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ABSTRACT

We discuss the theory and implementation of the finite temperature coupled cluster singles and doubles (FT-CCSD) method including the
equations necessary for an efficient implementation of response properties. Numerical aspects of the method including the truncation of the
orbital space and integration of the amplitude equations are tested on some simple systems, and we provide some guidelines for applying the
method in practice. The method is then applied to the 1D Hubbard model, the uniform electron gas (UEG) at warm, dense conditions, and
some simple materials. The performance of model systems at high temperatures is encouraging: for the one-dimensional Hubbard model, FT-
CCSD provides a qualitatively accurate description of finite-temperature correlation effects even at U = 8, and it allows for the computation of
systematically improvable exchange-correlation energies of the warm, dense UEG over a wide range of conditions. We highlight the obstacles
that remain in using the method for realistic ab initio calculations on materials.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009845

I. INTRODUCTION

An ab initio description of the thermal properties of molecules
and materials remains a significant challenge. In many cases, exper-
imental temperatures are so small relative to the lowest energy elec-
tronic excitations that electronic temperature can be assumed to be
effectively zero. However, there are cases where this assumption is
not justified. Some examples include

1. warm, dense matter,
the low-energy phases of correlated materials, and
3. metallic systems.

In these systems, the electronic temperature cannot be ignored,
and how best to incorporate thermal effects into computational
methods for treating electron correlation is an open question.

In warm, dense matter, the thermal effects are comparable in
magnitude to the effects of electron correlation.”” Conditions like
this occur in planetary cores’ and can be realized in the laboratory
with high intensity lasers.”” Finite temperature density functional
theory (DFT) coupled with molecular dynamics (MD) for the nuclei

is the most practical computational method for such systems.’”

However, the parameterization of finite temperature density func-
tionals is a non-trivial problem,””'" and a variety of quantum Monte
Carlo (QMC) methods have been developed with the goal of pro-
viding an accurate treatment of finite-temperature fermionic sys-
tems.”'® In this context, the warm, dense uniform electron gas
(UEG) has become an important system both as a benchmark for
new methods and as an ingredient in the parameterization of finite
temperature density functionals.”*’

The rich electronic phases of correlated materials also require
a treatment of electron correlation at finite temperature. Here, the
low energy excitations typically involve the spin degrees of freedom,
and thus, phase transitions can occur on the emergent exchange cou-
pling temperature (or lower) scales. Theoretical work has largely
focused on model systems such as the Hubbard model.””* For
such lattice problems, a variety of methods including dynami-
cal mean field theory (DMFT),””"° the dynamical cluster approx-
imation (DCA),”"" and finite temperature extensions to the den-
sity matrix renormalization group (DMRG)”’™' are commonly
used.
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In ab initio calculations on metals, the lack of a bandgap cre-
ates numerical difficulties that can be solved by including a finite
electronic temperature. DFT often offers a good description, and it
is common practice to use a thermal smearing of the electron den-
sity to ease convergence of the Kohn-Sham equations.””*’ Explicit
treatment of electron correlation in metals beyond density func-
tional theory is less common, though GW theory has been applied to
metals.” Ab initio DMFT has been used to study correlated metal-
lic systems, especially those which undergo a low-temperature phase
transition due to electron correlation (see Sec. IV of Ref. 36 for a
review).

Problems like these have spurred recent interest in extending
ab initio electronic structure methods to the case of finite electronic
temperatures. The simplest methods in this hierarchy are thermal
mean-field theories, Hartree-Fock (HF) theory,B or DFT.” The
goal is to develop hierarchies that mirror those at zero tempera-
ture and approach the thermal full configuration interaction (FCI)*’
limit with polynomial scaling approaches. Examples include finite
temperature extensions of perturbation theory,”*’ configuration
interaction (CI),‘;” Green’s function methods,” ™ or coupled cluster
(CC) theory. 7

The coupled cluster method is the method of choice for high-
accuracy, ground-state, quantum chemistry calculations,” ** and
we believe it to be a promising method for finite temperature cal-
culations as well. The first polynomial-scaling finite temperature
generalization of coupled cluster theory was the thermal cluster
cumulant (TCC) theory of Mandal and co-workers.”"*"** Recently,
there has been renewed interest in finite-temperature coupled clus-
ter methods. Hermes and Hirata suggested a coupled cluster dou-
bles method based on their “renormalized” perturbation theory, s
which is simple to implement but lacks a rigorous justification.
White and Chan presented a finite-temperature extension of CCSD
(FT-CCSD)™ that can be viewed as a time-dependent diagram-
matic derivation and computational realization of TCC theory.
Independently, Hummel published a finite-temperature random-
phase approximation (linearized, direct coupled cluster doubles)
method for periodic solids, which uses the same conceptual frame-
work. Recently, Harsha et al. derived a finite temperature coupled
cluster theory based on the thermofield formalism.”” Coupled clus-
ter methods for the dynamics of finite temperature systems driven
out of equilibrium have also been the subject of several recent

studies.” "' Despite all this development, many practical questions
remain unanswered, and it is the goal of this work to address such
questions.

Working within the FT-CCSD formalism presented in Ref. 55,
we will clarify several aspects of the theory and present the equa-
tions necessary for an efficient implementation of FT-CCSD includ-
ing a response treatment of properties. In Sec. 111, we will discuss
the numerical and computational aspects of the method in the con-
text of some simple benchmark calculations. In Sec. IV, we apply
the method to several finite temperature systems. The 1D Hub-
bard model allows us to compare to the exact results for differ-
ent values of the onsite repulsion, and we find that FT-CCSD per-
forms well even for U = 8, a relatively large value of the onsite
repulsion. We present FT-CCSD calculations of the UEG exchange-
correlation energy at finite temperature with particular emphasis
on the potential of FT-CC methods to provide consistent, system-
atically improvable results over a wide range of temperatures and
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densities. Finally, some simple ab initio calculations on periodic
solids serve to demonstrate both the potential of the method and
the difficulties we face in ab initio calculations at a finite electronic
temperature.

Il. THEORY

Here, we review and expand on the theory presented in Ref. 55.
The theory is, in a fundamental sense, identical to the thermal clus-
ter cumulant (TCC) theory of Mandal and co-workers,” "% but
our focus is on using the FT-CCSD theory presented in Ref. 55 as
a computational tool.

A. The FT-CC equations: Integral and differential
forms

The FT-CC contribution to the grand potential is determined
from an integration in imaginary time,

Qcc = % jdeE[s(T)], (1)

where f is the inverse temperature, s is a vector of FT-CC ampli-
tudes, and the kernel, E, is local in imaginary time and given in
Eq. (A8).

