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ABSTRACT
We show that the distribution of the sizes and temperatures of clusters can be used to con-
strain cosmological models. The size-temperature (ST) distribution predicted in a flat Gaus-
sian cluster-abundance-normalizedΩ0 = 0.3 model agrees well with the fairly tight ST rela-
tion observed. A larger power-spectrum amplitudeσ8 would give rise to a larger scatter about
the ST relation as would a larger value ofΩ0 and/or long non-Gaussian high-density tails in
the probability density function. For Gaussian initial conditions, the ST distribution suggests
a constraintσ8Ω

0.26

0
≃ 0.76. The ST relation is expected to get tighter at high redshifts. In

the process, we derive a simple formula for the halo formation-redshift distribution for non-
Gaussian models. We also suggest that the discrepancy between the naive zero-redshift ST
relation and that observed may be due, at least in part, to thefact that lower-mass clusters
form over a wider range of redshifts. An Appendix derives an equation for the formation-
redshift distribution of halos.
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1 INTRODUCTION

Galaxy clusters are now being widely used as probes of cosmolog-
ical and structure-formation models. For example, the abundance
of galaxy clusters has been used to constrain the amplitudeσ8 of
the power spectrum and the nonrelativistic-matter densityΩ0 in
models with an initially Gaussian distribution of density perturba-
tions (Evrard 1989; Henry & Arnaud 1991; Bahcall & Cen 1992;
Bahcall & Cen 1993; Lilje 1992; Oukbir & Blanchard 1992; White,
Efstathiou & Frenk 1993; Viana & Liddle 1996; Eke, Cole & Frenk
1996; Viana & Liddle 1999), as well as in models with long non-
Gaussian tails (Robinson, Gawiser & Silk 2000; hereafter RGS).

In this paper, we show that the scatter in galaxy cluster scaling
relations can be used to constrain cosmological and structure for-
mation models. Specifically, we focus on the relatively small scatter
of the relation between X-ray isophotal size and emission-weighted
intracluster-medium mean temperatureTX demonstrated in Mohr
& Evrard (1997; hereafter ME97). We illustrate how this scatter
should depend onσ8 andΩ0, and how it is affected by the intro-
duction of a non-Gaussian distribution of perturbations with a long
tail of high-density peaks. Our work on the size-temperature (ST)
relation follows prior analytic work by Kitayama & Suto (1996)
(although they focussed primarily on other cluster properties) and
employs the framework for relating the ST relation to the underly-
ing dark matter properties as discussed in Mohr et al. (2000;here-
after M00).

The small scatter is heuristically expected if clusters form at
rare high-density peaks in a Gaussian primordial distribution. Clus-
ters that form earlier should be denser when they are first virialized
and so they should have smaller radii for a given mass, or similarly,
smaller radii for a given temperature. In this way, any dispersion
in the formation redshifts for clusters of a given mass should yield
a spread in the ST relation. If clusters come from rare Gaussian
peaks, then the spread in formation redshifts should be small; given
the rapidly dying Gaussian tails, it is unlikely that any cluster of a
given mass observed today was formed at a redshift much earlier
than the others. However, if the distribution had long non-Gaussian
tails (as would be required to significantly boost the cluster abun-
dance) or if clusters formed from peaks that were not quite sorare
(e.g.,> 2σ rather than> 3σ peaks), then clusters of a given mass
observed today should have had a much broader distribution of for-
mation redshifts (see Fig. 1) and thus a much broader distribution
of sizes (for a given mass or temperature).

We quantify these arguments using a spherical-top-hat-
collapse model to relate the virial radius and temperature of a clus-
ter to its mass and formation redshift. We use the formation-redshift
distribution for Gaussian perturbations from Sasaki (1994), and we
generalize it for an arbitrary initial density distribution (the deriva-
tion is presented in an Appendix). We use a Monte Carlo approach
to simulate the ST relation for a variety of parameters, and illustrate
in particular how it depends onσ8, Ω0, andG, the non-Gaussian
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Figure 1. The solid curve shows a Gaussian distributionP (y) with unit
variance, while the broken curve shows a non-Gaussian distribution with
the same variance but 10 times as many peaks withy > 3. This illustrates
(a) how the cluster abundance can be dramatically enhanced with long non-
Gaussian tails (since clusters form from rare peaks); and (b) that the disper-
sion ofy for y > 3 is much larger for the non-Gaussian distribution than it
is for the Gaussian distribution, and this will lead to a larger scatter in the
formation redshifts and sizes of clusters of a given mass.

