions obtained for the subpaths.

1) Delay Functions: We begin by defining a new structure,
namely, optimal delay functions, whose purpose is to summarize
the delay guarantees that can be offered by subpaths at different
costs.

Definition 1: The optimal delay function of a
subpath of is defined as the minimum delay require-
ment supported by at cost , i.e.,

such that

and (1)

Note that, if the subpath consists of a single link ,
then is the inverse of the cost function of that link,

i.e., .
While optimal delay functions accurately capture the delays

supported by subpaths of at different costs, they are im-
practical, since their computation is intractable and, moreover,
their storage requirements are prohibitively large. Accordingly,
we use approximate delay functions that allow the cost of
supporting a delay constraint to be slightly higher than the
optimum.

Definition 2: A delay function of a subpath
is said to be -approximate, for some constant , if for

each it holds that

(2)

Given a -approximate delay function , we refer
to as the approximation error of .

Let be an arbitrary delay constraint. We denote
and

, i.e., and are the costs of supporting the delay con-
straint according to the functions and ,
respectively. Equation (2) implies that , i.e.,
the cost of supporting the delay constraint according to the
function is at most times higher than the
optimum.

In the next section, we construct approximate delay functions
whose computation and storage requirements are feasible. For
the sake of clarity, and when no ambiguity exists, -approximate
delay functions shall be referred to as just delay functions.

2) Logarithmic Sampling: Approximate delay functions can
be constructed from optimal delay functions by employing log-
arithmic sampling. The idea is to sample the optimal delay func-
tion at cost values , where is a constant,
referred to as an approximation parameter. In general, must
be sufficiently small in order to compute an approximate delay
function with small approximation error .

For each cost , and for each ,
the value of the approximate delay function at cost is equal to
the optimal delay function at cost , i.e.,

, where
.

For example, consider the optimal delay function
depicted in Fig. 3(a). The function is sampled at five cost values

. The resulting approximate delay func-
tion , depicted in Fig. 3(b), is a piecewise-constant
function whose segments correspond to the values
of the optimal function at sampled costs. In our approximation
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Fig. 3. (a) Optimum delay function. (b) Approximate delay function.

schemes, we store a delay function by keeping the
values of cost and delay for each segment of .

3) Layers: We proceed to describe our approach in more de-
tail. Consider a unicast path , which is re-
ferred to as a layer-0 path. Recall that our assumption is that

. We split into two layer-1 subpaths and ,
where . Then, for each value ,
each layer- subpath is split into two layer- sub-
paths and , where . Note that
a layer- subpath consists of just a single link. Clearly, the
number of subpaths of a layer is .

The goal of our scheme is to compute, for each layer
, the delay functions of layer- subpaths. We begin by

computing the delay functions of subpaths of layer . Since
these subpaths consist of just a single link, their delay functions
can be obtained by applying logarithmic sampling on the in-
verted cost functions for corresponding links. Then, for each

, we compute the delay functions of layer-
subpaths by merging previously computed delay functions for
subpaths of layer- . The merging procedure is discussed
in detail in Section III.A.4.

The computation of a delay function introduces some error
at each layer, which accumulates as we proceed to lower layers.
The error depends on the approximation parameter used in the
logarithmic sampling process. The key idea of our scheme is to
use different approximation parameters for different layers.
The values are chosen in a way that minimizes the computa-
tional complexity of the algorithm, while ensuring that the total
accumulated error is at most . The assignment of is dis-
cussed in detail in Section III-A5.

4) Procedure MERGE: The merging procedure receives, as
input, the delay functions and of two
layer- subpaths, and , and an upper
bound . The procedure computes the values of delay function

of layer- subpath for each .
To that end, it computes for each , the partition

of a budget between the subpaths, which minimizes
the delay of the subpath under budget constraint .

A straightforward solution would be to examine all possible
partitions of the budget . Since the choice of de-
termines , it is sufficient to consider each . Moreover,
since the delay function is obtained by logarithmic
sampling at costs , only these
costs should be considered.

Fig. 4. Procedure MERGE.

The merging can be performed more efficiently by the fol-
lowing procedure. We divide the set
of feasible partitions into three subsets and :

1) the subset includes the partitions for which
and ;

2) the subset includes the partitions for which
and ;

3) the subset includes the partitions for which
and .

Then we identify, for each subset, the partition that minimizes
the delay of the subpath . For the subset , we note
that it is sufficient to examine the partition . For the
subset , it is sufficient to examine partitions for which values
of correspond to costs

. Thus, and since , we need to consider only
partitions. Similarly, for the

third subset, it is sufficient to consider only values
of . We conclude
that the optimal partition of the budget requires
time.