The FT-CC equations can be derived directly from diagram-
matics as in Ref. 55 or from the thermally normal-ordered ansatz of
TCC. The amplitude equations are non-linear and, in integral form,
are given by

sv(1) = - /OTdT'eA"(TLT)SV[s(T')]. (2)

The index, v, runs over the amplitudes that are typically truncated
at some excitation level. Here, the S kernel is local in imaginary
time and is given in Appendix A for the case of finite-temperature
coupled cluster singles and doubles (FT-CCSD). A, is the difference
of orbital energies associated with the vth excitation. In Ref. 55, we
chose to define the amplitudes, s, such that the occupation numbers
were associated with each line appearing “above” the interaction dia-
grammatically. Here, we adopt a slightly different convention where
the occupation numbers are split symmetrically. For example, at first
order, the definition of s{ (7) differs between Ref. 55 and this work,

Ref. 55: fai(1=na). 3)
This work: fai\/m, 4)

where 7 is the Fermi-Dirac occupation number, f is the finite tem-
perature Fock matrix, and orbital indices are indicated by i and a.
The appropriate modifications to the amplitude and energy equa-
tions are shown in Appendix A. This modification changes neither
the theory nor the results, but it allows us to form effective inte-
grals that retain the symmetry of the underlying integrals, thereby
decreasing the memory usage in practical calculations. Furthermore,
it leads to a more symmetric treatment of the A amplitudes so that
both quantities remain similar in magnitude in the low-temperature
limit.
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In order to efficiently compute properties, we define a varia-
tional Lagrangian,

EE%/O-ﬂdTE(T)Jr% foﬁdr)w(r)[sv(r)+/Ofdr'eAv(T’—r)sv(r'()5]).

Note that this definition differs by a minus sign from that given
in Ref. 55. This sign convention does not change the results but
makes the A equations more closely resemble those of the ground-
state theory. The A amplitudes are defined by the condition that £ is
stationary with respect to variations of the s amplitudes, which leads
to a linear equation,

X' (1) = -L[s(7),A(7)]. (6)
We define the quantity, A, as
3 p ' =7 ) v, 1
A (7) = f dr’ &N (). (7)

Given these integral equations [Eqgs. (2) and (6)], one can easily
obtain differential equations for s and A directly,

- (a0, ®)
‘?T” - (AA (1) + Ls(2), A(D)]}. ©)

These equations, in integral [Egs. (2), (6), and (7)] or dif-
ferential [Egs. (8) and (9)] form, are described in more detail in
Appendix A for the specific case of FT-CCSD. Once the A amplitudes
have been computed, properties can be evaluated by computing the
partial derivatives of the Lagrangian. In Sec. II D, we will show
how these derivatives, including the response of the reference orbital
energies, can be computed by contracting the basis representation of
an operator with response densities.

B. Choice of reference

Like in zero temperature coupled cluster theory, the choice of
reference orbitals will have some effect on the energy and properties.
Unlike the ground-state theory, the choice of orbital energies will
also have an effect. In other words, for a given choice of orbitals, the
relative partitioning of the energy between between zeroth and first
order will matter at finite temperature even though it does not at zero
temperature. This difference is most easily conceptualized within the
TCC formulation, which uses a thermally normal ordered ansatz. At
zero temperature, partitioning the orbitals into an occupied and vir-
tual space defines entirely the normal-ordering with respect to that
reference,

N[ABC...Jr—0 = ABC... - (ABC.. ). (10)

This is because the expectation value in the zero temperature refer-
ence is determined entirely by the choice of occupied space. How-
ever, at some finite temperature (T = To), the normal-ordering
depends on the occupations explicitly,

N[ABC...]y-1, = ABC...~ (ABC.. .)r1,. (11)
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This is because the thermal average will depend on the occupation
numbers of the states in question, which, in turn, are functions of
the non-interacting, single-particle energies.

This means that we must always be careful to specify the ref-
erence energies as well as orbitals used for a particular calculation
since it will affect the final answer. There are many possible choices
of reference orbitals and energies, and some aspects of the choice of
reference have been described by Sanyal et al.””

C. Numerical integration and propagation in
imaginary time

In practice, the imaginary-time integral to determine the free
energy must be done by numerical quadrature,

foﬁl(r)drm > ¢ 1(1x). (12)

The values of amplitudes at some finite set of n, points are stored,
and the tensor g contains the quadrature weights. If the integral form
of the equations is used [see Egs. (2), (6), and (7)], then the ampli-
tudes are determined by solving an integral equation of the form

s(r) ~ [ 1(0dr~ L G1(n), (13)

where G is a tensor of quadrature weights and the integrand I
depends on the amplitudes. On the other hand, if the differen-
tial form of the equations is used [see Egs. (8) and (9)], then the
amplitudes are propagated like

s(1y) = s(1y-1) + As, (14)

where the step, As, is determined either from a differential equation
integrator such as a Runge—Kutta,’"“ﬂ Bashforth and Adams,”””®
or Crank-Nicolson’’ method. There is a relationship between the
integral and differential form of the equations in that any integral
method defined by a set of quadrature rules encoded in G should be
equivalent to some, generally non-trivial, integrator. If G has non-
zero diagonal entries, then the associated integral iteration is equiv-
alent to an implicit propagation scheme, such as Crank-Nicolson,
and otherwise it will be equivalent to an explicit propagation scheme,
such as fourth order Runge-Kutta.

D. Response properties

Properties in FT-CC theory are best computed from the
response of the grand potential to a perturbation. This is most
easily accomplished by computing the analytic derivatives of the
Lagrangian presented in Eq. (5). The A amplitudes are computed
such that this Lagrangian is stationary with respect to variations in
the amplitudes, so we need not consider the response of the ampli-
tudes directly, but there are still several types of responses that must
be considered. We will first consider the derivative with respect to a
parameter o, where o represents the coupling to some operator X. In
this case, there are three types of terms:

1. Terms resulting from the explicit dependence of the Hamilto-
nian on a.

2. Terms resulting from the dependence of the occupation num-
bers and orbital energies on a.
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3. Terms resulting from the dependence of the orbitals them-
selves on a.

Unlike in the ground state coupled cluster, the orbital
energies and the one-electron part of the perturbation appear
separately in the Lagrangian. This means that properties will
depend on the relative partitioning of X into a part that is
included in the orbital energies and a part that appears as part
of the perturbation, e.g., for a one-electron X,

Xpq = X0 8pq + X5 (15)

Terms of type 1 are the simplest, and they may be efficiently
computed by tracing X" with the unrelaxed, normal-ordered
FT-CCSD 1-RDM, yn (or the 2-RDM I'y for two-electron
properties), as described in Appendix B. We use the subscript
N to indicate that these densities represent the response only
to the thermally normal ordered part of the operator. Terms
of type 2 can be incorporated by tracing a diagonal matrix, d,
with X©). The computation of this quantity is also described in
Appendix B. The incorporation of the response of the orbital
energies and occupation numbers is crucial to obtaining a
density matrix that has a trace equal to the electron number
computed as —9€Q/Ou. The orbital response (type 3) must be
included to compute fully relaxed properties, and it is possi-
ble to also incorporate this into a fully relaxed density matrix.
In this work, we ignore this contribution for several reasons.
First, in most cases, we use zero temperature orbitals, which
means that there will be no orbital response contribution to
the energy, entropy, or number of electrons. Furthermore, for
the UEG, this term is rigorously zero because the form of the
orbitals is fixed by the translation invariance of the system.
Finally, we suspect that, as in zero-temperature CCSD, the
orbital contribution to most properties is small, though this
should ultimately be verified numerically. The entropy can be
computed from the derivative with respect to f§ for which there
are additional terms that we must consider

4. terms arising from the explicit dependence of the Lagrangian
onf3,

5. terms arising from the dependence of the quadrature weights
on f3, and

6. terms arising from the positions of the grid points that depend

on f.

