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ABSTRACT

We show that the distribution of the sizes and temperaturetusters can be used to con-
strain cosmological models. The size-temperature (STiloligion predicted in a flat Gaus-
sian cluster-abundance-normaliZzegl = 0.3 model agrees well with the fairly tight ST rela-
tion observed. A larger power-spectrum amplitagevould give rise to a larger scatter about
the ST relation as would a larger valuefaf and/or long non-Gaussian high-density tails in
the probability density function. For Gaussian initial dd@ions, the ST distribution suggests
a constraints Q)25 ~ 0.76. The ST relation is expected to get tighter at high redshiifts
the process, we derive a simple formula for the halo fornmatedshift distribution for non-
Gaussian models. We also suggest that the discrepancydietive naive zero-redshift ST
relation and that observed may be due, at least in part, téatliehat lower-mass clusters
form over a wider range of redshifts. An Appendix derives gnation for the formation-
redshift distribution of halos.
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1 INTRODUCTION

Galaxy clusters are now being widely used as probes of cagmol
ical and structure-formation models. For example, the dhooe
of galaxy clusters has been used to constrain the amplitydsf
the power spectrum and the nonrelativistic-matter der@iyin
models with an initially Gaussian distribution of densigrfurba-
tions (Evrard 1989; Henry & Arnaud 1991; Bahcall & Cen 1992;
Bahcall & Cen 1993; Lilje 1992; Oukbir & Blanchard 1992; Wit
Efstathiou & Frenk 1993; Viana & Liddle 1996; Eke, Cole & Fken
1996; Viana & Liddle 1999), as well as in models with long non-
Gaussian tails (Robinson, Gawiser & Silk 2000; hereafteBRG

In this paper, we show that the scatter in galaxy clusteiragal
relations can be used to constrain cosmological and steufou-
mation models. Specifically, we focus on the relatively disedtter
of the relation between X-ray isophotal size and emissieighted
intracluster-medium mean temperatdre demonstrated in Mohr
& Evrard (1997; hereafter ME97). We illustrate how this seat
should depend ong and€y, and how it is affected by the intro-
duction of a non-Gaussian distribution of perturbationthwilong
tail of high-density peaks. Our work on the size-tempes(®T)
relation follows prior analytic work by Kitayama & Suto (189
(although they focussed primarily on other cluster prapsytand
employs the framework for relating the ST relation to theard
ing dark matter properties as discussed in Mohr et al. (2B86e-
after M0O).
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The small scatter is heuristically expected if clustersifat
rare high-density peaks in a Gaussian primordial distigouClus-
ters that form earlier should be denser when they are firistizied
and so they should have smaller radii for a given mass, otailyi
smaller radii for a given temperature. In this way, any disign
in the formation redshifts for clusters of a given mass sthgigld
a spread in the ST relation. If clusters come from rare Gauossi
peaks, then the spread in formation redshifts should bd sgnain
the rapidly dying Gaussian tails, it is unlikely that anystkr of a
given mass observed today was formed at a redshift mucteearli
than the others. However, if the distribution had long naui§sian
tails (as would be required to significantly boost the cluataun-
dance) or if clusters formed from peaks that were not quites®
(e.g.,> 20 rather tharn> 30 peaks), then clusters of a given mass
observed today should have had a much broader distributin-o
mation redshifts (see Fiﬂ 1) and thus a much broader disitito
of sizes (for a given mass or temperature).

We quantify these arguments using a spherical-top-hat-

collapse model to relate the virial radius and temperatfieectus-

ter to its mass and formation redshift. We use the formatgaishift
distribution for Gaussian perturbations from Sasaki (3198dd we
generalize it for an arbitrary initial density distributi¢the deriva-
tion is presented in an Appendix). We use a Monte Carlo agproa
to simulate the ST relation for a variety of parameters, Hustrate

in particular how it depends otis, Q20, andG, the non-Gaussian
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Figure 1. The solid curve shows a Gaussian distributiBy) with unit
variance, while the broken curve shows a non-Gaussianhdison with
the same variance but 10 times as many peaks gvith 3. This illustrates
(a) how the cluster abundance can be dramatically enhanitiedowg non-
Gaussian tails (since clusters form from rare peaks); anthéb the disper-
sion ofy for y > 3 is much larger for the non-Gaussian distribution than it
is for the Gaussian distribution, and this will lead to a érgcatter in the
formation redshifts and sizes of clusters of a given mass.