The merging procedure employs logarithmic sampling for an
approximation parameter , i.e., it samples the delay function

at cost values . Since
the number of sampled values is , the total com-
plexity incurred is . This procedure is re-
ferred to as Procedure MERGE and its formal specification is pre-
sented in Fig. 4. For clarity of presentation, Procedure MERGE

identifies only the delay function of . The
corresponding partitions can be identified by a mild and straight-
forward modification of the procedure, with no penalty in terms
of computational complexity.
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Lemma 1: Given are layer- subpaths and
with corresponding -approximate delay functions

and . Then, the execution of Procedure
MERGE yields an -approximate delay function for
the subpath , where .

Proof: See Appendix A.
Lemma 2: The computational complexity of Procedure

MERGE is .
Proof: See Appendix B.

5) Computing the Delay Function for : We proceed to
present Procedure UNICAST, which computes the delay function
of a unicast path . Procedure UNICAST receives, as input,
a layer- subpath of and an upper bound . The
procedure computes the values of delay function
of for each in the following recursive
manner. If is a layer- path, i.e., consists
of a single link , then the corresponding delay function is
obtained by logarithmic sampling (see Section III.A.2) of the
inverse of the link cost function . Otherwise, for layer-
paths, , we first recursively compute the delay
functions for subpaths and of , where

; the delay function of the path is then
computed by merging the the delay functions for and

.
As mentioned, the computation of a delay function introduces

some error at each layer , which accumulates as we proceed to
lower layers. The error at layer depends on the approxima-
tion parameter used for this layer. The accumulated error at
layer- (i.e., accumulated along the layers ) is
denoted by .

The major consideration in choosing the approximation pa-
rameters for each layer is to minimize the com-
putational complexity of the scheme. In addition, the values
must be chosen such that the total accumulated error for the path

is at most . From Lemma 2 it follows that the accumulated
error at layer 0 is

where the last inequality follows from Claim 1 below. Note that
layer adds to the accumulated error.

Claim 1: Let be positive numbers such that
. Then it holds that

Proof: See Appendix C.
By Lemma 2, the computational complexity of invoking Pro-

cedure MERGE for a layer- subpath is . As there
are subpaths at that layer, the time needed for processing
all layer- paths is . We also note that the
time required for logarithmic sampling of a link cost function
(lines 3 and 4 of Procedure UNICAST) is per link
or in total. We conclude that the total com-
putational complexity of the procedure is

Fig. 5. Procedure UNICAST.

. Thus, in order to find a suitable assignment
of approximation parameters , we need to solve the fol-
lowing optimization problem:

subject to (3)

The following assignment of minimizes the objective
function in (3):

(4)

As we prove in Theorem 1 below, this assignment satisfies the
constraint in (3) and yields a total running time of .

The detailed description of Procedure UNICAST appears in
Fig. 5. As was the case with Procedure MERGE, the partitions
that correspond to the delay function of
can be identified by a mild and straightforward modification of
Procedure UNICAST, with no penalty in terms of computational
complexity.

Theorem 1: Procedure UNICAST identifies, in
time, an -approximate delay function for a path .

Proof: See Appendix D.

B. On-Demand Computation: Problem OPQ

In this section, we present an algorithm for computing a suit-
able QoS partition upon an incoming request. The algorithm
comprises the following steps. First, we obtain sufficiently tight
lower and upper bounds, and , on , where is the
cost of an optimal partition. Then, we use these bounds in order
to perform linear scaling on link cost functions. The purpose of
linear scaling is to “scale down” all the costs, i.e., reduce all the
costs by dividing them by some fixed parameter. The resulting
graph has smaller costs, which reduces the overall running time.
Next, we find a suitable partition by using Procedure UNICAST.
The obtained solution is then rounded back to the original costs,
i.e., prior to the linear scaling, incurring a small error.
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1) Upper and Lower Bounds: Following the algorithmic
technique presented in [7], we start with trivial bounds and pro-
ceed to iteratively improve them, until they become sufficiently
tight.

Let be a partition that satisfies the delay constraint .
We observe that, for each link in , it holds that

, where is the maximum cost of supporting a delay
constraint by a link in . Thus, and
are obvious lower and upper bounds on the cost of an optimal
partition. Note that initially the ratio of the upper bound to the
lower bound is , which can be a relatively high value.

In order to reduce the ratio , we perform a binary search
on the interval . In general, a binary search is performed
by selecting a trial value and comparing it to .
However, since Problem OPQ is -hard, the exact compar-
ison between and is intractable, i.e., there is no efficient
procedure that determines that either or . Ac-
cordingly, we use a test procedure that performs the following
“loose” comparison between and :

1) if the procedure returns a negative answer, then ;
2) if the procedure returns a positive answer, then

.
The test procedure is implemented as follows. First, for each

link we compute the minimum value of the QoS require-
ment that can be supported by allocating a budget to . Next,
we check whether the resulting partition satisfies the
delay constraint, i.e., . Clearly, if satis-
fies the delay constraint, then the cost of the optimal solution is
at most , and hence the procedure returns a positive answer.
Otherwise, the cost of the optimal solution is at least , hence
the procedure returns a negative answer. Accordingly, at each
iteration, we either update the lower bound (in case of a
negative answer) or update the upper bound (in case
of a positive answer).