Terms of type 4 are simply proportional to the value of the
Lagrangian itself [Eq. (B35)]. Terms of type 5 are related ultimately
to the dependence of the integration limits on . Terms of type 6 can
also be computed for a given discretization, though these terms will
vanish in the limit of a dense grid [Eq. (B38)]. Precise equations for
all these terms are given in Appendix B.

lll. BENCHMARKS

In this section, we will use some simple benchmarks to suggest
an answer to several practical questions. How severe an approxima-
tion is the truncation of the amplitudes based on small occupation
numbers? What types of grids are most effective and how many
grid points are necessary to obtain a desired accuracy? What com-
putational resources are required to perform a given calculation? In
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exploring these questions, we will focus on two small systems: the
beryllium atom in a minimal basis (STO-3G) at fixed y (4 = 0) and
the 14 electron, unpolarized UEG in a basis of 33 plane wave orbitals
at a fixed average number of electrons, i.e., y is adjusted such that
(N) =14.

A. Restricted occupied and virtual spaces

One of the simplest ways to reduce the cost of FT-CCSD is
to allow nonzero amplitudes only when the “occupied” (“virtual”)
indices are associated with orbitals that have particle (hole) occupa-
tion number greater than some threshold. In general, such a trunca-
tion will lead to approximate results, and we must ask what error is
incurred and what kinds of thresholds are acceptable.

Although it is tempting to assume that the contribution to the
free energy due to excitation from an orbital with occupation #; is
proportional to #;, this is unfortunately not the case, and we must
be careful when truncating the excitation space in this way. As a
rough estimate, consider the second order contribution to the grand
potential due a one-particle matrix element vg;,

1 1- (ei—¢a)
Qif):—ni(l—nu)\vu,'|2[ B, ¢ ] (16)

B & — & & — &

For the purpose of this analysis, we will assume, without loss of gen-
erality, that 4 = 0. Consider the case where § and/or ¢; are large such
that

ni ~ e Pe 17)

If we furthermore assume that v,; and (1 — n,) are of order 1 and ¢,
is small, then we can extract the asymptotic behavior of the second
order expression, and we find that

1
o~ e (18)

This would seem to suggest that, as a rigorous threshold, one
should assume an error that goes like the natural log of the occupa-
tion numbers, (-¢&1n n,»)fl, and not the occupation numbers them-
selves. This behavior is shown in Fig. 1 for the beryllium atom. Note
that with p being fixed at g = 0, the number of electrons will vary
from about N ~ 4.53 at T ~ 100000 K to N = 4 as T — 0. This
figure clearly shows that the error incurred by truncating the clus-
ter amplitudes is some polynomial in the inverse temperature even
though the occupation numbers themselves decay exponentially.
Despite this fact, we have observed that a threshold of approximately
1 x 107 is sufficient to guarantee errors of <1 meV per electron rel-
ative to the full FT-CCSD. This corresponds to the region of Fig. 1
where the truncated occupation (lower panel) is <1 x 107>, In gen-
eral, this may be system dependent, and it is always prudent to
examine the convergence of relevant properties with respect to this
threshold.

B. Numerical integration and propagation schemes

Efficient FT-CCSD calculations are critically dependent on the
numerical quadrature used to compute the grand potential and the
integral or differential scheme used to solve for the amplitudes. In
this section, we will discuss two questions:
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FIG. 1. Upper panel: error per electron due to truncating the “virtual” space of
the minimal basis (STO-3G) Be atom so as not to include the lowest energy (1s)
orbital. (Note that in the finite-temperature theory, the virtual space includes all
orbitals, the virtual labels serving only to indicate the time direction of the prop-
agator associated with the orbital.) The lower panel shows the hole occupation,
1 — n,, of this orbital. While the occupation decreases exponentially with tem-
perature, the corresponding contribution to the properties decreases like some
polynomial in temperature.

1. How does the error depend on the number of grid points for
some simple numerical schemes?
2. How many grid points are typically required?

One has great freedom in choosing a propagation scheme and
numerical integration scheme, and we cannot claim that the meth-
ods we use in this work are optimal. We believe that the best choice
will ultimately be an adaptive scheme, but this is beyond the scope
of this work.

In this work, we use a quadrature generated by Simpson’s
rule’® and use either the implicit integral method generated by
the same Simpson’s rule or an explicit Runge-Kutta (RK) propa-
gator to compute the amplitudes. Even though we use the same
grid for the quadrature that determines the grand potential and
the integrator that determines the amplitudes, these are really sep-
arate sources of numerical error. In Fig. 2, we show the error in the
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FIG. 2. The error per electron in the exchange-correlation energy (top) and
exchange—correlation entropy (bottom) for different integrators as a function of
the number of grid points. The polynomial behavior of the error in the grid spacing
matches the theoretical expectation (see Table |).

exchange-correlation energy and exchange-correlation entropy of
the 14 electron unpolarized UEG in 33 plane-wave orbitals. The
density is characterized by rs; = 4, and the reduced temperature is
0 = 0.125. Note that in all cases, the numerical error is controllable.
The error in the entropy is larger than the error in the energy, and
this is to be expected because

S=-B(Q—-E-puN). (19)

Therefore, any error in the energy should be magnified in the
entropy by a factor of the inverse temperature. This is consistent
with the behavior observed in Fig. 1. One must be cautious in using
Fig. 2 to suggest the “best” numerical method. Although Simp-
son’s rule integrator may provide the smallest error for a given
number of grid points, this implicit method requires the itera-
tive solution of a non-linear equation at each step and is there-
fore considerably more expensive. We will return to this point in
Sec. I11 C.

The theoretical and observed behavior of the numerical error
is summarized for different methods in Table I. This confirms that
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TABLE |. Theoretical vs observed asymptotic error with respect to the step size,
h = 1Inq. The first column indicates the method used to compute the amplitudes,
the second indicates the asymptotic behavior of the error due to the quadrature used
to compute the grand potential and its derivatives, and the third column shows the
asymptotic behavior of the error due to the numerical solution of the amplitudes them-
selves. The final two columns show the behavior observed in Fig. 2 for the error in the
exchange-correlation energy and entropy, respectively.

Solver Int. error Amp. error Obs. (Ex) Obs. (Sxc)
Simpson’s ' n* h*! B*o
RK1 h4 h 1 hl 2 hO 8
RK2 h4 hZ h2 4 h2 8
RK4 h4 h4 h4 4 h4 .6

these numerical methods are behaving as expected and provide an
answer to question (1). Furthermore, the clear asymptotic behavior
of the numerical error allows us to estimate the numerical error in
a given calculation and extrapolate the dense grid limit if desired.
The deviations of the asymptotic error from its expected behavior in
some cases may be due to the number of electrons not being suffi-
ciently converged. For this system, we fixed the number of electrons
separately for each number of grid points to better than 1 x 10™*. In
practice, the answer to question (2) can be obtained by monitoring
the change in properties of interest as the number of grid points is
increased.

