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Detection of weak gravitational lensing by large-scale structure

David J. Bacon,1w Alexandre R. Refregier1 and Richard S. Ellis1,2

1Institute of Astronomy, Madingley Road, Cambridge CB3 OHA
2California Institute of Technology, Pasadena, CA 91125, USA

Accepted 2000 June 12. Received 2000 June 12; in original form 2000 March 2

A B S T R A C T

We report a detection of the coherent distortion of faint galaxies arising from gravitational

lensing by foreground structures. This `cosmic shear' is potentially the most direct measure

of the mass power spectrum, as it is unaffected by poorly justified assumptions made

concerning the biasing of the distribution. Our detection is based on an initial imaging study

of 14 separated 8 � 16 arcmin2 fields observed in good, homogeneous conditions with the

prime focus EEV-CCD camera of the 4.2-m William Herschel Telescope. We detect an rms

shear of 1.6 per cent in 8 � 8 arcmin2 cells, with a significance of 3.4s . We carefully justify

this detection by quantifying various systematic effects and carrying out extensive

simulations of the recovery of the shear signal from artificial images defined according to

measured instrument characteristics. We also verify our detection by computing the cross-

correlation between the shear in adjacent cells. Including (Gaussian) cosmic variance, we

measure the shear variance to be �0:016�2 ^ �0:012�2 ^ �0:006�2; where these 1s errors

correspond to statistical and systematic uncertainties, respectively. Our measurements are

consistent with the predictions of cluster-normalized cold dark matter (CDM) models

(within 1s ) but a Cosmic Background Explorer normalized standard cold dark matter model

is ruled out at the 3.0s level. For the currently favoured LCDM model (with Vm � 0:3�; our

measurement provides a normalization of the mass power spectrum of s8 � 1:5 ^ 0:5; fully

consistent with that derived from cluster abundances. Our result demonstrates that ground-

based telescopes can, with adequate care, be used to constrain the mass power spectrum on

various scales. The present results are limited mainly by cosmic variance, which can be

overcome in the near future with more observations.

Key words: cosmology: observations ± gravitational lensing ± large-scale structure of

Universe.

1 I N T R O D U C T I O N

Determining the large-scale distribution of matter remains a major

goal of modern cosmology. Comparisons between theory and

observations are hampered fundamentally by the fact that the

former is concerned with dark matter, whereas the latter usually

probes luminous matter, particularly when the distribution is

probed by galaxies and clusters. By contrast, gravitational lensing

provides direct information concerning the total mass distribution,

independently of its state and nature. As a result, lensing has had

considerable impact in studies of cluster mass distributions (see

reviews by Fort & Mellier 1994; Schneider 1996) and observa-

tional limits have improved significantly. Weak shear has now

been detected .1.5 Mpc from the centre of the cluster Cl0024116

(Bonnet, Mellier & Fort 1994), and in a supercluster (Kaiser et al.

1998).

Weak lensing by large-scale structure also produces small

coherent distortions in the images of distant field galaxies (see

Mellier 1999; Kaiser 1999, 2000; Bartelmann & Schneider 1999

for recent reviews). A measurement of this effect on various scales

(defined as `cosmic shear') would provide invaluable cosmologi-

cal information (Kaiser 1992; Jain & Seljak 1997; Kamionkowski

et al. 1997; Kaiser 1998; Hu & Tegmark 1999; van Waerbeke et al.

1999). In particular, it would yield a direct measure of the power

spectrum of density fluctuations along the line of sight and thus

provide an independent constraint on large-scale structure models

and cosmological parameters.

Because of its small amplitude (a few per cent on arcmin scales

for favoured cold dark matter ± CDM ± models), cosmic shear

has, however, been difficult to detect. In a pioneering paper,

Mould et al. (1994) attempted to detect the coherent distortion of

R , 26 field galaxies over a 9.6-arcmin diameter field and found

an upper limit quoted in terms of the rms shear at the 4 per cent

level. A search for this effect is the object of active observational
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effort (van Waerbeke et al. 1999; Refregier et al. 1998; Seitz et al.

1998; Rhodes, Refregier & Groth 2000; Kaisera 1999). At present,

however, no unambiguous detections of cosmic shear have been

reported (see, however, the limited results of Villumsen 1995;

Schneider et al. 1998a,b).

A fundamental limitation of narrow field imaging as a probe of

cosmic shear is that arising from cosmic variance, i.e. the

fluctuation in the lensing signal measured with a limited number

of pencil-beam sightlines. Only through the analysis of image

fields in many statistically independent directions can this

variance be overcome. Prior to such a measurement, it is

important to demonstrate a reliable detection strategy, particularly

in the presence of significant instrumental and other systematic

effects.

In this paper, we report the detection of a cosmic shear signal

with 14 separated 16 � 8 arcmin2 fields observed with the 4.2-m

William Herschel Telescope (WHT). We provide a detailed

treatment of systematic effects and of the shear measurement

method. We test our results with numerical simulations of lensed

images and quantify both our statistical and systematic errors. We

discuss the consequence of our measurement for the normalization

of the mass power spectrum. Subsequent papers will extend this

technique to a larger number of fields, reducing the limitations

caused by cosmic variance.

This paper is organised as follows. In Section 2, we introduce

the theory of weak lensing in the context of a cosmic shear survey.

In Section 3, we discuss our observational strategy for detecting it

and describe our observations taken at the WHT and the routine

aspects of data reduction. In Section 4, we describe the generation

of the object catalogue and how the image parameters were

measured. In Section 5 we discuss and characterise distortions

introduced by the telescope optics. In Section 6 we discuss the

point spread function (PSF) and present our shear measurement

method, alongside an important comparison with the same

analysis conducted with simulated data (Section 7). In

Section 8, we describe the estimator used for measuring the

shear variance and the cross-correlation between adjacent cells. In

Section 9, we present our results. Our conclusions are summarized

in Section 10.

2 T H E O RY

2.1 Distortion matrix

Gravitational lensing by large-scale structure produces distortions

in the image of background galaxies (see Mellier 1999; Kaiser

1999; Bartelmann & Schneider 1999 for recent reviews). These

distortions are weak (about 1 per cent) and can be characterised

fully by the distortion matrix

Cij ;
­�dui�

­uj

;
k� g1 g2

g2 k 2 g1

 !
; �1�

where du i(u ) is the displacement vector produced by lensing on

the sky. The convergence k describes overall dilations and

contractions. The shear g1 (g2) describes stretches and compres-

sions along (at 458 from) the x-axis.

The distortion matrix is directly related to the matter density

fluctuations along the line of sight by

Cij �
�xh

0

dx g�x�­i­jF; �2�

where F is the Newtonian potential, x is the comoving distance,

xh is the comoving distance to the horizon, and ­i is the comoving

derivative perpendicular to the line of sight. The radial weight

function g(x) is given by

g�x� � 2

�xh

x

dx 0 n�x 0� r�x�r�x
0 2 x�

r�x 0� ; �3�

where r is the comoving angular diameter distance, and n(x) is the

probability of finding a galaxy at comoving distance x and is

normalized as
�

dx n�x� � 1: If the galaxies all lie at a single

distance x s, n�x� � d�x 2 xs� and

g�x� � 2
r�x�r�xs 2 x�

r�xs�
: �4�

In practice, this approximation is accurate to within 10 per cent,

if x s is set to the median distance of the galaxy sample. This is

adequate given that the median redshift of our galaxy sample is

itself uncertain by about 25 per cent (see Section 3.2), yielding an

uncertainty in the predicted rms shear of about 20 per cent (see

equation 18 below).