At each iteration, we choose the trial value that results in
the largest possible reduction of the ratio . Specifically, by

choosing , we achieve the largest reduction, regard-
less of the outcome of the test procedure. Indeed, let be the
ratio of the upper bound to the lower bound, namely and ,
at the end of iteration . If the test procedure returns a negative
answer, then

Otherwise, the value of is

In both cases, we have .
If at the beginning of the execution of the algorithm, the ratio

of the upper and to the lower bound is , and then after the
first iteration we have . The second iteration yields

. It can be easily verified that, for each
iteration , the value of is bounded by

Note that, at iteration , we have . We
conclude that just iterations

Fig. 6. Algorithm OPQ.

are necessary in order to achieve . Since each
iteration requires time, the computational complexity of
finding lower and upper bounds and , for which ,
is .

2) Algorithm: Having computed suitable bounds and ,
i.e., bounds for which , we apply a scaling and
rounding procedure on the link cost functions. To that end, a
new cost function is defined for each link , as follows:

(5)

With modified link costs, the new cost of a partition with
original cost is bounded by

(6)

Thus, and since , the upper bound on the solution
with respect to the new link cost functions is . Finally,
the problem is solved by applying Procedure UNICAST to a path
with the scaled cost functions . The procedure is invoked
with the upper bound and the approximation error . The
procedure returns an -approximate solution with respect to the
new link costs. Theorem 2 below implies that the cost of this
solution, under the original cost functions, is at most
times larger than that of the optimal solution. Algorithm OPQ,
described in Fig. 6, summarizes the above discussion.

Theorem 2: Algorithm OPQ provides, in
time, an -approximate solution to Problem

OPQ, i.e., given a connection request with delay constraint ,
Algorithm OPQ identifies a suitable QoS partition ,
whose cost is at most times higher than that of the
optimal partition.

Proof: See Appendix E.

C. Precomputation Scheme: Problem POPQ

Precomputation is performed by means of a two-phase pro-
cedure, referred to as a precomputation scheme. The purpose
of the first phase is to compute a delay function for the path

, which summarizes a set of suitable partitions, for each delay
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Fig. 7. Algorithm POPQ.

constraint. The second phase merely selects one of the solutions
precomputed in the first phase.

1) First Phase: The first phase is implemented as follows.
We begin by invoking Procedure UNICAST with approximation
error , which computes an -approximate delay function

and the corresponding partitions. Then, we use
in order to compute a delay function

whose storage requirements are significantly smaller.
More specifically, the delay function , ob-

tained through Procedure UNICAST, is a piecewise-con-
stant function whose segments correspond to costs

, where (according to

(4)). Thus, we need space in order to store
. The storage requirement can be significantly re-

duced by logarithmic sampling. Specifically, we compute new
delay function out of by logarithmic
sampling at costs .
By Lemma 3 below, is an -approximate delay
function for . The detailed description of the first part of the
precomputation scheme, implemented by Algorithm POPQ,
appears in Fig. 7.

Lemma 3: Algorithm POPQ computes, in
time, an -approximate delay

function for .
Proof: See Appendix F.

2) Second Phase: Upon a request with some QoS require-
ment , the optimal partition is promptly identified by exam-
ining the output of Algorithm POPQ. Specifically, we iden-
tify, through binary search, the cost of a suitable partition,

and return the
corresponding partition. Since the total number of precomputed
partitions is , the computational complexity
of this procedure is . The term

in the complexity expression is due to the need to describe the
partition.

D. Discussion

We proceed to compare the performance of our algorithms
with that of their alternatives.

We begin with the on-demand setting. In [7] and [4], the
problem of partitioning of QoS constraints was considered, in a
broader context of QoS routing with cost-dependent functions.
The proposed algorithms, when applied to Problem OPQ, yield
computational complexities of
and , respectively.

The dominant terms of these expression are and

, respectively, while the dominant term in our so-
lution is . We thus conclude that the computational
complexity of our algorithm is significantly less depen-
dent on the topology size than that of [7] and [4], which renders
it more scalable for large topologies. This improvement has been
achieved by exploiting the topological structure of unicast paths.

Next, we note that our algorithm can be applied also in the
practically important case of discrete cost functions, i.e., step
functions whose range is a discrete set of values. Such functions
have been the focus of [8], and an algorithm was
presented there, where and is the number of dif-
ferent delay values supported by link . We conclude that, even
if (i.e., each link supports a fixed number of delays),
we achieve a major reduction in terms of dependency
on the topology size. It should be noted that the complexity of
our algorithm is more dependent (by a factor of ) on the value
of the approximation error , so for very small values of , the
algorithm presented in [8] might exhibit better performance.