multiplicative excess of> 30 peaks introduced by RGS. Our main
results are (a) the predicted scatter in the ST relation frgSian
initial conditions and favored cosmological parametef®isd to
be fairly consistent with that observed; (&) > 5 greatly over-
predicts the scatter; (c) the scatter for the non-Gausaitialicon-
ditions required to make the cluster abundance consistightan
Einstein-de-Sitter Universe (EdS) is also much larger thahob-
served. Joint constraints from the cluster abundance an8Ttre-
lation onos, G, and€)y are discussed. We show how the ST re-
lation should be altered for clusters at intermediate agth hed-
shifts. In the process we show that, because lower-mastedus
form over a larger range of redshifts than higher-mass etasthe
expected ST relation is steeper (and therefore more censisith
the observed relation) than the naive expectation detail@d00.

In the final Section, we make some brief connections to thayX-r
mass-temperature relation and to the redshift evolutich@tlus-
ter abundance.

2 INGREDIENTS
2.1 Spherical-Collapse M oddl

We use the relations of Kitayama & Suto (1996) to relate thstef
virial radius and virial temperature at formation tinfe,;, andT’,
to the mass\/ and formation redshitt; (defined to be the redshift
at which the cluster collapses). F[b. 2 shows how this mosigas
masses and formation redshifts to clusters of given terjres
and sizes assuming th&ti. « Rs.

It is possible to connect more rigorously these cluster -dark
matter properties with the observable intracluster mediL®M)
properties in a manner similar to that outlined in M0O. Sfiegily,
we assume thdfx is the virial temperature (e.g. Evrard, Metzler
& Navarro 1996; Frenk et al. 2000; Bower et al. 2000). We trans
form from the virial radius at; to the X-ray isophotal siz& us-
ing R oc RY/? 1717, where frcar is the ICM mass fraction (MOO
eqns. (8) and (10)). The dependencefenas should be included
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Figure 2. Mass and formation-redshift contours in the size-tempegat
plane forQp = 0.3 andh = 0.65 obtained from the spherical-top-hat
model of gravitational collapse discussed in the text. teésr from the fig-
ure that a narrow (broad) spread in the formation redshiftyigld a tight
(broad) ST relation. For largéRo, thezy = 0 contour remains the same,
but the spacing between equj-contours increases.

because variations iffiycas with mass are observed (e.g. Mohr,
Mathiesen & Evrard 1999; David, Jones & Forman 1995) andctoul
alter the slope of the ST relation. In the following analysie as-
sumefron o< TY3*; however the results of Figs. 4 and 5 are no
more tharvery weakly dependent on thé;cas functional form.

We normalize the simulated ST relation to the observatigns b
fixing the constant of proportionality so that no observedtgr in
the local sample lies above the = 0 line (see Figs 2 and 3).

2.2 Distribution of Halo M asses

Numerical simulations tell us that the Press-Schechte) @épS
proach (Press & Schechter 1974) provides a reasonablexippro
mation for the abundance of cluster size halos of a given m@atss
any given epoch for Gaussian initial conditions (e.g. Lakeyole
1994, Gross et al. 1998, Lee & Shandarin 1999), and for a few no
Gaussian initial conditions that have been explored withush-
tions (Robinson & Baker 1999). In the PS approach the numéer p
comoving volume of halos with masses betwédérand M + dM

at redshiftz is (e.g., Lucchin & Matarrese 1988; RGS),
j_]\Z/dM: %P(y(M,z))%dM, @
wherep, is the background density (y) is the primordial proba-
bility distribution function normalized to unit varianc&€he argu-
menty = 6(z)/om, andd(z) = §(z)/D(z) whered.(z) is the
critical overdensity for collapse (see Kitayama & Suto 1886ac-
curate analytic fits), and(z) is the linear-theory growth factor.
Here, o is the current root-variance of spheres that enclose an
average mass/, andf = [ P(y)dy.