multiplicative excess of> 3σ peaks introduced by RGS. Our main
results are (a) the predicted scatter in the ST relation for Gaussian
initial conditions and favored cosmological parameters isfound to
be fairly consistent with that observed; (b)G >

∼
5 greatly over-

predicts the scatter; (c) the scatter for the non-Gaussian initial con-
ditions required to make the cluster abundance consistent with an
Einstein-de-Sitter Universe (EdS) is also much larger thanthat ob-
served. Joint constraints from the cluster abundance and the ST re-
lation onσ8, G, andΩ0 are discussed. We show how the ST re-
lation should be altered for clusters at intermediate and high red-
shifts. In the process we show that, because lower-mass clusters
form over a larger range of redshifts than higher-mass clusters, the
expected ST relation is steeper (and therefore more consistent with
the observed relation) than the naive expectation detailedin M00.
In the final Section, we make some brief connections to the X-ray
mass-temperature relation and to the redshift evolution ofthe clus-
ter abundance.

2 INGREDIENTS

2.1 Spherical-Collapse Model

We use the relations of Kitayama & Suto (1996) to relate the cluster
virial radius and virial temperature at formation time,Rvir andT ,
to the massM and formation redshiftzf (defined to be the redshift
at which the cluster collapses). Fig. 2 shows how this model assigns
masses and formation redshifts to clusters of given temperatures
and sizes assuming thatRvir ∝ Rδ .

It is possible to connect more rigorously these cluster dark-
matter properties with the observable intracluster medium(ICM)
properties in a manner similar to that outlined in M00. Specifically,
we assume thatTX is the virial temperature (e.g. Evrard, Metzler
& Navarro 1996; Frenk et al. 2000; Bower et al. 2000). We trans-
form from the virial radius atzf to the X-ray isophotal sizeR us-
ing R ∝ R

4/3
vir

f
2/3
ICM , wherefICM is the ICM mass fraction (M00

eqns. (8) and (10)). The dependence onfICM should be included

Figure 2. Mass and formation-redshift contours in the size-temperature
plane forΩ0 = 0.3 andh = 0.65 obtained from the spherical-top-hat
model of gravitational collapse discussed in the text. It isclear from the fig-
ure that a narrow (broad) spread in the formation redshift will yield a tight
(broad) ST relation. For largerΩ0, thezf = 0 contour remains the same,
but the spacing between equi-zf contours increases.

because variations infICM with mass are observed (e.g. Mohr,
Mathiesen & Evrard 1999; David, Jones & Forman 1995) and could
alter the slope of the ST relation. In the following analysis, we as-
sumefICM ∝ T 0.34

X ; however the results of Figs. 4 and 5 are no
more thanvery weakly dependent on thefICM functional form.

We normalize the simulated ST relation to the observations by
fixing the constant of proportionality so that no observed cluster in
the local sample lies above thezf = 0 line (see Figs 2 and 3).

2.2 Distribution of Halo Masses

Numerical simulations tell us that the Press-Schechter (PS) ap-
proach (Press & Schechter 1974) provides a reasonable approxi-
mation for the abundance of cluster size halos of a given massat
any given epoch for Gaussian initial conditions (e.g. Lacey& Cole
1994, Gross et al. 1998, Lee & Shandarin 1999), and for a few non-
Gaussian initial conditions that have been explored with simula-
tions (Robinson & Baker 1999). In the PS approach the number per
comoving volume of halos with masses betweenM andM + dM
at redshiftz is (e.g., Lucchin & Matarrese 1988; RGS),

dn

dM
dM =

fρb
M

P
(

y(M,z)
)

∂y(M, z)

∂M
dM, (1)

whereρb is the background density,P (y) is the primordial proba-
bility distribution function normalized to unit variance.The argu-
menty = δ(z)/σM , andδ(z) = δ(z)/D(z) whereδc(z) is the
critical overdensity for collapse (see Kitayama & Suto 1996for ac-
curate analytic fits), andD(z) is the linear-theory growth factor.
Here,σM is the current root-variance of spheres that enclose an
average massM , andf =