2.2 Power spectrum

The amplitude of the cosmic shear can be quantified statistically

by computing its two-dimensional power spectrum (Jain & Seljak

1997; Kamionkowski et al. 1997; Schneider et al. 1998a; Kaiser

1998). For this purpose, we consider the Fourier transform of the

shear field

~g i�l� �
�

d2u gi�u�eil´u �5�

The shear power spectrum C
ij
l is defined by

k ~g i�l� ~g j�l 0�l � �2p�2d�2��l 2 l 0�Cij
l �6�

where d (2) is the two-dimensional Dirac-delta function, and the

brackets denote an ensemble average. It is also useful to define the

scalar power spectrum Cl � C11
l � C22

l for the shear amplitude by

k ~g i�l� ~g i�l 0�l � �2p�2d�2��l 2 l 0�Cl; �7�
where the summation convention was used.

Applying Limber's equation in Fourier space (Kaiser 1998) to

equation (2) and using the Poisson equation, we can express the

shear power spectrum Cl in terms of the three-dimensional power

Table 1. Cell-averaged statistics for each cosmological model (with zs � 1�:

Model Vm VL s8 G sg (per cent) s� (per cent) s�1 (per cent) s�2 (per cent)

SCDM 1.0 0 1 0.50 2.60 1.62 1.23 1.05
tCDM 1.0 0 0.6 0.25 1.25 0.86 0.64 0.58
LCDM 0.3 0.7 1 0.25 1.15 0.71 0.54 0.46
OCDM 0.3 0 1 0.25 1.04 0.62 0.48 0.39
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spectrum P(k, x) of the mass fluctuations dr /r and obtain

Cl � 9

16

H0

c

� �4

V2
m

�xh

0

dx
g�x�
ar�x�
� �2

P
l

r
; x

� �
; �8�

where a is the expansion parameter, and H0 and Vm are the present

value of the Hubble constant and matter density parameter,

respectively. After noting that Cl is also equal to the power

spectrum of the convergence k , we find that this expression agrees

with that of Schneider et al. (1998a). The component-wise power

spectrum is given by

C
ij
l � ui�l�uj�l�Cl �9�

where ui�l� � {cos�2l�; sin(2l)} and l is the angle of the vector

l, counter-clockwise from the l1-axis.

A measurement of the power spectrum enables differentiation

between the different cosmological models listed in Table 1.

Standard cold dark matter (SCDM) is approximately COBE-

normalized (Bunn & White 1997), while the other variants are

approximately cluster-normalized �s8V
:53
m � 0:6 ^ 0:1; Viana &

Liddle 1996). For each model we compute the non-linear power

spectrum using the fitting formula of Peacock & Dodds (1996).

The resulting power spectra are shown in Fig. 1 for sources

observed at zs � 1:

2.3 Cell-averaged statistics

For our measurement, we will consider statistics of the shear

averaged over angular cells on the sky. This has the advantage of

diminishing the impact of systematic effects (Rhodes et al. 2000)

and allows extension in later surveys to minimize cosmic variance.

The average shear gÅ i in a cell can be written as

�g i �
�

d2uW�u�gi�u� �10�

where W(u ) is the cell window function and is normalized as�
d2uW�u� � 1:

It is convenient to define the Fourier transform of the window

function as

~W l �
�

d2uW�u� eilu: �11�

For a square cell of side a , this is

~W l � sin�al1�
al1

� �
sin�al2�
al2

� �
; �12�

To a good approximation, we can ignore the small azimuthal

dependence of the window function and approximate

~Wl .
sin�al=

���
2
p �

al=
���
2
p

" #2

: �13�

Let us consider two cells separated by an angle u . We are

interested in the correlation function

wij�u� ; k �g i�0� �g j�u�l: �14�
As is the case in our experiment, we take the separation vector u
to lie along the u1-axis (or, equivalently, along the u2-axis). By

taking Fourier transforms and using equation (6), we thus obtain

wij�u� .
1

4p

�1

0

dl lClj ~Wlj2

�
J0�lu� � J4�lu� 0

0 J0�lu�2 J4�lu�

 !
: �15�

As noted above, we have ignored the azimuthal dependence of the

window function WÄ l. In particular, the shear variance s2
g ; k �g2l �

w11�0� � w22�0� is given by

s2
g �

1

2p

�1

0

dl lClj ~Wlj2: �16�

We will denote the component-wise covariances between two

adjacent cells by

s2
�1 ; w11�a�; s2

�1 ; w22�a�; �17�

Figure 1. Shear power spectrum for each cosmological model and for

sources at zs � 1: Note that the SCDM spectrum is larger due to its higher

normalization.

Figure 2. Dependence of the rms shear on the source redshift zs and the

power spectrum normalization s8. The cell was chosen to be a square of

side a � 8 arcmin:

Detection of weak gravitional lensing 627

q 2000 RAS, MNRAS 318, 625±640

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/318/2/625/1028084 by C
alifornia Institute of Technology user on 20 M

ay 2020



and their modulus by s2
� ; s2

�1 � s2
�2: The values of these

statistics for each model are listed in Table 1 for our cell size of

a � 8 arcmin: The rms shear is of the order of 1 per cent for the

cluster-normalized models and of about 2 per cent for the COBE-

normalized model. The cross-correlation rms is about half the

zero-lag value (cf. Schneider et al. 1998a).

Fig. 2 shows the dependence of sg on the source redshift zs and

s8 for the LCDM model (again for a � 8 arcmin�: The range

chosen approximately reflects the likely uncertainty in these

parameters for our experiment. Importantly, the rms shear is more

sensitive to s8. A 10 per cent uncertainty in the source redshift

results in an 8 per cent uncertainty in sg . For this model, the

dependence of sg is very well approximated by

sg . 0:0115z0:81
s s1:25

8 ; �18�
in agreement with the scaling laws of Jain & Seljak (1997).

3 DATA

3.1 Survey strategy

In order to detect and ultimately measure the cosmic shear, an

array of deep imaging fields is required. These must be randomly

placed on the sky to provide a fair sample, and should be well

separated in order to be statistically independent, from the point of

view of cosmic variance. As mentioned in Section 1, it is

expedient to distinguish between a detection based on a careful

analysis of a few fields, noting carefully the systematic effects,

before embarking upon an exhaustive measurement survey using a

larger number of fields to beat down the uncertainties arising from

cosmic variance. With these factors in mind, we now discuss our

strategy and observations using the WHT.

A bank of appropriate fields was selected for observation with

the WHT prime focus CCD Camera (field of view 8 � 16 arcmin2;
pixel size 0.237 arcsec, EEV-CCD) in the R band. This photo-

metric band offers the deepest imaging for a given exposure time

with minimal fringing. Fields were selected using the Digital Sky

Survey by choosing coordinates randomly within the range

appropriate for the time of observations. Each field was retro-

spectively checked to see whether it contained large galaxies

(@5 arcsec) (which would occult a significant fraction of the

imaging field) or prominent groups/clusters (located using the

NASA/IPAC Extragalactic Database) on a scale comparable to

that under study (.8 arcmin). There is, of course, a danger of

over-compensating by exclusion in this respect but, fortunately,

none of the originally chosen fields were discarded according to

the above criteria.