C. Timings and computational considerations

We must also consider the computational aspects of these cal-
culations. For the numerical integration, we can use either an explicit
or implicit integrator in the solution of the amplitude equations.
Implicit methods will generally be more accurate and more stable
at the cost of iteratively solving a non-linear equation at each grid
point. This trade-off is illustrated in Table II, which suggests that
explicit methods will usually be cheaper, though implicit methods
may be preferable in some cases.

In particular, we have observed that at lower temperatures, the
differential equations can become “stiff.” In such cases, the step-size
necessary to stably integrate the equations with an explicit method
may be impractically small and an implicit integrator may be more
efficient.

TABLE II. Minimum number of grid points (given calculations for ng = 20, 40, 80, 160,
320) necessary to obtain sub-millivolt error per electron in the exchange-correlation
energy for the 14 electron UEG system (rs = 4, 8 = 0.125) and the time of that
calculation. All calculations were performed on a single 28 core node.

Method fg Time (s)
Simpson’s 40 4054
RK1 320 5720
RK2 80 2447
RK4 40 2128
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ALGORITHM 1. Solve for the amplitudes using the differential form of the equations.
The key step is line 4 where either an explicit integrator (such as RK4) or an implicit
integrator (such as the Crank-Nicolson method) is used to find the step.

1: Initialize s(79) = 0

2: Initialize Qcc =0

3:fori=1:n, do

4: Compute As from Eq. (8)

5. Form s(t;) =s(1i_1) + As

6: Increment Qcc = Qcc + g,‘E[S(Ti)]/ﬂ
7: end for

ALGORITHM 2. Solve for the amplitudes using the integral form of the equations. The
key step is line 4 where s(;) is solved from Eq. (2) discretized, as shown in Eq. (13).
Depending on the form of the quadrature, this may or may not require the iterative
solution of a system of non-linear equations.

1: Initialize s(79) = 0
2:fori=1:ny do

3: Compute S[s(7;)] forj<i
4: Compute s(7;) from Eq. (2)
5: end for

6: Compute Q. from Eq. (1)

Although the differential and integral forms of the amplitude
equations do not differ conceptually, they suggest slightly differ-
ent algorithms. The algorithm that mirrors the differential form of
the algorithm is described in Algorithm 1. The algorithm that fol-
lows the integral form of the equations is given in Algorithm 2. In
both cases, the most expensive step is the evaluation of the S ker-
nel [Egs. (A15) and (A16) for CCSD]. The number of times that
this kernel must be evaluated depends on the specific integrator or
quadrature.

The computational scaling of FT-CCSD is asymptotically
the same as for ground-state CCSD, but the prefactor is con-
siderably larger due to the number of grid points and the
fact that there is no distinction between “occupied” and “vir-
tual” orbital spaces. The additional memory cost due to the grid
points can be ameliorated by using disk storage, as shown in
Table III. Technical improvements, such as distributed mem-
ory parallelization, are necessary to improve the performance
further.

TABLE Ill. Scaling of disk storage, memory, and cpu time for the fully incore and disk-
based implementations of FT-CCSD. N indicates the number of orbitals and ng the
number of grid points.

Method Disk Mem. cpu
Incore . ngN4 ngN6
Disk ngN* N* ngN®
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IV. APPLICATIONS

In order to demonstrate some features of the FT-CCSD
method, we will now apply it to several prototypical systems. The
differential form of the equations (Algorithm 1) is used in all cases,
and the numerical error due to imaginary time discretization is
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converged to better than 0.1 mE, or 0.0001 ¢ for the Hub-
bard model. For the UEG and ab initio Hamiltonians, 4 must
be adjusted to obtain the desired number of electrons, N. This
simple one-dimensional root finding problem is solved by the
secant method and typically takes no more than five iterations to

converge.
008 B Py
o ;‘)——__5'4'*.\...
g
006 = ‘}6/

- AT

g P

2 0.04 1 R SeL

':7: Pk \\\

a "// \\:....
e A ~z
0004 TTTmmm——oliiasaaa.

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
0.150
0.125 -
})
. ¥
0.100 - T Y

= * ') .

9 R AR

5 SemTNyY

8 0.075 S TTIRS

2 - 7 ~
Z B4 o
& 0.050 37 .
. N
KRR
0.025 ?'{"”
. ,&v- ..........
MepE Tttt
0.000 N L L TP
T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
0.10
IJ__\\\:"~.
0.05 | K Sk
R ks -
,/'::':\~ £, Z'{' ..
5 0.00 . Sep————— PR
E B / 7
o - / 7
= . / 7
Z —0054 R
i v
\ /- 7
—0.10 4 \ /- ;} exact
N Va :/ .
N e FT-CCSD(Néel)
—0154 Ny - =+ FT-CCSD(UHF)
...|0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

ksT

FIG. 3. The grand potential per site (first row), energy per site (second row), and entropy per site (third row) as a function of temperature for the 1D Hubbard model with
U =2 (blue), U =4 (green), and U = 8 (red). All quantities are given in units of the hopping, .
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For the Hubbard model and the warm-dense UEG, no trunca-
tion of the orbital space was employed. For calculations on ab initio
Hamiltonians, a threshold of 1 x 107*° was used to truncate the
orbital space at lower temperatures, as described in Sec. III A. For
each system, we verified that the results were not sensitive to this
truncation.

A. The Hubbard model

First, we consider the one-dimensional (1D) Hubbard model,”’
an exactly solvable model of strong correlation. The one-band, 1D
Hubbard model is given by the Hamiltonian,

H=-t Z(aigaiﬂ,g + ajﬂ’oa,-,g) +U Z NitNiy, (20)

io i

where i runs over the sites of a one-dimensional lattice and ¢ runs
over the spin states of a spin-1/2 particle. The equilibrium proper-
ties of this model at finite temperature in the thermodynamic limit
can be found exactly via the Bethe ansatz. This provides us with an
opportunity to evaluate the strengths and weaknesses of FT-CCSD
by comparing to an exact result for different values of the onsite
repulsion U/t.

In Fig. 3, we show the exact and FT-CCSD grand poten-
tial, energy, and entropy per site for the 1D Hubbard model with
periodic boundary conditions at half filling (4 = U/2). The FT-
CCSD results are taken from a 32 site lattice, which is very close
to the thermodynamic limit for the parameters considered here.
FT-CCSD results from a Néel state reference and from a zero-
temperature unrestricted Hartree-Fock (UHF) reference are shown
to highlight the effect of different references. In both cases, the ref-
erence non-interacting system is defined by the diagonal entries
of the zero-temperature Fock matrix. The exact results are com-
puted via the Bethe ansatz.”” In all cases, even for the relatively
strongly correlated case of U = 8, FT-CCSD provides qualitatively
correct results. The agreement with the exact result is better for
smaller U as we might expect from the performance of ground state
CCSD on the Hubbard model.”**”*" Although both sets of refer-
ence orbitals lead to FT-CCSD results with a similar level of accu-
racy, the optimized UHF orbitals clearly provide a better starting
point. The difference between UHF and Néel orbitals gets smaller
at larger U where the UHF orbitals more closely resemble a Néel
state.