∫

∞

0
P (y) dy.

2.3 Distribution of Formation Redshifts

The objects of massM observed at some given redshiftzo under-
went collapse at a variety of formation redshiftszf > zo. Sasaki
(1994) has shown how the PS formalism leads to an expression for
the formation-redshift distribution under the assumptionof Gaus-
sian initial conditions and that the merger rate has no characteristic
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Figure 3. (a) ST distribution for LCDM andσ8 = 0.99 and Gaussian initial conditions. Each dot represents a simulated cluster, while the diamonds are data
from M00. The line shows the ST relation expected for clusters that form today, at redshiftz = 0. (b) shows the same except that here we useσ8 = 1.5. (c)
shows the same as in (a) but with the non-Gaussian distribution of RGS withG = 10.

mass scale. His derivation can be generalized in a straightforward
fashion to arbitraryP (y). Doing so (see Appendix), we find the dis-
tribution (normalized to unity) of formation redshiftszf for halos
of massM observed at redshiftzo to be,

df

dzf
= P ′

(

y(M,zf )
)∂y(M,zf )

∂zf

[

P
(

y(M,z0)
)]−1

(2)

whereP ′(y) ≡ dP/dy. Lacey & Cole (1993,1994) have presented
an alternative, but somewhat more complicated, formation-redshift
distribution that improves upon Sasaki’s assumption of self-similar
merging. We will leave the implementation of this alternative dis-
tribution and a discussion of the formalism introduced by Percival
et al. (2000), to future work, but note that our preliminary investiga-
tions, as well as previous results (Viana & Liddle 1996; Buchalter
2000), indicate that the predictions of these models do not differ
considerably for cluster-mass halos.

2.4 Preliminary Estimates

It is straightforward to roughly estimate the effects of non-Gaussian
tails on the ST-relation scatter. For a rapidly dying distribution
P (y), the controlling factor indn/dzf will be P ′(y). For a Gaus-
sianP (y), the root-variance ofy is 0.282 for the distributionP ′(y)
for values ofy > 3, and the mean value ofy is 3.30. For an EdS
model,y = 1.69(1 + zf )/σM , and (1 + z)−1

∝ Rvir. Thus,
σR/R = (4/3)(σRvir

/Rvir) ≃ (4/3)(σy/y) = 0.113 for a Gaus-
sian distribution, in surprisingly good agreement with theestimate
of the intrinsic scatter of 10% in the ST relation (ME97). Forthe
RGS distribution withG = 10, the root-variance is0.896 and the
mean value ofy is 3.87 leading toσRvir

/Rvir ≃ 0.31, more than
twice the observed scatter. Below we will quantify this far more
precisely.

3 RESULTS

For any givenΩ0, σ8, andG, we perform a Monte Carlo realization
of 400 clusters with the mass and formation-redshift distributions
given above. We then assign to each of these clusters a size and
temperature as outlined in Section 2.1. The ME97 sample to which
we compare our calculations is a flux-limited sample. Withinthis

sample, the probability of finding a cluster of luminosityLX goes
asL1.5

X , andLX is observed to go as roughlyT 2.5 to T 3 (David et
al. 1993; Arnaud & Evrard 1999), so the flux limit is essentially a
virial-temperature weighting ofT 3.75 to T 4.5. We thus subject our
simulated population of clusters to aT 3.75 weighting; our results
are not significantly altered for the steeper weightingT 4.5.

Fig. 3(a) shows the results of our Monte Carlo for a flat
Ω0 = 0.3 model (LCDM) with the valueσ8 = 0.99 inferred
from the cluster abundance (Viana & Liddle 1999) and a Gaus-
sian distribution. The data points from ME97 are overlaid. We used
a Hubble parameterh = 0.65, but the results are essentially un-
altered for different plausible values ofh. Fig. 3(b) illustrates that
the scatter in the ST relation is increased if the power-spectrum
normalization is higher. In this case, clusters are not quite as rare,
and they form over a larger range of redshifts. Fig. 3(c) shows how
the scatter is increased as the abundance of high-density peaks is in-
creased. In this case, clusters observed today are also formed over a
broader range of redshifts. At this point, we note the apparent sim-
ilarity between the predictions of the ST distribution of the cluster-
abundance-normalized Gaussian LCDM model and the data; the
scatter about the ST relation would be broadened considerably with
a higherσ8 or with a highly non-Gaussian model.