The fields were further required to be .58 away from each

other, in order to ensure statistical independence (cf. Fig. 1, where

the power is small for l , 10�:
Using the automated plate measurement (APM) and GSC

catalogues, we ensured that the fields contained no stars with

R , 11 (in order to avoid large areas of saturation and ghost

images). On the other hand, we required the fields to contain

.200 stars with R , 22 in order to map carefully the anisotropic

PSF and the camera distortion across the field of view. In order to

achieve this, the fields were chosen to be at intermediate Galactic

latitudes �308 , b , 708; see Table 2). A calibration of the stellar

density at limits fainter than the APM and GSC catalogues was

obtained from a test WHT image (see below).

The final constraint on field position was our desire to observe

each field within 208 of the telescope's zenith during the observing

run; this reduces image distortion introduced by telescope and

instrument flexure. This criterion was relaxed for the fields VLT1,

CIRSI1 and CIRSI2 (see nomenclature below).

Table 2 summarizes the positions and Galactic latitude of the

fields that are used in this paper. Two fields are in common with

the VLT (Mellier et al., in preparation) and Hubble Space

Telescope (HST) STIS (Seitz et al. 1998) cosmic shear pro-

grammes, allowing future comparisons with these programmes. A

further two fields spanned the Groth Strip (Groth et al. 1998;

Rhodes 2000) a deep survey conducted with HST, which has

previously been studied for cosmic shear detection (Rhodes et al.

2000). Finally, two fields were chosen to be in common with the

current Cambridge Infra-Red Survey Instrument (CIRSI) photo-

metric redshift survey (Firth et al., in preparation) to give us

clearer understanding of the redshift distribution of objects in our

fields at a later date.

An exposure time of 1 h on the WHT enables the detection of

R � 26 objects with a signal-to-noise of 5.8 in 0.8 arcsec seeing.

This limit should correspond to a median redshift of about zs .
1:2: In our eventual analysis, we will introduce a brighter limit so

as to keep only resolved galaxies (referred to as the survey

sample). This serves to reduce the median redshift to about 0.8

Table 2. Field coordinates (equinox 2000) and properties

Field name RA (h:m:s) December (d:m:s) Galactic Seeing Magnitude Median No. survey galaxies
latitude (arcsec) limit magnitude (8�16 arcmin2field)
(deg) (imcat 5s ) of survey

galaxies

WHT0 02:03:09.31 11:30:20.0 247.6 0.59 26.2 23.1 1550
WHT3 14:00:15.00 10:13:40.0 66.6 0.82 26.2 23.3 2141
WHT5 14:50:46.67 20:18:03.2 61.9 0.76 26.5 23.7 2181
WHT7 15:13:40.86 36:31:30.8 58.6 0.83 25.9 23.0 1354
WHT11 16:31:44.28 27:56:30.0 41.6 0.85 26.0 23.3 1379
WHT12 16:37:20.00 20:46:30.0 38.4 0.90 26.0 23.3 1855
WHT14 16:51:15.38 25:46:44.0 36.8 0.99 25.9 23.2 1701
WHT16 17:13:40.00 38:39:19.0 34.9 0.78 25.8 23.4 2074
WHT17 14:24:38.10 22:54:01.0 68.5 0.63 27.3 24.5 2287
VLT1 12:28:18.50 02:10:05.0 64.4 0.71 26.4 23.6 1721
VLT2 15:28:43.00 10:14:20.0 49.3 0.79 26.1 23.4 2093
CIRSI1 12:05:35.01 07:43:00.0 60.1 1.14 25.4 22.6 1192
CIRSI2 15:23:37.00 00:15:00.0 60.4 0.76 26.3 23.5 1824
GROTH1 14:17:18.74 52:20:18.5 53.4 0.78 26.1 23.4 2237
GROTH2 14:15:35.00 52:08:48.0 44.7 0.89 26.1 23.6 1195
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(see Section 9.3). We, however, note from Fig. 2 that our expected

shear signal is not very sensitive to median redshift �sg / z0:8
s �: In

Section 9, we will show that the resulting depth is still sufficient to

detect the lensing signal.

3.2 Observations

We observed 14 selected fields with the WHT during the nights of

1999 May 13±16. For each field, a total of four exposures in R,

each of 900 s, was taken. All fields were observed as they passed

through the meridian.

Each exposure on a given field was offset by 10 arcsec from its

predecessor in order to remove cosmetic defects and cosmic rays,

and to measure the optical distortion of the telescope and camera

(see Sections 5 and 6). All but two of the fields were observed

with the long axis of the CCD pointing East±West; the exception

being the two Groth fields, for which a 458 rotation (i.e. North±

West orientation) was effected to align the WHT exposures with

the HST survey (Groth et al. 1998; Rhodes 1999). Bias frames and

sky flats were taken at the beginning and end of each night, and

standard star observations were interspersed with the science

exposures. The median seeing on our used exposures is

0.81 arcsec; one exposure with seeing .1.2 arcsec was excluded.

Table 2 lists the seeing and imcat magnitudes corresponding to

5s detections for each field. An imcat signal-to-noise (see

Section 7) of 5.0 corresponds to a median R � 26:1; the median

magnitude of galaxies on a field is R � 25:2: To measure the

shear, a number of cuts have to be applied to our object catalog

(see Section 6). Table 2 also lists the median magnitude of our

final sample. At our final subsample limit of R � 23:4; the median

redshift is . 0:8 ^ 0:2 (Cohen et al. 2000, Section 9.3). The

median number density of adopted survey sources is 14.3 arc-

min22 (see Section 6).

In addition to the 13 useful fields, we had already obtained a

test field (WHT0) in service time, and were also kindly given

access to a suitable archival field, WHT17. Both were taken in

good conditions: WHT0 is a 1 h exposure in the I band, whereas

WHT17 is a 1.5 h exposure in R (chosen to include a known

quasar). Removing these fields does not significantly alter our

results. In terms of uniformity, apart from the deeper WHT17

field, the standard deviation in limiting magnitude is .0.2 mag,

which we consider acceptable for our survey. The error on

magnitude zero point derived from standard stars is at the much

lower level of 0.03 mag.

3.3 Data reduction

The reduction of these deep images proceeded along a standard

route. A median-combined bias frame was subtracted from the

sky-flats and science exposures, and all such exposures were

divided by a median unit-normalized sky-flat. Although the survey

exposures were undertaken in the R band to avoid fringing,

fringing is still detected at a 0.5 per cent sky level. In order to

remove these fringes, which could potentially introduce structure

into the image ellipticities, all long dithered exposures for a given

night (.15 exposures per night) were stacked without off-setting

with a sigma-clipping algorithm. This results in a fringe frame

mapping the background fringes but devoid of foreground objects.

The fringe frame for the relevant night was then subtracted from

each science exposure individually, subtracting the multiple of the

fringe frame found to minimize the rms background noise. After

applying this technique, the fringes are entirely imperceptible, any

residue having an amplitude within the sky background noise. We

experimented with automated and hand-subtraction of the fringes

and verified that this had no noticeable effect on our shear

analysis.

