A Caltech Library Service

A new empirical method to infer the starburst history of the Universe from local galaxy properties

Hopkins, Philip F. and Hernquist, Lars (2010) A new empirical method to infer the starburst history of the Universe from local galaxy properties. Monthly Notices of the Royal Astronomical Society, 402 (2). pp. 985-1004. ISSN 0035-8711.

[img] PDF - Published Version
See Usage Policy.

[img] PDF - Accepted Version
See Usage Policy.


Use this Persistent URL to link to this item:


The centres of ellipticals and bulges are formed dissipationally, via gas inflows over short time-scales – the ‘starburst’ mode of star formation. Recent work has shown that the surface brightness profiles, kinematics and stellar populations of spheroids can be used to separate the dissipational component from the dissipationless ‘envelope’ made up of stars formed over more extended histories in separate objects, and violently assembled in mergers. Given high-resolution, detailed observations of these ‘burst relic’ components of ellipticals (specifically their stellar mass surface density profiles), together with the simple assumptions that some form of the Kennicutt–Schmidt law holds and that the burst was indeed a dissipational, gas-rich event, we show that it is possible to invert the observed profiles and obtain the time- and space-dependent star formation history of each burst. We perform this exercise using a large sample of well-studied spheroids, which have also been used to calibrate estimates of the ‘burst relic’ populations. We show that the implied bursts scale in magnitude, mass and peak star formation rate (SFR) with galaxy mass in a simple manner, and provide fits for these correlations. The typical burst mass M_(burst) is ∼ 10 per cent of the total spheroid mass, the characteristic starburst time-scale implied is a nearly galaxy-mass-independent t_(burst) ∼ 10⁸ yr, the peak SFR of the burst is ∼M_(burst)/t_(burst) and bursts decay subsequently in power-law fashion as Ṁ_★ ∝ t^(-2.4). As a function of time, we obtain the spatial size of the starburst; burst sizes at peak activity scale with burst mass in a manner similar to the observed spheroid size–mass relation, but are smaller than the full galaxy size by a factor of ∼10; the size grows in time as the central, most dense regions are more quickly depleted by star formation as R_(burst) ∝ t^(0.5). Combined with observational measurements of the nuclear stellar population ages of these systems – i.e. the distribution of times when these bursts occurred – it is possible to re-construct the dissipational burst contribution to the distribution of SFRs and infrared (IR) luminosity functions (LFs) and luminosity density of the Universe. We do so and show that these burst LFs agree well with the observed IR LFs at the brightest luminosities, at redshifts z∼ 0–2. At low luminosities, however, bursts are always unimportant; the transition luminosity between these regimes increases with redshift from the ultraluminous infrared galaxy threshold at z∼ 0 to hyper-luminous infrared galaxy thresholds at z∼ 2. At the highest redshifts z≳ 2, we can set strict upper limits on starburst magnitudes, based on the maximum stellar mass remaining at high densities at z= 0, and find tension between these and estimated number counts of sub-millimetre galaxies, implying that some change in bolometric corrections, the number counts themselves or the stellar initial mass function may be necessary. At all redshifts, bursts are a small fraction of the total SFR or luminosity density, ∼5–10 per cent, in good agreement with estimates of the contribution of merger-induced star formation.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Hopkins, Philip F.0000-0003-3729-1684
Hernquist, Lars0000-0001-6950-1629
Additional Information:© 2009 The Authors. Journal compilation © 2009 RAS. Accepted 2009 October 23. Received 2009 October 20; in original form 2009 September 17. We thank Chris Hayward and Josh Younger for helpful discussions throughout the development of this paper. Support for PFH was provided by the Miller Institute for Basic Research in Science, University of California Berkeley.
Funding AgencyGrant Number
Miller Institute for Basic Research in ScienceUNSPECIFIED
Subject Keywords:stars: formation, stars: general, galaxies: active, galaxies: evolution, galaxies: formation, cosmology: theory
Issue or Number:2
Record Number:CaltechAUTHORS:20200521-163330318
Persistent URL:
Official Citation:Philip F. Hopkins, Lars Hernquist, A new empirical method to infer the starburst history of the Universe from local galaxy properties, Monthly Notices of the Royal Astronomical Society, Volume 402, Issue 2, February 2010, Pages 985–1004,
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:103396
Deposited By: George Porter
Deposited On:22 May 2020 18:11
Last Modified:22 May 2020 18:11

Repository Staff Only: item control page