To make these arguments more quantitative as well as survey
a larger range of parameters, we have simulated ST relationsfor a
variety of models in theσ8-G parameter space for both EdS and
LCDM models and then used a 2D Kolmogorov-Smirnov (KS) test
(Peacock 1983; Press et al. 1996) to compare these with the data.
Fig. 4 shows the resulting contours of constant KS significance
levels for bothΩ0 = 0.3 andΩ0 = 1. The results suggest that
the Gaussian cluster-abundance-normalized (σ8 = 0.99) LCDM
model provides a good fit to the data.

We heuristically expect that the dependence of the ST scatter
on cosmological parameters/models should be similar to that of the
cluster abundance; if the peaks that give rise to clusters are rare,
we expect little scatter andvice versa if clusters are more com-
mon. The contours of fixed cluster abundance in Fig. 4 indicate
that this is qualitatively correct. We obtain these curves by using a
cluster abundancen(> 6.2 keV, z = 0.05) = 1.53 × 10±0.16

×

10−7 Mpc−3 h3 (Viana & Liddle 1999) and integrating eqn. (1) up
from the mass associated with a temperature 6.3 keV and a forma-
tion redshiftzf = 0. However, the detailed results also seem to
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Figure 4. The heavy solid curves show confidence levels suggested by
the ST data in theσ8-G parameter space for the LCDM model, and the
light curves show the same for the EdS model. The dashed curveshows
the contour suggested by the central value [n(> 6.2 keV, z = 0.05) =
1.53 × 10±0.16 × 10−7 Mpc−3 h3] of the local cluster abundance for
Ω0 = 0.3, while the dotted curves indicate contours for the upper and
lower observational limits to the cluster abundance.

indicate that ifΩ0 is fixed, the ST distribution and cluster abun-
dance can be used in tandem to break the degeneracy betweenG
andσ8. In fact, combining the two constraints already seems to rule
out large deviations from Gaussianity.

Fig. 5 shows the regions ofσ8-Ω0 parameter space preferred
by the ST relation, as well as the curve in this parameter space
suggested by the cluster abundance. For fixedσ8, the ST scat-
ter increases asΩ0 increases. At first, this might seem discrepant
with the well-known result that the range of formation redshifts
is narrower for largerΩ0 for cluster-abundance-normalized mod-
els. However, this narrowing of the formation-redshift distribution
with increasingΩ0 is not quite as dramatic if we fixσ8 instead
of the cluster abundance. More importantly, the spherical-top-hat-
collapse dynamics leads to a broader spacing between the equi-zf
contours in Fig. 2, and this is responsible for increasing the ST scat-
ter asΩ0 is increased with fixedσ8; in other words, the relationship
betweenR andT evolves more rapidly with redshift in higherΩ0

models.
From the results in Fig. 5, we can approximate an ST con-

straint,σ8 = 0.76Ω−0.26
0

, as compared with the cluster-abundance
constraint,σ8 = 0.56Ω−0.47

0
(Viana & Liddle 1999). The region

of overlap between the cluster-abundance constraint and the ST re-
lation lies at low values ofΩ0, low values of non-Gaussianity, and
slightly higher values ofσ8.

3.1 An Einstein-de-Sitter Universe?

RGS were able to identify for an EdS model, a region in theσ8-G
parameter space nearσ8 = 0.4 andG = 10 in which the predicted
cluster abundance was found to agree with that observed. Fig. 6
shows that these parameter choices predict far too much scatter in
the ST relation. Allowing for additional sources of scatterin this
simulated ST relation would only increase the discrepancy between
the model and the observations.

Figure 5. The heavy solid curves show likelihood contours suggested by the
ST data for Gaussian initial conditions in theσ8-Ω0 parameter space. The
dot-dashed curve shows the contour preferred by the local cluster abundance
as suggested by Viana & Liddle (1999), while the dashed curveshows the
fit to our ST constraint.

Figure 6. The ST distribution forΩ0 = 1 with σ8 = 0.4 andG = 10,
one of the combinations of parameter values that yield the correct cluster
abundance for an EdS Universe. The predicted scatter in the ST relation is
considerably larger than that observed.

3.2 High and Intermediate Redshift Results

Clusters that exist at higher redshifts must form from even higher-
density peaks than those today. Thus, in a Gaussian model, the scat-
ter in their formation redshifts and thus in their sizes should be even
smaller. This is illustrated in Fig. 7. The canonical-modelpredic-
tions shown in Fig. 7(a) forz ≃ 0.3 seem to be in relatively good
agreement with the cluster sample observed so far. Fig. 7(b)shows
that the scatter in the ST relation for the canonical model should be
very small. Even though the sample of such high-redshift clusters
is expected to be small, the predicted scatter is so small that mea-
surement of the sizes of only a handful of clusters could put strong
constraints on different sources of scatter (e.g., non-Gaussianity,
measurement uncertainties, mergers, galaxy feedback, etc.).