The mean linear astrometric offset (in fractional number of

pixels) between the four exposures was found by producing

SExtractor (Bertin & Arnoults 1996) catalogues for each

exposure, containing typically 2000±3000 objects. We used the

mean offsets of the matched objects to align the fields. The images

were shifted by the corresponding non-integer number of pixels

using iraf's imshift routine, taking linear combinations of

neighbouring pixels to effect the non-integer pixel shifts. As

discussed in Section 5, we find no need to rotate the exposures

with respect to each other, or to make further astrometric

distortions to compensate for the optical distortion of the

instrument.

The resulting four exposures for each science field were stacked

with sigma-clipping. Since each exposure is 10 arcsec away from

the others, bad columns and cosmic rays were rejected. The

images were examined visually and remaining defective pixels

(e.g. a star just outside the field of view leading to light leakage

onto an area of the charge-coupled device, CCD; or highly

saturated stars) were flagged as potentially unreliable.

4 I M AG E A N A LY S I S

We are now ready to measure the ellipticities of the galaxies on

each field, and to apply the necessary corrections in order to take

into account the smearing effect of the atmosphere (`seeing') plus

tracking and other instrumental distortions introduced by the

telescope and camera optics. Only then can we ascertain the true

cosmic shear by averaging the ellipticity distributions of the

corrected galaxies. If no shear were present on a given field, the

mean ellipticity would be zero, within the noise expected from

the non-circularity of galaxies and pixelisation effects. If a shear

is present, the mean ellipticity will be significant, especially when

results are combined from many fields.

A number of methods have recently been proposed to derive the

shear from galaxy shapes (Kaiser, Squires & Broadhurst 1995,

KSB; Rhodes et al. 2000; Kuijken 1999; Kaiser 1999, 2000).

Here, we choose the most documented method, namely the KSB

formalism proposed by Kaiser et al. (1995) and further developed

in Luppino & Kaiser (1997) and Hoekstra et al. (1998). While this

method is known to have a number of shortcomings (Rhodes et al.

2000; Kuijken 1999; Kaiser 1999, 2000), it is nevertheless the

simplest and is readily available. As we will show in Section 7

using simulations, the method is suitable for our purposes, after a

number of precautions are taken (see Bacon et al., in preparation,

for more details). We therefore use this method as provided by the

imcat software, a numerical implementation of Kaiser et al.

(1995).

The first task in this process is to detect all objects present on

the fields down to the background noise level, and to measure their

shapes. We then wish to measure their polarisabilities, i.e.

measures of how each is affected by an isotropic smear (princi-

pally resulting from the atmosphere), an anisotropic smear

(because of tracking errors at the telescope and local co-addition

errors due to astrometric distortion) and shear (both the real

gravitational shear and optical distortions due to the telescope and

camera optics). One should note the distinction between smear

and shear: a smear is a convolution of the image with a kernel,

whereas a shear is a stretching of the image, which conserves
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surface brightness. We will now describe the method for finding

objects, and for measuring their ellipticities and their shear and

smear polarisabilities.

4.1 Object detection

For the purpose of detecting cosmic shear, it is expedient to divide

each of our fields into two 8 � 8 arcmin2 cells, since the signal is

stronger on smaller scales (see Fig. 1). Furthermore, the mean

shear correlation between two adjacent cells is expected to be

about 0.7 per cent (see Section 2), and can thus be used to

independently verify our results.

We use the imcat software to find objects in each cell, and to

measure their ellipticities, radii, magnitudes, and polarisabilities.

The hfindpeaks routine convolves the cell with Mexican hat

functions of varying size, and maximally significant peaks in

surface brightness after convolution are designated objects. The

radius of the hat giving the largest signal-to-noise n for a given

galaxy is attributed to that galaxy as its filter radius rg. The local

sky background is estimated by the getsky routine, and aperture

photometry is carried out on the objects, determining magnitude

and half-light radius rh for all objects using the apphot routine.

4.2 Shape measurement

Using the getshapes routine, we then measure the weighted

quadrupole moments of each object, which are defined as

Iij ;
�

d2x w�x�xixjI�x� �19�
where I is the surface brightness of the object, x is angular distance

from object centre, and w(x) is a Gaussian weight function of scale-

length equal to rg. In this fashion, we obtain ellipticity components

ei ; Ii=T; �20�
where

I1 ; I11 2 I22; I2 ; 2I21; T ; I11 � I22: �21�
We can further define e ; �e2

1 � e2
2�1=2; where e1 � e cos 2f and

e2 � e sin 2f; where f is the position angle associated with the

elongation direction of the object (anticlockwise from the x-axis).

The trace T of the quadrupole moments provides a measure for the

rms radius d of the object, which we define as

d2 ; 1
2
�I11 � I22�=I0; �22�

where I0 ;
�

d2x w�x�I�x� is the flux of the object.

4.3 Polarisability

The imcat software also enables us to calculate the smear and

shear polarisabilities. In the following, we briefly review their

function. It is possible (see e.g. KSB 95 Appendix) to calculate the

effects of anisotropic smearing, by replacing the image I(x) in

equation (19) with a convolved (i.e. anisotropically smeared)

image I 0(x) and by finding the effect on the original ei. It is found

that the galaxy ellipticity e
g
smeared can be corrected for the smear as

e
g
corrected � e

g
smeared 2 Pg

smp; �23�
where the ellipticities are understood to denote the relevant two-

component spinor ei, and p is a measure of PSF anisotropy. The

tensor Pg
sm is the smear polarisability, a 2 � 2 matrix with

components involving various moments of surface brightness.

Since for stars e*
corrected � 0; we can set p � �P*

sm�21e*
smeared; and

find

e
g
corrected � e

g
smeared 2 Pg

sm�P*
sm�21e*

smeared �24�
In this fashion, we can correct a galaxy ellipticity for the effect of

anisotropic smearing, using the smear polarisability Pg
sm:

In a similar manner, we can calculate the effect of a shear,

regardless of how it is induced. Replacing the image I(x) in

equation (19) with a weakly sheared image, we find that

e
g
sheared � e

g
initial � P

g
shg; �25�

where g denotes the two-component shear (equation 30), and P
g
sh is

the shear polarisability, a 2 � 2 matrix with components involving

various moments of surface brightness (different from Pg
sm above).

In practice, the lensing shear takes effect before the circular

smearing of the PSF. Luppino and Kaiser (1997) showed that the

pre-smear shear g averaged over a field can be recovered using

kPggl � keg
correctedl �26�

where

Pg � P
g
sh 2

P*
sh

P*
sm

Pg
sm: �27�

Figure 3. Example reduced image (CIRSI2); the field of view is

8 � 16 arcmin2. Note that in our analysis, we divide each such field into

two 8 � 8 arcmin2 cells.
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Here, e
g
corrected is the galaxy ellipticity corrected for smear, as in

equation (23), and P*
sh and P*

sm are the shear and smear

polarisabilities calculated for a star interpolated to the position

of the galaxy in question. The interpretation of the division in this

equation is a matter of debate; our adopted procedure will be

found in Section 7. With the smear and shear polarisabilities

calculated by imcat, we can therefore find an estimator for the

mean shear in a given cell.

In summary, we can derive a catalogue of objects on a cell. For

every object, we determine its centroid, magnitude, half-light and

filter radii, ellipticity components and polarisabilities as defined

above. We can now use these catalogues to understand and correct

for systematic effects, particularly for instrumental distortion and

PSF-induced effects.