In the first column, we plot the exact results (solid line) and
FT-CCSD results with a Néel state reference (dotted line) and a
UHEF reference (dashed line). In the second column, the error in the
FT-CCSD results is plotted. The entropy curves are also plotted in
Appendix C for clarity.

The price that must be paid for coupled cluster calculations
on strongly repulsive systems like this is artificial symmetry break-
ing in the reference orbitals. Both references (Néel and UHF) break
spin symmetry, and this symmetry cannot be fully restored by FT-
CCSD, as shown in Fig. 4 where we plot the staggered magneti-
zation per site in the FT-CCSD one-particle reduced density. The
exact solution to this problem exhibits no long-range antiferromag-
netic order as a consequence of the Mermin-Wagner theorem.”
This artificial symmetry breaking in the FT-CCSD density is not
a serious issue if one is interested in just the energy or grand
potential (see Fig. 3), but it will likely obscure certain types of
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FIG. 4. The staggered magnetization in the FT-CCSD 1-particle reduced density
matrix as a function of temperature for the 1D Hubbard model with U = 2 (top,
blue), U = 4 (middle, green), and U = 8 (bottom, red). Results for both Néel state
reference (dotted line) and UHF reference (dashed line) are shown.

phase transitions. The systematic underestimation of the entropy
at low temperatures shown in row 3 of Fig. 3 (and shown more
clearly in Fig. 12) is also related to this artificial symmetry break-
ing since the configuration obtained by flipping all the spins of the
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reference is not well-described and cannot properly contribute to the
entropy.

It is encouraging that FT-CCSD provides qualitatively cor-
rect results even for a relatively strongly correlated case of U = 8.
However, the symmetry-broken references required to obtain these
results suggest that FT-CCSD would not be appropriate for describ-
ing a phase transition, such as the Néel transition in the three-
dimensional Hubbard model, which is governed by a spontaneous
breaking of spin symmetry.

B. The warm dense UEG

The warm, dense UEG has been the focus of much work within
the quantum Monte Carlo community with the focus being the accu-
rate computation of the exchange-correlation energy.'” " ~*"%%
The 66 electron unpolarized and 33 electron polarized UEGs are the
most commonly considered finite-size models. The work in this area
is best summarized in Ref. 29. Our interest in the UEG is twofold:
we compare to QMC results where accurate QMC results are avail-
able, and we evaluate the potential of FT-CC methods to provide
the results for some sets of parameters where reliable QMC calcu-
lations are more difficult. In particular, note Figs. 18-20 of Ref. 29
where the state-of-the-art QMC calculations on these systems are
summarized. We compare to the following finite temperature QMC
methods: configuration path-integral Monte Carlo (CPIMC),"* den-
sity matrix quantum Monte Carlo (DMQMC)" with the initiator
(iDMQMC) approximation,” permutation-blocking path integral
Monte Carlo (PB-PIMC),'® and restricted path integral Monte Carlo
(RPIMC)."” The warm-dense UEG can be completely characterized
by its density (or Wigner-Seitz radius, rs) and its temperature, 0,
given in units of the Fermi energy. In general, CPIMC and DMQMC
are expected to perform better at high density (low r), while PB-
PIMC and RPIMC are expected to be more reliable at low den-
sity (high 7). Finite temperature QMC methods are usually more
reliable at higher temperatures for which the sign problem is less
severe. We do not report results for r; < 0.5 or for 6 > 1 since a
variety of methods including FT-CCSD should be reliable in these
limits.

In the FT-CCSD calculations shown here, there are two sources
of error: the finite basis set and the neglect of high-order excita-
tions (triples, quadruples, etc.). Additionally, FT-CC results in the
grand canonical ensemble will differ from QMC calculations in the
canonical ensemble for a finite number of electrons. In other words,
the finite-size error will be different in canonical and grand canon-
ical ensembles. In Appendix D, we describe two methods of basis
set extrapolation and comment on the magnitude of the basis set
error in these calculations. In Figs. 5 and 6, we show the exchange-
correlation energy of the warm-dense polarized UEG as a function
of r; as computed with FT-CCSD and a variety of QMC methods
at reduced temperatures of 0.5 and 0.25, respectively. For r; < 2,
FT-CCSD agrees well with CPIMC and iDMQMC, which should
be reliable in this region (see Ref. 29, Sec. 5.7). For r; = 4, FT-
CCSD underestimates the magnitude of the exchange-correlation
at both temperatures shown here. This is likely due to the neglect
of triples. At zero temperature, the triples are estimated to account
for ~15% of the correlation energy at r; = 4,% and this is consis-
tent with what we see in the warm dense regime. We expect the
finite-basis error to be significant, especially at 6 = 0.5, and the good
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FIG. 5. The exchange—correlation energy of the N = 33 polarized UEG as a func-
tion of rs for 6 = 0.5. The exchange-correlation energy is scaled by rs to make the
scale of the plot more uniform. The FT-CCSD calculations are performed in a basis
of 123 plane-waves. The close agreement between FT-CC and QMC approaches
in this basis set is likely due to a favorable cancellation of errors.

agreement at low r; for 8 = 0.5 is likely due to a cancellation of
errors.

In Figs. 7 and 8, we show the analogous calculations for the
N = 66 unpolarized UEG. For N = 66, differences between grand
canonical and canonical ensembles should be smaller, and we expect
the primary source of error to be the basis set for r; < 2 and the
neglect of higher excitations at r; = 4. In Appendix D, we provide an
analysis of the finite basis error, which supports this claim.

More detailed calculations are necessary to make definitive
statements about this system. These include calculations in larger
basis sets, calculations that allow for an estimate of triples, and
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FIG. 6. The exchange—correlation energy of the N = 33 polarized UEG as a func-
tion of rs for 6= 0.25. The exchange—correlation energy is scaled by rs to make the
scale of the plot more uniform. The FT-CCSD calculations are extrapolated to the
complete basis set limit using the E1 method described in Appendix D. For rs = 4,
in particular, the neglect of triple excitations is likely the primary source of error.
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function of rs for 6 = 0.5. The exchange—correlation energy is scaled by rs to make
the scale of the plot more uniform. The FT-CCSD calculations are performed in a
basis of 123 plane-waves.

calculations that provide an estimate of the finite-size error. FT-
CC has the potential to provide systematically improvable results
for the polarized and unpolarized UEGs for r; < 2 and for a very
wide range of temperatures. For rs = 4, some estimate of the triples
contribution is probably necessary to obtain good results from CC
theory. For even moderate r; (such as ry < 4), it is known that
zero-temperature mean-field theory gives a wide range of broken
symmetry solutions™* and the role of these broken symmetry states
in subsequent coupled cluster calculations at finite temperature
should be explored. Additionally, classifying correlation in terms
of the order of the coupled cluster excitations can provide insight
into the nature of correlation in this important system at finite
temperature.
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FIG. 8. The exchange—correlation energy of the N = 66 unpolarized UEG as a
function of rs for 8 = 0.25. The exchange—-correlation energy is scaled by rs to
make the scale of the plot more uniform. The FT-CCSD calculations are performed
in a basis of 123 plane-waves.