We described a precomputation scheme for Problem OPQ
that provides -optimal solutions within a computational
complexity of for the first phase and

for the second phase. Compared
with an on-demand scheme, the precomputation scheme sig-
nificantly reduces the time required to find a suitable partition.
Indeed, with precomputation, the computational complexity of
finding a suitable partition is dominated by the time necessary
to describe a partition , i.e., it is very close to the lower
bound.

We note that a precomputation scheme can be trivially
constructed out of any existing approximation algorithm for
Problem OPQ (e.g., [4], [7]) by just sequentially executing
them for a certain range of delay values. Nonetheless, as it is
easy to verify, the computational complexity of such simplistic
solutions is significantly higher than that of our solution.

IV. QoS PARTITION FOR MULTICAST

In this section, we deal with the problem of QoS partition on
multicast trees. Since we employ ideas that are quite similar to
those of the unicast setting, we shall restrict ourselves to a brief
discussion.

We begin by introducing the required definitions and termi-
nology. A directed tree is a subgraph of having a
unique node such that every node is reached from by a unique
path; node is referred to as the source. A multicast connection
uses a tree to interconnect the source and the members of
a multicast group . A path between source
and a terminal on links that belong to the tree is denoted by

. Given a multicast tree , our goal is to (efficiently) allocate
the delay on each link such that the end-to-end delay is
satisfied for each member of the multicast group. A QoS par-
tition on a multicast tree is a set of link delay requirements

, which satisfies, for each , the end-to-end delay
requirement , i.e., for each . Each link
is associated with a cost function , which specifies the cost
of supporting a delay requirement . The cost of a QoS partition
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Fig. 8. Example of a multicast tree, n = 11 and H = 4.

is the sum of the local costs, i.e., . We as-
sume that all parameters (cost and delays) are (positive) integers.

The optimal QoS partition for a multicast tree is then defined
as follows.

Problem MOPQ: (Muticast Optimal Partition of QoS):
Given a tree and a delay requirement , find a QoS parti-
tion such that for each and

is minimized.
We define also the related precomputation problem.
Problem PMOPQ: (Precomputation of MOPQ): Given a

tree , find, for each delay requirement , a QoS partition
such that for each and

is minimized.
For clarity of exposition, we use the following notation. The

number of nodes and the depth of the multicast tree are de-
noted by and , respectively. The number of children of a
node is denoted by . The subtree originating from the node

is denoted by . A branch of the subtree
is a subtree originating from , which includes the link
outgoing from and all descendants of . For example,

Fig. 8 shows a multicast tree , a subtree and a branch
.

We employ the following “divide-and-conquer scheme”. A
multicast tree is recursively split into a number of disjoint sub-
trees. We compute the set of delay guarantees supported by each
subtree at different costs. These delay guarantees and the cor-
responding partitions are summarized by means of delay func-
tions, defined below. We then obtain a solution to the original
problem, i.e., a partition of delay constraint on tree , by
recursively combining the delay functions obtained for the sub-
trees of .

More specifically, consider a multicast tree , which is re-
ferred to as a layer-0 tree. We split into a number of layer-1
subtrees , for each child node of . Then, for each
value , each layer- subtree is split
into a number of layer- subtrees, for each child node of .
Each layer- subtree includes just a single node. For example,
in the tree depicted in Fig. 8, subtrees and are
layer-1 subtrees, while and are layer-2 subtrees.

We denote by the number of subtrees of layer- . Clearly,
.

We introduce the following subtree delay functions, which
summarize the delay guarantees offered by a subtree at different
costs.

Definition 3: The optimal delay function of the
subtree of is defined as the minimum delay require-
ment supported by at cost , i.e.,

such that

and (7)

where is a path between node and terminal on links
the belong to tree .

Optimal delay functions for branches of are
defined similarly.

In addition we define, for each link , the
optimal delay function in a way that resembles
the optimal delay function of a subpath (see Definition 1,
Section III-A1). Specifically, the optimal delay function

of link is defined as the minimum delay
requirement supported by link at cost , i.e.,

.
Definition 4: A -approximate delay function of

a subtree of is a function that satisfies, for each
.

We define -approximate delay functions for branches and
links in a similar manner. When no ambiguity exists, -approx-
imate delay functions will be referred to as just delay functions.
Delay functions are constructed by using the logarithmic sam-
pling approach.

A. Computation of Delay Functions

In this section, we present an overview of Procedure
MULTICAST which identifies the delay functions
and the corresponding partitions for each subtree of each layer.
The delay functions are computed in a bottom-up manner, first
for layer- subtrees, then for layer- subtrees, etc., up
to layer 0. Note that each layer- subtree includes a
single terminal node . For each terminal node the delay
function of subtree is set to 0 for all .