5 I N S T R U M E N TA L D I S T O RT I O N S

The instrumental distortion induced by the optical system of the

telescope must be accounted for. If left uncorrected, this effect can

indeed produce both a spurious shear and a smearing during the

co-adding process. In the following, we first present our method to

measure the distortion using dithered astrometric frames. We then

apply this method to our WHT fields and compare our measured

distortion field to that predicted by the WHT Prime Focus manual

(Carter & Bridges 1995). We then show how the co-adding smear

can be computed from the astrometric frames. We finally quantify

the impact of these effects on our lensing measurement.

5.1 Measurement of the astrometric distortion

The distortion field introduced by the telescope and camera optics

can be measured from the astrometric shifts of objects observed in

several frames offset by known amounts. Let x be the true position

of an object. Let xf be its position observed in frame f, without any

correction for the camera distortion. The observed position can be

written as

xf � x� dx�x 2 �xf � �28�
where dx is the displacement produced by the distortion. The

vector �xf is the position of the centre of frame f, and can be

measured as the average position of all the objects found in the

image. We assume that the displacement field dx is the same for

all frames.

The position of this object observed in another frame f 0 is xf 0 �
x� dx�x 2 �xf 0 �: Here, �xf 0 is the centre position of the new frame,

which is assumed to be displaced from frame f only by a

translation. (This formalism can be easily extended to include a

rotation of the frames about their centre, but this effect is

negligible in our case). If the offset �xf 2 �xf 0 is small compared to

the scale on which dx varies, we can expand this last expression in

Taylor series and get

xf 0 2 xf . C� �xf 2 �xf 0 �; �29�
where

Cij ;
­�dxi�

­xj

�30�

is the distortion matrix at the location of the object as defined in

equation (1). Following the lensing conventions, the distortion

matrix can be parametrised as

C ;
k� g1 g2 � r

g2 2 r k 2 g1

 !
; �31�

where k and g i are the spurious convergence and shear introduced

by the geometrical distortion. We have included the rotation

parameter r, which, unlike the case of gravitational lensing, does

not necessarily vanish.

The four free parameters of the distortion matrix can thus be

measured from the position of an object in three frames f, f 0 and f 00.
This can be done by solving the system of four independent

equations formed by equation (29) and its counterpart for f and f 00.
The system will not be degenerate, if the offsets �xf 2 �xf 0 and

�xf 2 �xf 00 are not parallel.

5.2 Distortion field for the WHT prime focus

First we can compute the expected instrumental distortion using

the specifications in the WHT Prime Focus manual (Carter &

Bridges 1995). The displacement field is expected to be radial

with an amplitude of dx � ar3r̂; where r is the distance from the

optical axis [located at (1076.13, 2010.7) pixels], r̂ � r=r is the

associated unit radial vector, and a . 4:27 � 10210 pixels22:
Using this expression in equations (30) and (31), we can compute

the distortion parameters to be

k � 2ar2; gi � ar2êr
i ; r � 0; �32�

where êr
i ; {r2

1 2 r2
2; 2r1r2}=�r2

1 � r2
2� is the unit radial ellipticity

vector. This therefore predicts a radial instrumental shear with an

amplitude growing like r2, reaching g , 0:001 at the edge of the

chip. This expected shear pattern is shown on Fig. 4.

Fig. 4 also shows a typical instrumental shear pattern measured

in one of our fields. This was derived using the method described

above applied to three astrometric frames dithered by about

10 arcsec and containing about 15 objects arcmin22. The

uncertainty for the mean shear component g i in each of the 2 �
2 arcmin2 cell is of about 0.0005. Astrometric measurements thus

allow us to measure the instrumental distortion with very high

accuracy.

The measured shear pattern is also approximately radial and

agrees well with the expected pattern. More importantly, it also

has an amplitude of at most 0.001 throughout the field. We have

inspected all of our fields in this manner, and have found only

small field-to-field variations (of about 0.002) for the shear

patterns. In all fields, the maximum instrumental shear is only

0.003 in single 2 � 2 arcmin2 cells. This number would be even

smaller, for an average over a larger area. We also compared the

convergence k and r patterns to that expected from the WHT

manual (equation 32). We again found good agreement with

small field-to-field variations of about 0.002. The origin of these

variations is unknown but could arise perhaps from telescope

flexure. For our purposes, however, it is quite clear that the

instrumental distortion is much smaller than the expected lensing

signal. We therefore neglect this component in the subsequent

analysis.

5.3 Smear arising from co-addition

If left uncorrected, instrumental distortions can also produce a

systematic effect on the shapes of galaxies, during the co-adding

process. The images of a galaxy from each (distorted) frame will

be slightly offset from one another, and will, therefore, combine

into a blurred coadded image. Here, we show that this effect is

equivalent to a convolution (or smear) by an additional kernel.

Since this effect will equally affect the stars in the field, it will be
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corrected for by the PSF correction described in Section 6. It is,

nevertheless, important to estimate the amplitude of this effect,

and to ensure that it does not dominate the dispersion of the PSF

anisotropy.

Let us consider the image of an object which appears on Nf

frames. As before, let xf be its centre position on frame f (after

correcting for a translation but not for the distortion). Let us

choose the centre of our coordinate system to coincide with

the centre-of-light xo ;
P

f x
f =Nf of the co-added image. The

co-added surface brightness is then

I 0�x� � 1

Nf

XNf

f�1

I�x 2 xf �; �33�

where I(x) is the (undistorted) surface brightness of the object, and

the factor of N21
f was added for convenience. Note that the effect

of the distortion on the object shape in individual frames was

treated separately in the previous sections, and was thus ignored in

this expression. It is easy to see that I 0 can be written as a

convolution of I with the kernel

Q�x� � 1

Nf

XNf

f�1

d�2��x 2 xf �; �34�

where d (2) is the two-dimensional Dirac-Delta function.

To estimate the amplitude of the effect, it is convenient and

sufficient to consider the normalized unweighted quadrupole

moments

Jij ;
�

d2x xixjI�x�=
�

d2x I�x�; �35�

(see equation 19) of the undistorted image, and similarly for the

moments J 0ij of the co-added image. The unweighted moments of

the kernel Q(x) are simply

Qij � 1

Nf

XNf

f�1

x
f
i x

f
j �36�

Because I, I 0 and Q are simply related by a convolution, their

respective quadrupole moments are related by J 0ij � Jij � Qij (see

e.g. Rhodes et al. 2000). The rms radius d 0 (equation 22) of the co-

added image is thus given by

d 02 � d2 � d2
q; �37�

where d and dq are the rms radius for the undistorted image and for

the kernel, respectively. For simplicity, let us consider an object that

is intrinsically circular. The ellipticity e 0i of the co-added image

(see equation 20) is then given by (Rhodes et al. 2000)

e 0i �
d2

q

d2 � d2
q

e
q
i ; �38�

where e
q
i is the ellipticity of the kernel.