FIG. 9. The FT-CCSD energy per atom of diamond relative to the zero temperature
CCSD energy in the same basis, Ert—ccsp(T) — Eccsp(0)-

C. Ab initio Hamiltonians

Finally, we consider the application of FT-CCSD to the ab initio
problem. This problem is characterized by a number of difficulties,
including

e converging to the thermodynamic limit in materials,

o larger one-particle basis sets and/or plane-wave cutoffs may
be required at finite temperature because states with larger
kinetic energy are populated,

o the large number of grid points required to control the
numerical error at lower temperatures, and

o the inclusion of finite temperature nuclear effects

FT-CCSD in its current form is still too expensive for us to
meaningfully address all these difficulties; however, we will nonethe-
less show that it is possible to apply FT-CCSD to the problem of
ab initio calculations on materials within the framework of local
basis functions. In the following calculations, we use a minimal
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FIG. 10. The FT-CCSD energy per atom of silicon relative to the zero temperature
CCSD energy in the same basis, Err—ccsp(T) — Eccsp(0)-
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FIG. 11. The FT-CCSD energy (Ey) per atom of copper. A finite-temperature
Hartree—Fock reference with T = 0.01E, was used for all points.

valence basis set of periodic Gaussian orbitals (SzV)*" and GTH
pseudopotentials.”**’ The matrix elements have been obtained from
the PySCF program package’ using plane-wave density fitting.”"
Zero-temperature, ground-state CCSD calculations were performed
as described in Ref. 92.

In Figs. 9 and 10, we show the energy per atom of diamond and
silicon, respectively, relative to the zero temperature CCSD energy in
the same basis set. In both of these calculations, a zero-temperature
Hartree-Fock reference was used, and twist averaging’” over a 3 x 3
x 3 k-point grid at fixed, 4 was used to partially alleviate finite-size
errors. The twist average was computed by averaging the results of
separate calculations centered at distinct k-points in the Brillouin
zone. As the temperature approaches zero, the FT-CCSD energy
approaches the zero-temperature, ground-state CCSD energy. The
difference between the ground-state and finite-temperature energy
is more pronounced for silicon relative to diamond because silicon
has lower energy excited states.

Unfortunately, at lower temperatures, large orbital energy
differences make integrating the FT-CCSD differential equations
numerically unstable. This makes larger calculations difficult at
lower temperatures. For example, for a two-atom supercell of copper
metal twist averaged over 3 x 3 x 3 mesh of k points, we were unable
to reliably integrate the FT-CCSD equations much below 3000 K (see
Fig. 11). Dealing with this difficulty is the subject of current investi-
gations, but the initial results are nonetheless promising. It is rare to
see finite-temperature calculations on materials where electron cor-
relation is treated beyond the level of DFT, and FT-CCSD should be
capable of providing valuable insight for such systems. Specifically,
we are interested in transition metal oxides, such as vanadium oxide,
where the electron correlation determines the thermal properties at
low temperatures, and many metals where the electronic entropy
determines the structural phase at low to moderate temperatures.”

V. CONCLUSIONS

In this paper, we have discussed several aspects of FT-CCSD.
All equations necessary for an efficient implementation have been
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presented, and some simple benchmarks have been provided to
address the error incurred by restricting the orbital spaces and by
numerical treatments of the imaginary time integration. Finally, we
have shown the results for the 1D Hubbard model, the warm, dense
UEG, and some simple ab initio Hamiltonians. The 1D Hubbard
model and the warm, dense UEG have allowed us to evaluate the
strengths and weaknesses of FT-CCSD relative to exact or nearly
exact results, and we find that, broadly speaking, FT-CCSD per-
forms well for systems in which we might expect CCSD to perform
well at zero temperature. For the warm, dense UEG, more calcula-
tions are needed to make truly definitive estimates of the exchange-
correlation energy, but FT-CCSD performs well over a wide range
of temperatures and densities. Ab initio Hamiltonians present some
difficulties because of the large system sizes necessary to approach
the thermodynamic limit in materials applications and because of
the relatively low temperatures necessary to obtain the results of
relevance to many phenomena of interest. The results for small
models of silicon and diamond clearly show that the ground state
CCSD energy is the zero temperature limit of FT-CCSD, and we
are currently pursuing solutions to the numerical problems at low
temperatures.

Future work on finite-temperature coupled cluster methods is
proceeding in three directions:

1. Technical improvements to address larger systems.
Theoretical improvements and approximations to more reli-
ably treat lower temperatures.

3. Applications: more precise calculations on the UEG, bench-
mark ab initio calculations on materials in the warm-dense
regime, and ab initio calculations of metallic systems at ambi-
ent temperatures.

SUPPLEMENTARY MATERIAL

See the supplementary material for tables of all the results
shown in this work.
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APPENDIX A: FT-CCSD ENERGY, AMPLITUDE, and 1
EQUATIONS

We will now state the FT-CCSD energy, amplitude, and A
equations. We will use “thermal” one-electron and two-electron
integrals,

fi = /mmil il flj) - dyeils (AD)
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fia = /(1 = na){ilf] a), (A2) The FT-CCSD amplitude and A iterations can be written as
si(1y) = =Si (1)), (A9)

fm‘ =4/ n,‘(l - nu)(a|f| i), (A3)
(1) = =85 (), (A10)

far =V (1= 1) (1 = np)[{alf] b) - Supes ], (A4) . .
Aa(1x) = —Lo(12), (A11)

(ifllab) = \/ninj(1 = na) (1 - m) [{ijl V]ab) - (ij V| ba)],  (AS5) N (1) = -1, (10). (A12)

(ijl|ka) = \/minne(1 = na) [(ij| V| ka) - (ij] V| ak)] etc.  (A6) If the .integral form of the.equfitions is 591ved, we will use the
following quadrature approximations to the integrated quantities:

The operator f is the Fock operator of the finite-temperature mean-

R _ v Ay (Te—1y)
field density, the orbital energies, ¢, define the mean field system, Sv(1y) = Z Gye 77Su(Tx)s (A13)
and V is the two-particle Coulomb interaction. *
The FT-CCSD grand potential is computed as . )
grancp P V() =Yg 1 (4, (A14)
y &

1
Qcc = - ZgJ’E(T)’)’ (A7)
B If instead the differential form of the equations is propagated in

imaginary time, the s and 1 amplitudes are computed directly from
the S and L kernels. In either case, the utility of these definitions lies
in the fact that the S and L kernels are local in time and are closely
related to the ground state CCSD equations. For the singles, we find

E(r) = Y sl (1) + i Sii|ab)[sif (1) + 250(r)s (1)].  (A8) that

ijab

where g is the tensor of weights for some numerical integration
scheme (see Sec. I C) and the kernel, E, is given by

J

S (tx) = fai + zfubst (tx) - Zfﬂsj () + Z(]“Hb’ Sj (Tx) + Zfbslj (1) + ; Z(a]“bc Sij (Tx Z(]k”lb (Tx)

jbe

- Zﬁbsi (e)sj (1) + Z(jaHbC)Sj (Te)si () - Z(jkllbi )sj (7)si (1) = % D Gkllbe)st (s ()

jbe jk Jjkbce

-5 Z(Jkllbc § ()sik (7) + Y (jKl[be)sy (72)sii () + D (jkllbe)st (1) ()5 (7). (A15)