2.3 Distribution of Formation Redshifts

The objects of masa/ observed at some given redshift under-
went collapse at a variety of formation redshits > z,. Sasaki
(1994) has shown how the PS formalism leads to an expression f
the formation-redshift distribution under the assumptdrGaus-
sian initial conditions and that the merger rate has no cheriatic
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Figure 3. (a) ST distribution for LCDM andrs = 0.99 and Gaussian initial conditions. Each dot represents alafeticluster, while the diamonds are data

from MO0O. The line shows the ST relation expected for clisstbat form today,
shows the same as in (a) but with the non-Gaussian diswibofiRGS withG =

mass scale. His derivation can be generalized in a straigbdfd
fashion to arbitraryP(y). Doing so (see Appendix), we find the dis-
tribution (normalized to unity) of formation redshifts for halos
of massM observed at redshift, to be,

At 2520 )]

de

whereP’(y) = dP/dy. Lacey & Cole (1993,1994) have presented
an alternative, but somewhat more complicated, formatsaishift
distribution that improves upon Sasaki's assumption dfsetilar
merging. We will leave the implementation of this altermatdis-
tribution and a discussion of the formalism introduced bycRal

et al. (2000), to future work, but note that our preliminaryestiga-
tions, as well as previous results (Viana & Liddle 1996; Baltdr
2000), indicate that the predictions of these models do iffard
considerably for cluster-mass halos.

P'(y(M, zy)) )

24 Preliminary Estimates

Itis straightforward to roughly estimate the effects of f@aussian
tails on the ST-relation scatter. For a rapidly dying dsition
P(y), the controlling factor irin/dz; will be P'(y). For a Gaus-
sianP(y), the root-variance af is 0.282 for the distributiod®’ (i)
for values ofy > 3, and the mean value af is 3.30. For an EdS
model,y = 1.69(1 + z)/owm, and (1 + 2)~! o Ruir. Thus,
or/R = (4/3)(0R,;,/Rvir) ~ (4/3)(0y/y) = 0.113 for a Gaus-
sian distribution, in surprisingly good agreement with gstimate
of the intrinsic scatter of 10% in the ST relation (ME97). Foe
RGS distribution withG' = 10, the root-variance i8.896 and the
mean value of is 3.87 leading torz, ., /Ryi: ~ 0.31, more than
twice the observed scatter. Below we will quantify this faorm
precisely.

3 RESULTS

For any giver()y, os, andG, we perform a Monte Carlo realization

of 400 clusters with the mass and formation-redshift distions
given above. We then assign to_each of these clusters a dize an
temperature as outlined in Sect 2.1. The ME97 sample tohwh
we compare our calculations is a flux-limited sample. Witthiis
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at redshift = 0. (b) shows the same except that here weaise- 1.5. (c)
10.

sample, the probability of finding a cluster of luminosity goes
asL%®, andLy is observed to go as roughly?-® to 72 (David et
al. 1993; Arnaud & Evrard 1999), so the flux limit is essetyial
virial-temperature weighting df®-"® to 7%°. We thus subject our
simulated population of clusters toZ&"® weighting; our results
are not significantly altered for the steeper weighfirfe?.

Fig. E(a) shows the results of our Monte Carlo for a flat
Qo = 0.3 model (LCDM) with the valuecs = 0.99 inferred
from the cluster abundance (Viana & Liddle 1999) and a Gaus-
sian distribution. The data points from ME97 are overlai@. W¥ed
a Hubble parameteir = 0.65, but the results are essentially un-
altered for different plausible values bf Fig. @(b) illustrates that
the scatter in the ST relation is increased if the powerispec
normalization is higher. In this case, clusters are noteqast rare,
and they form over a larger range of redshifts. ﬂig. 3(c) shbaw
the scatter is increased as the abundance of high-densitg fsin-
creased. In this case, clusters observed today are alsedamer a
broader range of redshifts. At this point, we note the appasien-
ilarity between the predictions of the ST distribution o #uster-
abundance-normalized Gaussian LCDM model and the data; the
scatter about the ST relation would be broadened consilgesdth
a higherog or with a highly non-Gaussian model.