Turning to the specific case of the WHT observations, let us

consider the ellipticity produced by the co-adding smear on a star

observed on four frames with a 0.7 arcsec circular seeing. Note

that the effect will be smaller for galaxies that are extended, and so

the following estimate should be considered as an upper limit. For

simplicity, we conservatively assume that the seeing has a

Gaussian profile. We inspected all our fields and found that the

astrometric offsets between the different frames was always

smaller than 0.3 pixels. Using equation (37) we calculated the

change �d 0 2 d�=d in the radius of the star, which is always less

than 2 per cent, i.e. negligible compared to intrinsic changes in the

seeing size. Using equation (38) we also computed the induced

ellipticity e 0 of the star and found it to be of the order of 0.01 and

always less than 0.03. This is considerably smaller than the rms

dispersion in the PSF ellipticity that we measure in our fields

(about 0.07, see Section 6), which must therefore be due to other

effects (tracking errors, atmospheric effects, etc.).

Again, we can conclude that smear arising via instrumental

distortions during image co-addition is negligible.

(a)

(b)

Figure 4. Expected (top) and measured (bottom) instrumental shear

pattern for the WHT Prime Focus. The expected pattern was derived from

the distortion model given in the WHT Prime Focus manual (Carter &

Bridges 1995). The observed pattern was measured using three astrometric

frames in one of our fields.
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6 C O R R E C T I O N F O R T H E P O I N T S P R E A D

F U N C T I O N

In order to measure the systematic alignment of faint background

galaxies due to lensing by large-scale structure, we need to

account for more than simply the geometric distortions discussed

in the previous section. We also need to correct for the effect of

the varying atmospheric conditions throughout each exposure and

imperfections in telescope tracking, leading to an anisotropic

smearing of the images. In addition, the isotropic smear arising

from seeing circularises small galaxies, thereby weakening the

sought-after signal. In this section, we first address the anisotropic

component of the contribution to the PSF and then the isotropic

part, thus determining a measure of the true (corrected) mean

shear in each cell.

Although our recipe for measuring the true shear is straightfor-

ward, it is the success of our simulations described in Section 7

that provides justification that our results are reliable at the

necessary 1 per cent level.

6.1 Anisotropic correction

Our approach is to use equation (24) to remove the anisotropic

component of the smearing induced in the galaxy images.

However, we must first remove the extraneous noise detections

in our imcat object catalogue, find appropriate well-defined

subcatalogues of stars and galaxies, and generate a functional

model for the stellar ellipticities and polarisabilities over the field

of view.

First, we need to remove noisy detections. We applied a size

limit rg . 1:0 to reject the extraneous very small object detections

that imcat finds. We also applied a signal-to-noise n . 15:0 cut;

see Section 6.2 for justification of this apparently very

conservative cut. To reduce the noise in our measurement, we

also remove highly elliptical objects with e . 0:5:
Stars were identified using the non-saturated stellar locus on the

magnitude±rh plane (see Fig. 9), typically with R . 19±22: The

distribution of stellar ellipticity over a typical field is shown in

Fig. 5; for this field we find e . 0:07 with only slow positional

variations across the field. Although the pattern varies from field

to field, it is smooth in all cases. The rms field-to-field stellar

ellipticity is relatively large, se* . 0:068; and must therefore be

removed with care.

In order to use equation (24) to correct for these elongations, we

must estimate the positional dependence of stellar ellipticity and

polarisability by interpolation. We adopted an iterative approach

to this problem. We first fitted a 2D cubic to the measured stellar

ellipticities, plotted the residual ellipticities eres � e* 2 efit and

refitted after the removal of extreme outliers (caused by galaxy

contamination, blended images and noise).

Figs 5 and 6 show the stellar ellipticity residual for the field

CIRSI2. Although the mean spurious ellipticity induced by the instru-

mental effects is �e1 . 20:009; �e2 . 0:052 over the field, the

residual ellipticity after correction is only �eres
1 � �0:6 ^ 1:2� � 1023;

Figure 6. Effectiveness of the correction for PSF anisotropy as applied to

the field CIRSI2. Stars initially have a range of ellipticities across the field

of view (dots). After polynomial fitting and correction (see text) the stars

have small mean ellipticity close to zero � �eres . 2:6 � 1023; crosses).

(a)

(b)

Figure 5. Top: stellar ellipticity distribution for the field of Fig. 3

(CIRSI2). The mean value observed is �e* . 0:07: Bottom: residual stellar

ellipticity after correction. The residual mean ellipticity is �eres . 2:6 �
1023:

Detection of weak gravitional lensing 633

q 2000 RAS, MNRAS 318, 625±640

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/318/2/625/1028084 by C
alifornia Institute of Technology user on 20 M

ay 2020



and �eres
2 � �2:5 ^ 1:2� � 1023: Despite the fact that the initial

stellar ellipticities on our images are considerable �se* . 0:068�;
eres is thus found to be very small: its field-to-field rms is sres

e .
1:4 � 1023: This success arises because of the smoothness of the

variation in the stellar ellipticity across each field. The small

residuals will contribute negligibly to the mean shear.

To check the robustness of our anisotropy correction, we used

half of the selected stars on a field, distributed uniformly across

the field of view, to correct the PSF anisotropy; we then compared

the final shear measurement obtained for this field with that

obtained after anisotropy correction with the other half of the

stars. We found that the final measured shear differed by only 0.1

per cent.

At this stage we further discard four of our cells for which our

PSF interpolation model is not satisfactory. This is due to r*
g (and,

consequently, P*
sm� showing strong gradients across the cell, or due

to an insufficient number of stars in an area of the cell leading to

poor fitting of the PSF model.

In order to correct galaxies for anisotropic smear, we not only

need the fitted stellar ellipticity field, but also the four-component

stellar smear and shear polarisabilities as a function of position.

Here a 2D cubic is fit for each component of P*
sm and P*

sh:
Galaxies are then chosen from the magnitude±rh diagram by

removing the stellar locus and objects with n , 15; rg , 1;
e . 0:5, as described above. From our fitted stellar models, we

then calculate e*, P*
sm and P*

sh at each galaxy position, and correct

the galaxies for the anisotropic PSF using equation (24). As a

result, we obtain e
g
corrected for all selected galaxies in each cell.

6.2 Isotropic correction and shear measurement

The final correction arises because of atmospheric seeing which

induces an isotropic smear. Clearly, small objects suffer more

circularisation by the isotropic component of the smear than larger

objects. The goal now is to correct for this bias as well as to

convert from corrected ellipticities to a measure of the corre-

sponding shear, using Pg as introduced in Section 5, in equations

(25)±(27).

We first calculate Pg for the galaxies. We opt to treat P*
sh and

P*
sm as scalars equal to half the trace of the respective matrices.

This is allowable, since the non-diagonal elements are small and

the diagonal elements are equal within the measurement noise

(typical P*
sm;11;22 � 0:10; P*

sm;12;21 , 5 � 1024; P*
sh;00;11 � 1:1;

P*
sh;12;21 , 0:01�:
With this simplification, we calculate Pg according to equation

(27). Pg is typically a noisy quantity, so we fit it as a function of

rg. We choose to treat Pg as a scalar, since the information it

carries is primarily a correction for the size of a given galaxy,

regardless of its ellipticity or orientation. We thus plot P11
g and P22

g

together against rg, and fit a cubic to the combined points.

Moreover, since Pg is unreliable for objects with rg measured to

be less than r*
g; we remove all such objects from our prospective

galaxy catalogue. Finally, we calculate a shear measure for each

galaxy as (cf. equation 26)

gg � eg

Pg
; �39�

where the Pg is the fitted value for the galaxy in question.