More specifically, we compute the delay function
of subtree by performing the following steps.

Step 1) If is a terminal, then is set to 0 for all
. Otherwise, for each child node of :

a) Recursively compute the delay function
of layer- subtree ;

b) Compute the delay function of the
link by performing logarithmic sampling
on the link cost function of ;

c) Compute the delay function of the
branch by merging the delay functions

and ;
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Step 2) Compute the delay function of the sub-
tree by merging the delay functions of all
branches of .

As is the case for unicast, the critical part is to choose, for each
layer , the approximation parameter used for computing
delay functions. The assignment of is discussed in detail in
Section IV.A.2.

1) Merging Procedures: As discussed above, in order to
compute the delay function we need to define two
merging procedures, which we proceed to describe in some
more detail.

The first procedure receives, as an input, the delay functions
and of link and subtree ,

respectively, and an upper bound . The function computes the
values of the delay function of the branch for
each . The goal of this procedure is to compute for
each , the partition of a budget between
the link and subtree , which minimizes the delay
supported by the branch under budget constraint . The
procedure is similar to the merger of the delay functions of two
subpaths, as discussed in Section III-A4. Accordingly, we use
Procedure MERGE that appears on Fig. 4.

The purpose of the second procedure, referred to as
MIN–MAX–MERGE, is to calculate the delay function

of the subtree out of the delay functions
of its branches. In order to compute ,

we find, for each cost value , the minimum delay
that can be supported by the subtree subject to budget
. For this purpose, we need to find the local budget for each

branch in such a way that the maximum delay between
and a terminal is minimized, i.e.,

such that

and (8)

Note that the delay function of each branch
is piecewise-constant. Hence, the function

of the subtree is also piecewise-constant and can be
computed by identifying its segments. We begin with segments
that correspond to lower costs and then proceed with segments
that correspond to higher costs. Since the cost of supporting a
delay requirement by each branch is at least 1, then the
minimum cost for supporting a delay requirement by subtree

is , hence we set

Thus, the first segment corresponds to cost and delay
. Suppose that we have identified the segment of

that corresponds to delay constraint , cost of
supporting and the corresponding partition ,
i.e., and . We show how
to identify the next segment of that corresponds
to delay and cost . Note that is the
minimum cost that must be paid in order to support a delay

Fig. 9. Procedure MIN–MAX–MERGE.

constraint lower than , i.e., and
.

We observe, by (8), that there exists a link for
which it holds that . We denote by

. Since , for each
, the delay supported by branch at cost must be

lower than . Thus, we set to be the minimum cost of sup-
porting a delay lower than by branch . For each
we set . As we prove in Lemma 4 below, the next seg-
ment of corresponds to cost and

delay . The formal descrip-
tion of Procedure MIN–MAX–MERGE appears in Fig. 9.

Lemma 4: Let be a layer- subtree. Suppose that
each branch of has a corresponding -ap-
proximate delay function that includes
segments. Then, Procedure MIN–MAX–MERGE computes, in

time, a -approximate delay function
for the subtree .

Proof: See Appendix G.
2) Procedure MULTICAST: We proceed to discuss Procedure

MULTICAST in more detail. The formal description of the pro-
cedure appears on Fig. 10. The procedure receives as input a
layer- subtree , a set of link cost functions ,
an approximation error , and an upper bound .

In line 1, we set the value of the approximation parameter
for layer . We explain our choice of later in this section.

Lines 2–4 handle the case in which node is a terminal node.
In line 6, we compute the delay function for each
layer- subtree by recursively invoking Procedure
MULTICAST for and . In lines 7 and
8, we perform an additional procedure in order to reduce the
number of segments in . Specifically, we perform
logarithmic sampling at costs , and de-
note the resulting function by . In lines 9 and 10, we
compute the delay function of link by per-
forming logarithmic sampling at costs .
Lines 7–10 ensure that the number of segments in the functions

and is bounded by . In
line 11, we compute the delay function of the branch
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Fig. 10. Procedure MULTICAST.

by invoking Procedure MERGE. Having computed the delay
function for each branch of , we identify the
delay function of by invoking Procedure
MIN–MAX–MERGE (line 12).

We denote by the accumulated error at layer- , that is,
for layer- nodes, Procedure MULTICAST computes -ap-
proximate delay functions. Note that, for each terminal ,
the procedure computes the optimal delay function, hence

. Suppose that the accumulated error at layer-
is , i.e., for each layer- node Procedure
MULTICAST returns -approximate delay functions

. In lines 7 and 8, we perform logarithmic sampling
with the parameter , hence the resulting function
is -approximate, where . In
lines 9 and 10, we compute an -approximate delay func-
tion for link . Then, we apply Procedure
MERGE for the functions and . By
Lemma 1, Procedure MERGE computes an -approximate
delay function for the branch , where

. Thus, by Lemma 4, Procedure
MULTICAST returns a -approximate delay function for the
subtree , where .