To make these arguments more quantitative as well as survey
a larger range of parameters, we have simulated ST reldtoras
variety of models in thers-G parameter space for both EdS and
LCDM models and then used a 2D Kolmogorov-Smirnov (KS) test
(Peacock 1983; Press et al. 1996) to compare these with the da
Fig. H shows the resulting contours of constant KS signifiean
levels for bothQ2y = 0.3 and2y = 1. The results suggest that
the Gaussian cluster-abundance-normalized £ 0.99) LCDM
model provides a good fit to the data.

We heuristically expect that the dependence of the ST scatte
on cosmological parameters/models should be similar toofitae
cluster abundance; if the peaks that give rise to clustersae,
we expect little scatter andce versa if clusters are more com-
mon. The contours of fixed cluster abundance in Eig. 4 indicat
that this is qualitatively correct. We obtain these curvesising a
cluster abundance(> 6.2keV, z = 0.05) = 1.53 x 10%°16 x
107 Mpc~? h® (Viana & Liddle 1999) and integrating eqr] (1) up
from the mass associated with a temperature 6.3 keV and aform
tion redshiftzy = 0. However, the detailed results also seem to
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Figure 4. The heavy solid curves show confidence levels suggested by Figure5. The heavy solid curves show likelihood contours suggesyetieo

the ST data in therg-G parameter space for the LCDM model, and the
light curves show the same for the EdS model. The dashed clwes

the contour suggested by the central valu¢ 6.2keV,z = 0.05) =
1.53 x 10%0-16 x 10~7 Mpc—3 h3] of the local cluster abundance for
Qo 0.3, while the dotted curves indicate contours for the upper and
lower observational limits to the cluster abundance.

indicate that ifQ is fixed, the ST distribution and cluster abun-

dance can be used in tandem to break the degeneracy befveen
andos. In fact, combining the two constraints already seems & rul

out large deviations from Gaussianity.

Fig. ﬁ shows the regions efs-Qy parameter space preferred
by the ST relation, as well as the curve in this parameterespac
suggested by the cluster abundance. For fixedthe ST scat-
ter increases aQ increases. At first, this might seem discrepant
with the well-known result that the range of formation reftsh
is narrower for largef), for cluster-abundance-normalized mod-
els. However, this narrowing of the formation-redshifttdmition
with increasingQo is not quite as dramatic if we fixs instead
of the cluster abundance. More importantly, the sphetimalhat-
collapse dynamics leads to a broader spacing between tie gqu
contours in Fig[|2, and this is responsible for increasieg3Mh scat-
ter as() is increased with fixeds; in other words, the relationship
betweenR andT evolves more rapidly with redshift in high€Xo
models.

From the results in Fid] 5, we can approximate an ST con-
straint,os = 0.76 Q, °*°, as compared with the cluster-abundance
constraintos = 0.56 Q;*" (Viana & Liddle 1999). The region
of overlap between the cluster-abundance constraint an8Thre-
lation lies at low values of2o, low values of non-Gaussianity, and
slightly higher values ofs.

3.1 An Einstein-de-Sitter Univer se?

RGS were able to identify for an EdS model, a region indhe
parameter space neag = 0.4 andG = 10 in which the predicted
cluster abundance was found to agree with that observedﬂFig
shows that these parameter choices predict far too muctesaat
the ST relation. Allowing for additional sources of scatfitethis
simulated ST relation would only increase the discrepaetywéen
the model and the observations.

ST data for Gaussian initial conditions in the-Q2o parameter space. The
dot-dashed curve shows the contour preferred by the logsiesiabundance
as suggested by Viana & Liddle (1999), while the dashed csimosvs the
fit to our ST constraint.

T, (KeV)

Figure 6. The ST distribution fo2g = 1 with o0g = 0.4 andG = 10,

one of the combinations of parameter values that yield tmeecbcluster
abundance for an EdS Universe. The predicted scatter inThel&tion is
considerably larger than that observed.