]kbc Jjkbe Jjked

Similarly, for the doubles,

S (1) = (i) + P(5) (abils (1) = P(ab) SARB)5E(r) + P(ab) B fcs () = PU3) S () + 3 S lablld)s ()

cd

5 SRS 52) + P5)P() SR SE () + 5PC3) T abled)s ()5 1) + 3P(ab) SUM)E (205 ()

kl

—P(IJ)P(ab)ZakHCJ (rx)sk(rx) P(znszc (rx)sk]m) P(ab)szcsk(rx)sg (rx>+P<ab)z (kallcd)si (r+)s (7x)

ked
- P(ij) Z kl||cz sk(‘rx)s (7x) + P(ij)P(ab) kzd: ak||cd) s,(rx)s b(1y) - P(zJ)P(ab) Z kl||ic) sk(rx)slj (x)
+ %P(ij)z (klllcj)s; ()i () = P(ﬂb) > (kblled)si (z2)sif () + 5 1 S (Kl ed)si ()< ()
klc kcd kled

+ SP()P(ab) Y (kled)ss (25 () = 3 P(ab) S {Kllled)sis ()5 () = 3 P(3) Y (kled)sd () ()

kded kded klcd
- S P(i)P(ab) | 2 kblld)si (r)st (7)) (72) + S P(i)P(ab) DAkl (x2)si ()31 ()
+ lP(zj)}% kl||cd) s,(‘rx)s (1) (1) + iP(ab) g;(klﬂcd)sﬁ(rx)s,h(Tx)sf]fi(rx)
- P(ij)P(ab)I% kl||cd) s,-(‘rx)sk(‘rx)sl] () = P(ij) Z kll|cd)sg (1)t (Tx)slj (7x)
— P(ab) I;j(klﬂcd)si(rx)sf(rx)s,] (1) + P(z])P(ab) % killjed)s; (7 )si (7)) sy ()] (7). (Al6)
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The kernel L is also local in time and is equal to the CCSD ) equations evaluated with A,

LZ(Tx)=ﬁu+zb:)12(fx)fba—Z/V;(Tx)fzﬁZb:ii,(fx)(billia)+2(vl\ab 5j () = Z)V(Tx)fhs () - Zlb(fx)fas (72)

jb

+ Z)L (7x){cjl|ab) 5; (Tx) Z/\ () (ij||kb) 5j (Tx) + Z/\J (7x){cil|ba) 5; (Tx) Z)lh(‘rx)(] ||ka)sj (x)
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In practice, we use the intermediate scheme of Stanton and
Gauss’” to compute S and L efficiently.

APPENDIX B: FT-CCSD RESPONSE DENSITIES

As we discussed in Sec. II D, the computation of derivatives
can be efficiently implemented by computing response densities
that can be contracted with the basis representation of operators to
compute properties. In Sec. II D, we described a total of six terms
relevant to the computation of derivatives. We will now describe
how the contribution of all terms can be efficiently computed for
FT-CCSD.

Terms of type 1 can be computed by evaluating the Lagrangian
with the quantities,

9E 05,
o’ Oa’

(B1)

but it is more efficient to first form unrelaxed, normal-ordered 1- or
2-particle response densities, yn or I'y, and then trace them with the
appropriate operators when more than one property is desired. The
expressions for these quantities are given in Eqs. (B2)-(B14) with
implied summations.

The unrelaxed 1-RDM:

()/N)ia
Vni(l—ng)

(PN)ba

V(1 =m)(1-na)

% = _gyizz(Ty)5?(Ty)

= gha(n), (B2)
. 1 -y
= gy/\;(Ty)S?(Ty) + Egy/\fb(Ty)Si?(Ty)r (B3)

gy ca(Ty)S (Ty) (B4)

J

(FN)bcai

V(=) (1= n) (1= no)n;

+ P(bc)gy (TJ')S (Ty)Sk(Ty)

(TN kaij

V1k(1 = ng)nin;
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()’N)ai

\/}’l,‘(l - I’la)

=gsi(1y) +gy}l (T)’)SJI () - gyi];(Ty)S?(Ty)sf(Ty)

1 - ik b ac
- Egy%c(fy)si (Ty)sjk ()

1 Sk e
- ggy%i(fy)sj(fy)s?k(fy)- (B5)
The unrelaxed 2-RDM:
(Tn)ijab :gi’j (), (86)
V(1= na)(1-ny) abt
(FN)Ciab 5ji ¢
=gk (1)), B7
\/(l—nc)nf(l—na)(l—nb) & ah(Ty)S](Ty) ( )
I'N)ikai »
T, @
] — Ma i
(TN) cdab
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- 282 ()5 ()
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- G (1)si(5)si (7)), (B10)
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W *gy cd(Ty)S (zy) + P(if) gy)L (Ty)sz('fy)s (1),
(B11)
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Recall that the indices i and a do not refer to disjoint subspaces, and
therefore, the full unrelaxed density matrix can be written in the MO
basis as

(yN)pg = 2 (¥N)ia0ipdag + D (YN ) baObpOag
ia ba

+ Z()’N)ﬁ%@iq + Z(yw)ai5ap6iq. (B15)
ij ai
We may compute the average of some operator, X, as
(X) = Z()’N)qu;S;) + > PapXpa» (B16)
Pq pPq
where p is the mean-field 1-RDM,
Pap = Ogpmp. (B17)

The expression for the average of 2-particle properties is analo-
gous. The normal ordered 2-RDM is given by

(FN )pqrs = (FN)ijabaipé\jq(smésb + o (BIS)
The full unrelaxed 2-RDM additionally includes the contribution
from the reference density,

1
Lpgrs = (TN )pgrs + > [(yn)prPas = (YN)psPrq]

1
+ E[Ppr()’N)qs = Pps(YN)rq] + PprPas = PpsPar- (B19)
A two-electron observable, Y, can then be approximated by tracing
its operator representation with the unrelaxed 2-RDM,

1

yy (B20)

() -

Z quVS Yrqu .
pqrs

It is also possible to partially relax the properties by including
the response of the orbital energies and the occupation numbers.
This involves three contributions:

90" On; 9e OL O e OL D& (B21)
On; O O’ On; Ogi O’ Oei Oa’
Since the derivative of the orbital energies is just equal to
% il (822)

for a 1-electron operator, the contribution due to the relaxation of
the orbital energies and occupation numbers can be computed as

S da XS, (B23)
q

where

_ 09 dny oL Ong DL (B24)

7 on, 678{1+87nq86q Oeq’

The first term is most easily computed from the derivative of the first
order correction to ),
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oM o
5 = (hag = &0) + 2 Uil Vgi) — (@fl VIja)]my
q j
=(dlflq) - & (B25)