We conclude that the accumulated error at layer-0 is

where the last inequality follows from Claim 1.

The time needed for processing all subtrees is dominated
by the time required for the execution of Procedure MERGE

for all subtrees of all layers. Since Procedure MERGE is ap-
plied for functions with segments, its computa-
tional complexity is (by Lemma 2). As the number
of branches of layer- subtrees is , the total running time
required for invoking Procedure MERGE for layer subtrees is

. The total computational complexity of the algo-

rithm is . Thus, in order to find a suitable
assignment of approximation parameters , we need to solve
the following optimization problem:

subject to (9)

The following assignment minimizes the objective function
in (9):

(10)

for .
As we prove in Theorem 3 below, with this assignment of

, the total running time required for all invocations of Pro-
cedure MERGE is .

Note 1: If is a balanced tree, then we assign
for .

Theorem 3: Procedure MULTICAST identifies, in
time, an -approximate delay function

for a tree .
Proof: See Appendix H.

Note 2: If the tree is balanced, using the assignment of
as specified in Note 1 yields a computational complexity of

.

B. Solving Problem MOPQ

The algorithm for Problem MOPQ follows the same lines as
Algorithm OPQ for Problem OPQ, described in Section III-B,
with the following modifications.

1) The procedure returns a partition . A partition
satisfies the delay constraint if for each ter-

minal it holds that .
2) The initial lower and upper bounds and are computed

as follows: and ,
where .

3) We use Procedure MULTICAST instead of Procedure
UNICAST.

We summarize our results in the following theorem.
Theorem 4: Given a connection request with delay constraint
, a suitable QoS partition , whose cost is at most

times larger than that of the optimal partition, can be
identified in steps.

Proof: The proof is similar to that of Theorem 2.
Note 3: If the tree is balanced, an -approximate solution

can be identified in time.
The precomputation scheme for Problem MOPQ is also sim-

ilar to that of Problem OPQ (Section III-C). The only difference
between the two schemes is that we use Procedure MULTICAST
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instead of Procedure UNICAST. As a result, the computational
complexity is for the first phase and

for the second phase. For the
special case of balanced trees, the computational complexity is

.

C. Discussion

We proceed to compare the performance of our algorithms
with that of its alternatives.

The on-demand setting was considered in [7], where
an -approximate solution to Problem MOPQ was pre-
sented. That algorithm yields a computational complexity of

. The dominant term of this expression is , while
the dominant term of our solution is .
It follows that, for most practical settings i.e., when is
significantly lower than , the computational complexity of our
algorithm is significantly less dependent on
the topology size than that of [7]. Moreover, we note that the
depth of a typical multicast tree is , in which case
our algorithm is times faster. Furthermore,
in the special case of balanced trees, the computational com-
plexity of our solution is just ,
which is times faster than that of [7].

We described a precomputation scheme for Problem MOPQ
that provides -optimal solutions within a computational com-
plexity of for the first phase and

for the second phase. This
precomputation scheme promptly provides a suitable partition
upon an incoming request. The computational complexity
of our scheme is significantly lower than that of simplistic
adaptations of existing approximation algorithms.

V. CONCLUSION

A fundamental problem in the support of QoS in networks is
how to allocate resources along the connection’s topology such
that the required QoS can be guaranteed at minimum cost. This
immediately translates into the optimization problem that has
been the focus of this study, namely, how to optimally partition
the end-to-end QoS requirement into local requirements. This
problem poses major challenges in terms of algorithmic design
and has been the subject of several recent studies. These studies
provided significant insight into the essence of the problem and
its potential solutions. However, the solutions that have been
proposed either relied on restrictive assumptions (such as con-
vexity), or else proposed approximation schemes whose com-
plexity considerably depended on the network size. Therefore, a
scalable approach, which would be adequate for large scale net-
works, was called for. Such an approach should be less depen-
dent on the size of the connection’s topology, and, ultimately,
provide a fast answer to the partition problem upon each in-
coming connection request.

Accordingly, in this study we considered the scalability per-
spective, taking two independent approaches. First, we proposed

a novel algorithmic technique, which exploits the specific struc-
ture of the actual topologies on which connections are estab-
lished, i.e., paths or trees. This technique resulted in a signif-
icant improvement in terms of computational complexity, in
particular dependence on the size of the topology. Indeed, for
the “on-demand” setting, our approach typically offers almost-
linear solutions, both for unicast and for multicast, in terms of
dependence on topology size. These results per se constitute a
significant improvement upon previous solutions. Second, we
devised a precomputation scheme. This scheme is based on the
observation that, typically, network elements have the resources
to perform much of the computation in advance. Hence, it en-
ables to obtain fast solutions immediately upon each incoming
connection request; in particular, at that time (i.e., at the “second
phase”), the computational complexity depends only linearly on
the size of the topology, be it a unicast path or a multicast tree.