Because of pixel noise, a few galaxies yield extreme,

unphysical shears gg. To prevent these from unnecessarily

dominating the analysis, we have removed galaxies with gg . 2:
We then calculate the mean �g � kggl and error in the mean

s� �g� � s�gg�= ������
Ng

p
for this distribution, giving us an estimate for

the mean shear in each cell and its uncertainty.

At this point we encountered an interesting trend. We found that

a signal/noise cut at n . 5 (as opposed to our conservative n .
15� reveals a strong anticorrelation between the mean shear gÅ i and

the mean stellar ellipticity �e*
i : This can be seen clearly in Fig. 7.

To assess the significance of this effect, we use the correlation

coefficient

Ci � ke*
i gil 2 ke*

i lkgil
s�e*

i �s�gi�
: �40�

For a n . 5 cut we find C1 � 20:83; C2 � 20:80; which, for 32

cells, corresponds to a @3s effect. This is clearly significant, and

is due to an overcorrection of the PSF for small galaxies [in

equation (24)]. However, for a cut at n . 15; this reduces to C1 �
20:31; C2 � 20:38; corresponding to a 1.7±2.2s significance for

the correlation, which is no longer significant. We will take this

anticorrelation into account in our final results.

7 S I M U L AT I O N S

In order to verify our analysis, we have conducted a detailed study

of simulated data. The principal aim is to check that the shear we

impose on simulated images is recovered by the detection method

described above in the context of the actual observations. A

detailed description of our simulations will be found in a second

paper (Bacon et al., in preparation). Here, we describe the relevant

details.

We have attempted to create a realistic simulation of a WHT

field, with appropriate counts, magnitudes, ellipticities and

diameters for stars and galaxies, including the effects of seeing,

tracking errors, pixelisation, and an input shear signal.

One approach to this problem would be to directly use sheared

HST images degraded to ground-based resolution. However, a test

Figure 7. The anticorrelation of �e*
i and gÅ i plotted for all cells, where

i � 1; 2 have been superposed, for a n . 5 cut (top), and a n . 15 cut

(bottom). Note the trend for n . 5:
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of our signal to the required precision requires an area that is too

large to be available in current HST surveys. We have thus chosen

a Monte Carlo approach instead, in which large realizations of

artificial galaxy images are drawn to reproduce the statistics of

existing HST surveys. Specifically, we used the resolved image

statistics from the Groth Strip, a deep HST survey (Ebbels 1998,

Rhodes et al. 2000). This HST survey sampled at 0.1 arcsec

effectively gives us the unsmeared (i.e. before convolution with

ground-level seeing) ellipticities and diameters of an ensemble of

galaxies. The Groth Strip is a set of 28 contiguous pointings in V

and I; it covers an area of approximately 108 arcmin2 in a 3:5 �
44:0 arcmin2 region. The magnitude limit is I . 26; and the strip

includes about 10 000 galaxies. We use a SExtractor catalogue

derived from the entire strip by Ebbels (1998), containing

magnitude, diameter, and ellipticity for each object.

We model the multidimensional probability distribution of

galaxy properties (ellipticity±magnitude±diameter) sampled by

this catalogue, and draw from it a catalogue of galaxies

statistically identical to the Groth strip distribution. We normalize

to the median number density acquired in our observed WHT

fields, and spatially distribute the galaxies with a uniform

probability across the field of view. Star counts with magnitude

are modelled from the WHT data itself, since the Groth strip does

not contain enough stars to create a good model.

We then shear the galaxies in our prospective simulation

catalogue by calculating the change in the object ellipticity due to

lensing. Here we use the relation (Rhodes et al 2000):

e 0i � ei 1 2�dij 2 eiej�gj �41�

For the purposes of this paper, we ran three sets of simulations: the

first was a null test, with zero rms shear entered for 20 fields;

the second included a 1.5 per cent rms shear for 30 fields; and the

third a 5 per cent rms shear for 20 fields. This will allow us to

check the KSB method in the weak shear-measuring regime. The

imposed shear is uniform over a given field; this simplification

should not affect our results, since we are primarily interested only

in the mean shear measured on the field. We select uniform shears

for each field from a Gaussian probability distribution with

standard deviation equal to the rms shear we wish to study.

Stellar ellipticities (i.e. tracking errors) are similarly chosen as

uniform over a given field, taken from a Gaussian probability

distribution with s � 0:08 (this is conservatively chosen to be

slightly worse than the rms stellar ellipticity of the stars in our

data, with s � 0:07�:
We create the catalogue using the iraf artdata package. This

takes the star and (sheared) galaxy catalogues, and plots the

objects at the specified positions with specified ellipticity, magni-

tude, diameter and morphology (only exponential discs and de

Vaucouleurs profiles are supported; we input the appropriate

proportion of spirals and ellipticals from HST morphological

counts, and model irregulars as de Vaucouleurs profiles).

We use the package to recreate several WHT-specific details:

the magnitude zero point is chosen to match the telescope

throughput, the stars and galaxies are convolved with the chosen

elliptical PSF (seeing chosen to be 0.8 arcsec), the image is

appropriately pixelised (0.237 arcsec per pixel), Poisson and read

noise (3.9 e2) are added, the appropriate gain (1.45 e2/ADU) is

included, and an appropriate sky-background (10.7 ADU s21) is

imposed. The PSF profile chosen is the Moffat profile, I�r� �
�1� �21=b 2 1��r=rscale�2�2b; where b � 2:5 and rscale is the

seeing radius; r is the distance from the centroid, transformed so

that the profile is elliptical. This profile has wings that fall off

more slowly than for a Gaussian profile, and provides a good

description of our seeing-dominated PSF. An example 16 �
8 arcmin2 simulated field is shown in Fig. 8.

Once the simulated catalogues have been realised as images, we

run these through our shear-measurement algorithm, exactly as we

did for the data (see Sections 4 and 6). As for the data, we use

8 � 8 arcmin2 cells for shear detection and measurement. Fig. 9

demonstrates some of the similarity between the observed and

simulated fields' imcat catalogues.

The next check is a comparison of the input shear for our cells

against the output shear derived by the KSB method; our results

for the 1.5 and 5 per cent rms simulations are shown in Fig. 10.

The figure shows that the output shear is clearly linearly related to

the input shear, with a slope close to 1. As a quantitative test, we

apply a linear regression fit to both components of the shear

combined. For the 5 per cent rms simulations we obtain gout
i �

0:0007� 0:84gin
i ; with standard errors on the coefficients of 0.001

and 0.04, respectively. For the 1.5 per cent simulations we

similarly obtain gout
i � 0:0001� 0:79gin

i with respective standard

errors of 0.001 and 0.091. We see that the imcat measure of shear

is symmetrical about zero, but appears to measure the shear as

Figure 8. An example simulated image (see text for details).
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somewhat too small; we therefore adjust our shear measures by

dividing by 0:84 ^ 0:04; and account for the uncertainty in our

results analysis.

For low signal-to-noise galaxies, the simulations also display

the anticorrelation between the ellipticities of the galaxies and

of the stars (see Section 6.2). For a n . 5 cut, the amplitude

of this anticorrelation is consistent with that found in the data.

As in the data, the anticorrelation is no longer significant for a

n . 15 cut. This confirms both the use of the simulations to

test for systematic effects, and the validity of our signal-to-noise

cut.