3.2 High and Intermediate Redshift Results

Clusters that exist at higher redshifts must form from evighér-
density peaks than those today. Thus, in a Gaussian modasicait-
ter in their formation redshifts and thus in their sizes dtitae even
smaller. This is illustrated in Fi(ﬂ 7. The canonical-mogetdic-
tions shown in Fig[l?(a) for ~ 0.3 seem to be in relatively good
agreement with the cluster sample observed so farﬂ:igshch/)/s
that the scatter in the ST relation for the canonical modelikhbe
very small. Even though the sample of such high-redshift claster
is expected to be small, the predicted scatter is so smalhiba-
surement of the sizes of only a handful of clusters could ponhg
constraints on different sources of scatter (e.g., nons&iauity,
measurement uncertainties, mergers, galaxy feedback, etc

3.3 A sizetemperature anomaly?

The ST relation of the low-redshift X-ray flux limited clustgam-
ple has a slope af: ~ 1, which is considerably steeper than the

(© 0000 RAS, MNRASD00, 000—-000
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Figure 7. The ST relation for the LCDM model witlrs = 0.99 and
Gaussian perturbations for (a) clusterszat= 0.3 and (b)z = 1. This
illustrates how the scatter should decrease with redshife data from
Mohr et al. (2000) (that have median redshift 0.3, but cover tange
0.19 < z < 0.54) are shown in (a).
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a significant excess of 3¢ high-density peakE.The constraints
toos, G, andQ) that arise from the ST distribution should be qual-
itatively similar to those from cluster abundances, but gnedim-
inary calculations suggest that they may be sufficientljecknt

to provide complementary constraints. The ST relation khbe-
come increasingly tight at larger redshifts. Our resuks aluggest
that the discrepancy between the naive- 0 ST relation and the
observed ST relation may be due, at least in part, to the ladt t
lower-mass clusters observed today have formed over a langge

of redshifts than higher mass clusters.

The fact that lower-mass clusters tend to form over a broader
redshift range than higher-mass clusters will also tenddgepen
the My;,-T relation beyond the self-similar expectationraf =
2/3. Numerical simulations of structure formation within mxle
with non-Gaussian initial conditions or lofs open models ought
to exhibit this effect. The OCDM256 portion of Fig 4. in Bry&n
Norman (1998) indicates that low-mass clusters fall syatarally
below the best fif\/,:.-T" relation, consistent with our expectation.
It should be emphasized that, in this particular study, teernass
systems are composed of far fewer particles than the higdssyes-
tems, providing another plausible explanation for strradtdiffer-
ences. Further work to investigate departures from selflasiity
in the cluster population which naturally arise from theespt in
formation epochs is clearly required.

Since the overdensity-peak amplitude at which a cluster can
form increases at higher redshift, the redshift evolutibthe clus-
ter abundance depends on the shape of the primordial delititly
bution function at high peaks just as the ST scatter doess, THQ,
is fixed, it should be possible to reconstruct the clustemmdance

m = 2/3 slope expected in a model where all clusters are assumedevolution from the scatter in the ST relation for local cerst

to have formed at the redshift of observation (ME97, M0O0).ME
suggest that a possible explanation for this steeper thpected
scaling relation is provided by galaxy feedback. Fﬂg. 3siiiates
that the discrepancy may be due only, or at least in part, ¢o th
fact that lower-mass clusters form over a broader rangedshiés,
and thus will in general have smaller sizes than they woulkla§

all formed very recently. Visual inspection of F@. 3 suggahat
this is a plausible explanation, especially when the smadhber
statistics of the observational sample are taken into adctMore-
over, the relatively strong dependence of the ST scatterondi-
cate that better agreement than shown in Eig. 3 could bersatai
with a slightly different value obrs and/orQo (cf., Fig.B). The
apparent disagreement with ME97’s feedback-free numlesioa
ulations, which show an ST scaling close to the naive scqbog
still steeper in 3 of the 4 cosmologies tested), may have deen
to thisog and 2y dependence and/or the relatively small-number
statistics of their simulations sample. Thus, the appadeniation

of the ST relation slope from the = 2/3 expectation is not quite
so anomalous.