Several enhancements and extensions of this study can
be considered. For example, our layering approach makes it
possible to distribute the computational effort among network
nodes. Indeed, at each layer, each component (subpath or
subtree) is processed independently, hence the processing can
be performed concurrently, at different nodes.

More generally, the schemes presented in this study can serve
to tackle the scalability issue in other important networking
problems. In particular, another fundamental problem in the
context of QoS provision is that of QoS routing, i.e., the proper
selection of the connection’s topology. The key observation
there is that large-scale networks typically have a hierarchical
layering structure, which provides the grounds for an efficient
application of our “divide-and-conquer” approach.

APPENDIX

A. Proof of Lemma 1

Lemma 1: Given are layer- subpaths and
with corresponding -approximate delay functions

and . Then, the execution of Procedure
MERGE yields an -approximate delay function for
the subpath , where .

Proof: Let be an arbitrary cost. We denote by
the minimum delay supported by at cost

, i.e., and by the
optimal partition of delay . In addition, we denote
by

, and
. The condition of the lemma implies that

and .

This, in turn, implies that .
We prove that . Con-

sider the invocation of the loop that begins at line 2
for . Clearly,

.
We consider three possible cases.

1) and . Then, after execution of line 3, it
holds that

.
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2) and . Then, after the iteration of the
loop that begins on line 6 for , it holds that

.
3) and . Then, after the iteration of the

loop that begins on line 11 for , it holds that

.
In both cases, we showed that there exists

for which . Since , we
have , which in turn implies
that . Since is arbitrary, the lemma
follows.

B. Proof of Lemma 2

Lemma 2: The computational complexity of Procedure
MERGE is .

Proof: First, let us count the number of iterations of
the procedure’s main loop (i.e., the loop beginning on line 2).
Clearly, hence . Since for all

it holds that , we have
and .

The loop that begins on line 6 is executed for values of that
belong to the set . Thus, the
number of iterations of this loop is . We note that the
value assigned to at line 4 is at least , hence . Thus,
and since for , it holds
that the number of iterations in the loop is . A single
iteration requires time, hence the running time of the loop
is . By using the same argument, we can show that the
running time of the loop that begins on line 11 is also .

We conclude that the computational complexity of the proce-
dure is indeed .

C. Proof of Claim 1

Claim 1: Let be positive numbers such that
. Then it holds that

Proof: We prove that
, the claim then follows from the monotonicity of

.
Since for , it holds that , we have

Next, we use that fact that for , it holds that
. Since we have

D. Proof of Theorem 1

Theorem 1: Procedure UNICAST identifies, in
time, an -approximate delay function for a path .

Proof: We begin by proving that Procedure UNICAST iden-
tifies, for each subpath of layer , an -approxi-
mate delay function , where .

The proof is by induction on the layer number . Consider a
layer- subpath . It is immediate that lines 2–4 com-
pute an -approximate delay function . Assume
inductively that the assertion holds for subpaths of layer-

, and consider a layer- subpath . Since the assertion
holds for the subpaths and , the
condition of Lemma 1 is satisfied for

. Lemma 1 implies, in turn, that the algorithm identi-
fies an -approximate delay function , for

.
By Claim 1, . Thus, the

assertion implies that Procedure UNICAST computes -approxi-
mate delay function for path .

We proceed to analyze the computational complexity of Pro-
cedure UNICAST. The procedure is applied recursively for each
subpath of of each layer . The total time required for pro-
cessing layer- paths is . For ,
the time needed for processing a layer- subpath is determined
by the running time of Procedure MERGE. By Lemma 2, and
since , invocation of Procedure MERGE for a layer-

subpath requires
time.

Since there are subpaths of layer- , processing layer-
requires time. The total time needed for pro-
cessing each subpath of each layer is

We conclude the computational complexity of the algorithm
is and the theorem follows.

E. Proof of Theorem 2

Theorem 2: Algorithm OPQ provides, in
time, an -approximate solution to Problem

OPQ, i.e., given a connection request with delay constraint ,
Algorithm OPQ identifies a suitable QoS partition ,
whose cost is at most times higher than that of the
optimal partition.

Proof: In lines 1 and 2, we compute obvious lower and
upper, and bounds on the cost of the optimal solution. As
discussed in Section III-B2, the bounds remain valid during ex-
ecution of the loop that begins at line 3 and after the execution
of this loop it holds that .

We denote by and the cost of the optimal solution
under the original and scaled cost functions, respectively. Equa-
tion (6) implies that . By Theorem 1, Procedure
UNICAST yields an -approximate delay function .
Thus, after execution of line 12 it holds that .
Since , we have . Let

be the partition that corresponds to cost . From the
left part of (6) it follows that the cost of is at most

. We
conclude that the algorithm returns a feasible partition whose
cost is at most times higher than the optimum.
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We proceed to analyze the computational complexity of Al-
gorithm OPQ. Lines 1 and 2 of the algorithm require
time. Each iteration of the loop of line 3 requires also
time. Since the total number of iterations is ,
we conclude that the loop requires time.
Theorem 1 implies that the application of Procedure UNICAST

for (line 11) requires time. Thus, we
conclude that the computational complexity of the algorithm is

.