3.3 A size-temperature anomaly?

The ST relation of the low-redshift X-ray flux limited cluster sam-
ple has a slope ofm ∼ 1, which is considerably steeper than the
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Figure 7. The ST relation for the LCDM model withσ8 = 0.99 and
Gaussian perturbations for (a) clusters atz = 0.3 and (b)z = 1. This
illustrates how the scatter should decrease with redshift.The data from
Mohr et al. (2000) (that have median redshift 0.3, but cover the range
0.19 < z < 0.54) are shown in (a).

m = 2/3 slope expected in a model where all clusters are assumed
to have formed at the redshift of observation (ME97, M00). ME97
suggest that a possible explanation for this steeper than expected
scaling relation is provided by galaxy feedback. Fig. 3 illustrates
that the discrepancy may be due only, or at least in part, to the
fact that lower-mass clusters form over a broader range of redshifts,
and thus will in general have smaller sizes than they would ifthey
all formed very recently. Visual inspection of Fig. 3 suggests that
this is a plausible explanation, especially when the small-number
statistics of the observational sample are taken into account. More-
over, the relatively strong dependence of the ST scatter onσ8 indi-
cate that better agreement than shown in Fig. 3 could be obtained
with a slightly different value ofσ8 and/orΩ0 (cf., Fig. 5). The
apparent disagreement with ME97’s feedback-free numerical sim-
ulations, which show an ST scaling close to the naive scaling(but
still steeper in 3 of the 4 cosmologies tested), may have beendue
to thisσ8 andΩ0 dependence and/or the relatively small-number
statistics of their simulations sample. Thus, the apparentdeviation
of the ST relation slope from them = 2/3 expectation is not quite
so anomalous.

4 DISCUSSION

We have calculated the ST distribution of clusters with a simple an-
alytic model and focussed in particular on the dependence onthe
power-spectrum amplitude (σ8) and the degree of non-Gaussianity
(G). We find a fairly sensitive dependence of the ST relation scat-
ter on these two parameters. Thus, the tightness of the ST rela-
tion can be used to place valuable constraints on these parame-
ters, as well as on other cosmological parameters. The canonical
cluster-abundance-normalizedΩ0 = 0.3 model predicts an ST re-
lation consistent with that observed, but aσ8 much larger or smaller
would be inconsistent as would a non-Gaussian model that predicts

a significant excess of> 3σ high-density peaks.⋆ The constraints
toσ8,G, andΩ0 that arise from the ST distribution should be qual-
itatively similar to those from cluster abundances, but ourprelim-
inary calculations suggest that they may be sufficiently different
to provide complementary constraints. The ST relation should be-
come increasingly tight at larger redshifts. Our results also suggest
that the discrepancy between the naivez = 0 ST relation and the
observed ST relation may be due, at least in part, to the fact that
lower-mass clusters observed today have formed over a larger range
of redshifts than higher mass clusters.

The fact that lower-mass clusters tend to form over a broader
redshift range than higher-mass clusters will also tend to steepen
theMvir-T relation beyond the self-similar expectation ofm =
2/3. Numerical simulations of structure formation within models
with non-Gaussian initial conditions or low-Ω0 open models ought
to exhibit this effect. The OCDM256 portion of Fig 4. in Bryan&
Norman (1998) indicates that low-mass clusters fall systematically
below the best fitMvir-T relation, consistent with our expectation.
It should be emphasized that, in this particular study, the low-mass
systems are composed of far fewer particles than the high-mass sys-
tems, providing another plausible explanation for structural differ-
ences. Further work to investigate departures from self similarity
in the cluster population which naturally arise from the spread in
formation epochs is clearly required.

Since the overdensity-peak amplitude at which a cluster can
form increases at higher redshift, the redshift evolution of the clus-
ter abundance depends on the shape of the primordial densitydistri-
bution function at high peaks just as the ST scatter does. Thus, ifΩ0

is fixed, it should be possible to reconstruct the cluster-abundance
evolution from the scatter in the ST relation for local clusters.