This contribution will be zero for a thermal Hartree-Fock reference.
The second term is most efficiently computed by first forming
derivative integrals,

ong, O
fa(bq) = 37;% ab> (B26)
q q
fablled)® = 92 0, (827)

eq Ong

and then contracting them with the unrelaxed, normal-ordered, 1-
and 2-RDMs,

()6 P + (TN ) et (ab]jcd) @ + .-

Note that while the derivatives of the Fock matrix are dense 3-index
quantities because the Fock matrix involves sums over occupation
numbers, the derivatives of the two-electron interaction are still only
4-index quantities because

(B28)

(ablled)® = (abl|cd) ™ 84a + (abljcd) P 8,

+ (abl|ed) V8, + (abl|cd) V8,4, (B29)

The remaining contribution is computed by taking the derivative of
orbital energies that appear directly in the Lagrangian in the expo-
nential factor. If the integral form of the equations is used, then this
term can be computed directly,

oL

. _l Zgylv(‘fy) Z(Ty - Tx)G{ceAV(TX_T’)SV(TX)
6£q /3 y X

oA,
Oeg

(B30)

The label v runs over all singles and doubles, and the derivatives of
the energies differences are sparse in that
OA}
Oey

= 8ag — 8. (B31)

In the case that the differential form of the equations is used, this
term must be calculated as

% /Oﬁ drS,[s(7)]

N (1)
> B32
Ogp (B32)

where the derivative appearing under the integral can be propagated
along with A,

doN(x) A IME)

dr ey " O
Usually, X contains all the diagonal elements and X'’ contains all
the off-diagonal elements. In this case, we can construct one partially
relaxed FT-CCSD density matrix as

+A(1). (B33)

Pap = () ap(1 = 8gp) + 8gp(dg + ng). (B34)

This is the FT-CCSD “density matrix,” which incorporates the
relaxation of the orbital energies and occupation numbers.
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We will not explicitly discuss the procedure for including
orbital response (term 3), as we do not consider these terms in this
work. However, the computation of the FT-CC Z-vector parallels
closely the ground-state case, which is discussed in Ref. 97.

For the derivatives with respect to f3, there are three additional
terms that we must consider. Term 4 is just

1
(4) = == Q. (B35)
B
Term 5 can be computed specifically for a particular discretization
by evaluating the Lagrangian with

9G o8
op op’

respectively, or these terms can be computed as the derivative of the
integration limits in the Lagrangian. This amounts to evaluating the
integrand of £ at 7 = f8, and two methods will agree in the limit of a
dense grid. Terms of type 6 are simple to write down due to the fact
that the positions of the grid points depend linearly on 3,

(B36)

o, 1
—_— ==, B37
98 B (B37)

and therefore,

1 v Tx—T,
©) =~ 291 (5) 2 A1y - 1) Gee™ 778, (z,).  (B38)
y X
This final term will vanish in the limit of a dense grid and can
therefore be ignored without affecting the properties in the limit as
Ng — 00.

APPENDIX C: ENTROPY OF THE 1D HUBBARD MODEL

In Fig. 12, the entropy of the 1D Hubbard model is plotted
in more detail. FT-CCSD consistently underestimates the entropy
at low temperatures, and this effect is more pronounced at for
larger U.

APPENDIX D: BASIS SET ERROR IN THE WARM,
DENSE UEG

The exchange-correlation energy is defined for a fixed number
of electrons. In the grand canonical ensemble, we compute Ex. for N
electrons in M plane wave orbitals as

Ex(N,M) = Ecc(ucc(M), M) + Eo(ucc (M), M) — Eo(po(M), M),
(D1)

where Ecc is the FT-CCSD exchange-correlation energy and pcc
and po are chosen separately so that each of the coupled cluster and
reference systems has N electrons. The simplest basis extrapolation
technique, which we will refer to as “E1,” extrapolates this quantity
assuming that the basis dependence behaves asymptotically like 1/M.
However, at higher temperatures, there will be significant finite-basis
error in the computation of Ey, and we could also compute

Ex.(N,M) = Ecc(pcc(M), M) + Eo(ucc(M), %) = Eo(po(M), o).
(D2)

ARTICLE scitation.org/journalljcp

S/site

S/site

S/site

T
0.2 0.4 0.6 0.8 1.0

ks T

FIG. 12. More detailed view of the entropy per site of the 1D Hubbard model at half
filling for U = 2 (blue, top), U = 4 (green, middle), and U = 8 (red, bottom). This is
the same as row 3 (first column) of Fig. 3.

The extrapolation of this quantity based on asymptotic 1/M
dependence, will be referred to as “E2.” Other types of extrap-
olations are possible, but these two are sufficient for our
purposes.
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FIG. 13. The FT-CCSD exchange—correlation energy of the N = 33 polarized UEG
at areduced temperature of 6 = 0.5. The exchange—correlation energy is scaled by
rs to make the scale of the plot more uniform. The solid lines are the extrapolated
values based on the E1 (blue) and E2 (red) methods. The shaded region provides
a rough estimate of the uncertainty in these extrapolations.

In Figs. 13 and 14, we plot the FT-CCSD exchange-correlation
energy of the polarized UEG in a basis set of 123 plane waves. Addi-
tionally, we have extrapolated to the complete basis set limit with the
El and E2 methods using basis set sizes of 93 and 123 plane waves.
The difference in the two extrapolations, which should provide the
same answer asymptotically, allows us to estimate the uncertainty
in the basis set extrapolation. For 6 = 0.5, the uncertainty is quite
large, and there is no reason to think that either extrapolation is
more reliable than the M = 123 results. On the other hand, for
0 = 0.25, both E1 and E2 methods provide similar results, which
suggests that either may provide a better estimate than the M = 123
results.
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FIG. 14. The FT-CCSD exchange—-correlation energy of the N = 33 polarized UEG
in two different plane-wave basis sets at a reduced temperature of 6 = 0.25. The
exchange—correlation energy is scaled by rs to make the scale of the plot more
uniform. The solid line is the extrapolated value.
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FIG. 15. The FT-CCSD exchange—correlation energy of the N = 66 unpolarized
UEG in a basis set of 123 plane-wave basis orbitals at a reduced temperature
of 6 = 0.5. The exchange-correlation energy is scaled by rs to make the scale
of the plot more uniform. E1 and E2 extrapolations are plotted in blue and red,
respectively.

In Figs. 15 and 16, we plot the FT-CCSD exchange—correlation
energy of the unpolarized UEG in a basis set of 123 plane waves
along with the results of E1 and E2 extrapolations.

As with the polarized UEG, there is a larger difference between
the E1 and E2 methods at higher temperatures. This makes sense
because at higher temperature, states with larger kinetic energy
will be thermally populated, and a larger plane-wave basis will be
necessary. Unlike for the polarized UEG, the basis set extrapola-
tion is probably not reliable at either temperature. Calculations in
larger basis sets should allow for basis set extrapolation with greater
confidence.
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FIG. 16. The FT-CCSD exchange—-correlation energy of the N = 66 polarized
UEG in a basis set of 123 plane-wave basis orbitals at a reduced temperature of
0 = 0.25. The exchange-correlation energy is scaled by rs to make the scale
of the plot more uniform. E1 and E2 extrapolations are plotted in blue and red,
respectively.
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