F. Proof of Lemma 3

Lemma 3: Algorithm POPQ computes, in
time, an -approximate delay

function for .
Proof: By Theorem 1, Procedure UNICAST yields an

-approximate delay function .
Let be an arbitrary cost. Since is an -ap-

proximate delay function, there exists
such that . Furthermore,
let . Since

, it holds that for
. After execution of the loop that begins at line 2 it holds

that . Hence for

it holds that . Since is arbitrary,
is an -approximate delay function for .

By Theorem 1, the application of Procedure UNICAST for
(line 1) requires

time, which is also the computational complexity of Algorithm
POPQ.

G. Proof of Lemma 4

Lemma 4: Let be a layer- subtree. Suppose that
each branch of has a corresponding -ap-
proximate delay function that includes
segments. Then, Procedure MIN-MAX-MERGE computes, in

time, an -approximate delay function
for the subtree .

Proof: First, we prove the following claim: at each itera-
tion of the loop that begins on line 6 for each it
holds that is the minimum cost of supporting delay require-
ment , i.e., . Clearly, the claim
holds at the beginning of iteration 1. Suppose inductively that,
the claim holds at the beginning of iteration , we prove that the
claim holds at the end of the iteration. We denote the value of

at the beginning of the iteration by and in the end of the
iteration by . Note that and in the end of the iteration
it holds that for each . Thus, for
each , since the value of does not change during the
iteration, it holds that is a minimum cost of supporting .
For each is set to minimum cost of supporting a delay
lower than . Thus, since and , it
holds that is a minimum cost of supporting .

Next, we prove that, for arbitrary cost ,
it holds that . We de-

note by the minimum delay supported by

at cost , i.e., . In addition, we de-

note, for each

.
Let .

The condition of the lemma implies that, for each
, it holds that . Consider the iteration of

the loop that begins on line 6 in which . The claim
above implies that, for each , it holds that

. Thus, for each , it
holds that and, after execution of line 7 we have

, where .
We thus proved that is a -approximate delay func-
tion of .

We proceed to analyze the computational complexity of
Procedure MIN–MAX–MERGE. The loop that begins at line 1
requires time. At each iteration of the loop that begins
at line 6, we examine a segment of for some branch

of . Since the delay function of the branch has
segments, the number of iterations of the loop is

. All lines in the loop, except for lines 10–12
and 13, can be executed in time. The total computational
complexity of line 10 is . If we use a binary tree
to keep values of , then the total computational complexity
of lines 11 and 13 is . Line 12 returns
the sum of budgets allocated to each branch . If we
maintain by updating it each time changes, then the total
time required for line 12 is equal to that required for line 10,
i.e., . We conclude that the total computational
complexity of the procedure is .

H. Proof of Theorem 3

Theorem 3: Procedure MULTICAST identifies, in
time, an -approximate delay function

for a tree .
Proof: We showed above (see Section IV.A.2) that Proce-

dure MULTICAST identifies an -approximate delay function
for tree , where . Note that

and
, where the last inequality fol-

lows from Claim 1. After substituting for , according to (10)
we have . We conclude that the procedure com-
putes an -approximate delay function for the tree .

We proceed to analyze the computational complexity of
Procedure MULTICAST. The complexity is dominated by time
required to execute Procedure MERGE, which is executed for
each subtree of each layer. Since Procedure MERGE is applied
for functions with segments, its computational
complexity for a branch of layer- subtree is (by
Lemma 2). As the number of branches of layer- subtrees
is , the time required for invoking Procedure MERGE

for layer subtrees is . Thus, the total time
required for execution of Procedure MERGE for all layers is
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. After substituting for , according to
(10) we have

Since the latter expression is maximized when
for , we have .

Next, we analyze the total time required for execu-
tion of Procedure MIN–MAX–MERGE. The procedure is
also executed for each subtree of each layer. By Lemma 4,
the computational complexity of executing the procedure
for a subtree of layer is ,
where is the number of branches of . Thus,

. After substituting for ,
according to (10) we have

Again, the latter expression is maximized when
for , we have
.

Finally, in procedure Procedure MULTICAST, we perform
logarithmic sampling for each link and each subtree

of (lines 7–10). Performing logarithmic sampling
for each function requires time. Thus, this oper-
ation requires time for layer- and

overall. After substituting for
according to (10), we conclude that the time required to

process all links in is . We conclude
that the computational complexity of Procedure MULTICAST is

and the theorem follows.
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