4 DISCUSSION

We have calculated the ST distribution of clusters with guénan-
alytic model and focussed in particular on the dependenchen
power-spectrum amplituder{) and the degree of non-Gaussianity
(G). We find a fairly sensitive dependence of the ST relatiot-sca
ter on these two parameters. Thus, the tightness of the &7 rel
tion can be used to place valuable constraints on these param
ters, as well as on other cosmological parameters. The @aion
cluster-abundance-normalizéry = 0.3 model predicts an ST re-
lation consistent with that observed, butamuch larger or smaller
would be inconsistent as would a non-Gaussian model thdiqtse

(© 0000 RAS, MNRASD00, 000-000

Although we have used cluster sizes inferred from X-rays to
compare with theoretical calculations, the same could e dor
the sizes of clusters measured via the Sunyaev-Zeldovielatef
either with or without redshift information (Kamionkowskt al.
2000). Of course, there will invariably be some clusterfation
physics that our current analysis has left out, and nunlesioa
ulations may have an advantage in this regard. Note thatritye o
source of scatter in our simulated ST relations is the rahfma-
tion epoch, whereas other sources of stochasticity (e.gasore-
ment uncertainties, mergers, galaxy feedback, etc.) nmghease
the scatter. However, with our analytic approach, we are &bl
rule out models that overpredict the scatter; we can sifofare
rapidly through a variety of cosmological models and patanse
study the dependence of the ST distributions on these madels
parameters, and gain some intuitive feel for how the resuite.
By doing so, we hope to have established that cluster sizegroa
vide a valuable new probe of cosmological models.
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APPENDIX

Taking the derivative of eqn[l(l) with respect to redshifg ob-
tain (hereafter we do not explicitly show tié/, =) dependencies
where they are obvious)

d*n fpv |OP 9y Oy ( )Qﬂ ©)
aMdz M | By 92 0M Y5, oM
_ _fp 19 90 10P3
N M 020z0M | 0y o Py) @)
o d2nform d2ndcst
T dMd:  dMdz ®)

In the last line we have equated the total rate of change tdithe
ference between a formation rate and a destruction ratdattes

being due to objects merging to form larger objects). Thesehe

expressed as

/]W
M

Trnin

2
d Nform

dn /. !

(6)
whereQ(M, M'; z) is the probability that an object of madg’

is one of the merging components when an object of mgss
forms and M, is introduced to prevent the integral from di-
verging, andd®ngess/dMdz = ¢(M, z)(dn/dM), where the
function ¢(M, z) can be interpreted as the destruction rate per
bound object. Sasaki assumes th@\/, z) can be expressed as
d(M,z) = M*¢(z) (implying that the destruction rate has no
characteristic mass scale). Using ecﬂ*l. (5), we can write

() = —d?*n/dMdz + d®*norm /dMdz

dn/dM M« ’
Since the left-hand side of this equation depends only uptire
right-hand side must be independentidfand so may be evaluated
at a very small mash/,in. Since the formation rate is zerofyin
(see eqr{]6), this leaves

~ d*n/dMdz(Mmin, 2)
P(z) = — : =
dn/dM (Mmin, 2) M,

min

@)

8
Substituting eqns[kl) anﬂ (4) into this expression gives

108 . 1 OPy(Muw)] 6
) = 592 Moin | Pl 0y a(Mmm“] ©

For a hierarchical clustering modétm ;0 0%(M) = oo, SO if
we take the limitMmin — 0 eqn. E)) will be0 or co unlessa = 0,
forcing the choicex = 0 upon us such thak(z) = (1/6)(d6/dz).
Substituting this expression and eqp. (3) into eén. (5), ne that
the formation rate is given by

Erorm __ fpy 1 00 90 0P §

dMdz M 02020M 9y o

This is the rate of formation of bound objects of mdgsand red-
shift z, but we wish to know what fraction of these objects will
survive until the redshift of observation. Using our defanit of
¢(z) the number of objects of masg which formed atz; must

min

(10)

evolve with redshift aslN/dz = ¢(M, z) N such that the frac-
tion remaining byz,(< 2¢) is f(z,2,) = exp f:: P(z)dz =
0(20)/d(z¢). The number of objects of masd, which formed at
redshiftzs and which survive until redshif, is given by the prod-
uct of this expression and qu(lO); ie.,

d*n  fpy 6(20) Oy Oy oP
Iz ~ M 5(ar) 92 gar P gy (40)-

Noting that(dy/dM)., /(dy/OM)., = §(z)/(z), we obtain
our final result, eqn|(2), by dividing eqn. (11) by e(ﬂL Q).

(11)
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