Although we have used cluster sizes inferred from X-rays to
compare with theoretical calculations, the same could be done for
the sizes of clusters measured via the Sunyaev-Zeldovich effect,
either with or without redshift information (Kamionkowskiet al.
2000). Of course, there will invariably be some cluster-formation
physics that our current analysis has left out, and numerical sim-
ulations may have an advantage in this regard. Note that the only
source of scatter in our simulated ST relations is the range of forma-
tion epoch, whereas other sources of stochasticity (e.g., measure-
ment uncertainties, mergers, galaxy feedback, etc.) mightincrease
the scatter. However, with our analytic approach, we are able to
rule out models that overpredict the scatter; we can sift farmore
rapidly through a variety of cosmological models and parameters,
study the dependence of the ST distributions on these modelsand
parameters, and gain some intuitive feel for how the resultsarise.
By doing so, we hope to have established that cluster sizes can pro-
vide a valuable new probe of cosmological models.
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APPENDIX

Taking the derivative of eqn. (1) with respect to redshift, we ob-
tain (hereafter we do not explicitly show the(M, z) dependencies
where they are obvious)

d2n

dMdz
=

fρb
M

[

∂P

∂y

∂y

∂z

∂y

∂M
+ P (y)

∂

∂z

∂y

∂M

]

(3)

= −
fρb
M

1

σ2

∂δ

∂z

∂σ

∂M

[

∂P

∂y

δ

σ
+ P (y)

]

(4)

=
d2nform

dMdz
−

d2ndest

dMdz
. (5)

In the last line we have equated the total rate of change to thedif-
ference between a formation rate and a destruction rate (thelatter
being due to objects merging to form larger objects). These can be
expressed as

d2nform

dMdz
=

∫ M

Mmin

dn

dM
Q(M,M ′; z)dM ′, (6)

whereQ(M,M ′; z) is the probability that an object of massM ′

is one of the merging components when an object of massM
forms andMmin is introduced to prevent the integral from di-
verging, andd2ndest/dMdz = φ(M, z)(dn/dM), where the
function φ(M, z) can be interpreted as the destruction rate per
bound object. Sasaki assumes thatφ(M,z) can be expressed as
φ(M, z) = Mαφ̃(z) (implying that the destruction rate has no
characteristic mass scale). Using eqn. (5), we can write

φ̃(z) =
−d2n/dMdz + d2nform/dMdz

dn/dMMα
. (7)

Since the left-hand side of this equation depends only uponz the
right-hand side must be independent ofM and so may be evaluated
at a very small massMmin. Since the formation rate is zero atMmin

(see eqn. 6), this leaves

φ̃(z) = −
d2n/dMdz(Mmin, z)

dn/dM(Mmin, z)Mα
min

. (8)

Substituting eqns. (1) and (4) into this expression gives

φ̃(z) =
1

δ

∂δ

∂z
M−α

min

[

1

P [y(Mmin)]

∂P [y(Mmin)]

∂y

δ

σ(Mmin)
+ 1

]

(9)

For a hierarchical clustering model,limM→0 σ
2(M) = ∞, so if

we take the limitMmin → 0 eqn. (9) will be0 or∞ unlessα = 0,
forcing the choiceα = 0 upon us such that̃φ(z) = (1/δ)(dδ/dz).
Substituting this expression and eqn. (3) into eqn. (5), we find that
the formation rate is given by

d2nform

dMdz
= −

fρb
M

1

σ2

∂δ

∂z

∂σ

∂M

∂P

∂y

δ

σ
. (10)

This is the rate of formation of bound objects of massM and red-
shift z, but we wish to know what fraction of these objects will
survive until the redshift of observation. Using our definition of
φ(z) the number of objects of massM which formed atzf must

evolve with redshift asdN/dz = φ(M, z)N such that the frac-
tion remaining byzo(< zf) is f(zf , zo) = exp

∫ zo

zf
φ(z)dz =

δ(zo)/δ(zf). The number of objects of massM , which formed at
redshiftzf and which survive until redshiftzo is given by the prod-
uct of this expression and eqn. (10); i.e.,

d2n

dMdz
=

fρb
M

δ(zo)

δ(zf)

∂y

∂z
(zf)

∂y

∂M
(zf)

∂P

∂y
(zf). (11)

Noting that(∂y/∂M)zf /(∂y/∂M)zo = δ(zf)/δ(zo), we obtain
our final result, eqn. (2), by dividing eqn. (11) by eqn. (1).
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