8 E S T I M AT O R F O R T H E C O S M I C S H E A R

8.1 Shear variance

The amplitude of the cosmic shear can be measured by

considering the shear variance in excess of noise and systematic

effects. In our experiment, we consider Nf 8 � 16 arcmin2 fields

subdivided into Nc � 2Nf 8 � 8 arcmin2 cells (see Fig. 3). Let gf c
i

be the shear measured in cell c of field f. Here, c � t or b for the

top or bottom cells in each field, respectively. This shear is a sum

of the contributions from lensing, noise and residual systematic

effects, and can thus be written as

gf c
i � glens;f c

i � gnoise;f c
i � gsys;f c

i �42�
We wish to measure the lensing shear variance s2

lens � kjglens;f cj2l
in excess of the noise variance s2

noise;f c � kjgnoise;f cj2l and

systematic variance s2
sys;f c � kjgsys;f cj2l: An estimator for the

lensing variance is given by

ŝ2
lens ; s2

tot 2 s2
noise 2 s2

sys; �43�

where the observed total variance is

s2
tot ;

1

Nc

X
f c

jgf cj2; �44�

and the mean noise and systematic variances are defined by

s2
noise ;

1

Nc

X
f c

s2
noise;f c; s2

sys ;
1

Nc

X
f c

s2
sys;f c: �45�

It is easy to check that this estimator is unbiased, i.e. that

kŝ2
lensl � s2

lens; �46�
where the brackets denote an ensemble average.

We can also compute the variance of ŝ2
lens if we assume that the

variables follow a Gaussian distribution. This is a good

approximation for gnoise;f c
i ; since we are considering an average

over many galaxies (about 2000) in a cell. The systematic

contribution to the shear is dominated by the residual antic-

orrelation discussed in Section 6.2 and thus has a distribution that

is close to that of the stellar ellipticities. The stellar ellipticities are

relatively well approximated by a Gaussian distribution. In our

case, it is therefore acceptable to take gsys;f c
i to be Gaussian. The

lensing shear glens;f c
i is, however, known to be non-Gaussian,

especially on scales smaller than 10 arcmin, below which non-

linear density perturbations are dominant (e.g. Jain & Seljak 1997;

Gaztanaga & Bernardeau 1998). In principle, higher order

correlation functions are required. These are however difficult to

compute analytically on such small scales (Scoccimaro et al.

1999; Hui 1999), and are at the limit of the resolution of current

N-body simulations (Jain, Seljak & White 2000; Barber, Thomas

& Couchman 1999; White & Hu 2000).

Figure 10. gin
i compared with gout

i for simulated data sheared by 1.5 per cent

rms shear (top); and by 5 per cent rms shear (bottom). The dashed line shows

the gin
i � gout

i relation; the solid line shows the best fit, gin
i � 0:84gout

i :

Figure 9. The distribution of image magnitudes and half-light radii, rh, for

the data (top) and the simulation (bottom). These distributions are used for

star/galaxy separation.
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We can now compute the variance of the estimator and find

s2�ŝ2
lens� �

1

Nc

��s2
lens � s2

noise � s2
sys�2 � 2�s4

�lens1 � s4
�lens2��;

�47�
where s2

�lensi are the cross-correlation variances between top

and bottom cells due to lensing [see equation (17)]. In

deriving this expression, we have assumed that the noise and

systematic effects are uncorrelated from the top to the bottom

cell. We have also used the following approximation:

s2
noise .

1

Nf

X
f

s2
noise;f t .

1

Nf

X
c

s2
noise;f b .

1

Nc

X
f ;c

s4
noise;f c

" #1
2

�48�
This is valid given the cells were observed in very similar

conditions, and thus the spread in the s2
noise; f c is small.

Terms with a `lens' subscript in equation (47) correspond to

cosmic variance, while the other two terms correspond to the

uncertainty produced by noise and systematic effects. If we are

initially interested in a detection of cosmic shear, it suffices to test

only the null hypothesis corresponding to the absence of lensing,

i.e. to slens � s�lensi � 0: The estimator variance relevant for a

detection is

s2�ŝ2
lens� .

1

Nc

�s2
noise � s2

sys�2 �detection�: �49�

8.2 Shear cross-correlation

An important aspect of our experiment is our ability to test the

cross-correlation between the shear measured in two adjacent 8 �
8 arcmin2 cells (see Fig. 3). As before, let gf t

i and gf b
i be the

average shear in the top and bottom portion of the 8 � 16 arcmin2

field f, respectively. The shear cross-correlation variance (see

equation 17) is defined by

s2
�lens ; kgf t

i g
f b
i l; �50�

where the summation convention is used. As before, we assume

that the noise and systematic effects are uncorrelated across the

two cells. An estimator for this quantity is then

ŝ2
�lens ;

1

Nf

X
f

gf t
i g

f b
i : �51�

It is again easy to check that it is unbiased, i.e. that

kŝ2
�lensl � s2

�lens �52�
Assuming as before that the fields are Gaussian, we can compute

the variance of this estimator and find

s2�ŝ2
�lens� �

1

2Nf

��s2
lens � s2

noise � s2
sys�2 � 2�s4

�lens1 � s4
�lens2��;

�53�
which equals s2�ŝ2

lens�: For a detection we must rule out the null

hypothesis �s2
�lens1 � s2

�lens2 � s2
lens � 0�: The relevant estimator

variance for this purpose is then

s2�ŝ2
�lens� �

1

2Nf

�s2
noise � s2

sys�2 �detection�: �54�

9 R E S U LT S

We now present and interpret our results, first using the

simulations, and then examining the WHT data. The following

description is summarised in Table 3 or convenience.

9.1 Simulated fields

We begin with the null simulations, which consists of 20 8 �
8 arcmin2 disjoint cells. The distribution of the shear for each

simulated cell is shown on Fig. 11.

For the null simulation, the rms noise (equation 45) is snoise .
0:0103; while the observed total rms is stotal . 0:0113 (equation

44). The noise and total rms are indicated as a solid and dashed

line in Fig. 11, respectively. Clearly, in the absence of a lensing

signal, s2
sys � s2

total 2 s2
noise; which gives ssys . 0:0047:

We also require the error for s sys. In a fashion similar to that of

Table 3. Shear measurement results for the simulated and WHT fields

Sim. Sim. Sim. Data
Null 1.5 per cent 5 per cent

Nc 20 30 20 26

s2
tot (0.0113)2 (0.0193)2 (0.0494)2 (0.0243)2

s2
noise (0.0103)2 (0.0130)2 (0.0102)2 (0.0179)2

s2
sys (0.0047)2a 0b 0c (0.0047)2d

s2
lens (0.0047)2e (0.0132)2 (0.0480)2 (0.0156)2

s2
�lens (0.0156)2

s�s2
sys� (0.0053)2a (0.0082)2 (0.0234)2 (0.0053)2

s�s2
lens� �detect� (0.0053)2 (0.0060)2 (0.0055)2 (0.0082)2

s�s2
lens� �measure� (0.0053)2e (0.0082)2 (0.0234)2 (0.0119)2

a assumes slens � 0:
b assumes slens � 0:015:
c assumes slens � 0:05:
d Uses the null simulation value, since we cannot obtain an independent
estimate.
e assumes ssys � 0:

Figure 11. Mean g1 and g2 for 20 simulated null cells. The dashed circle

shows the noise rms, the solid circle shows the total rms. The difference is

consistent with zero signal.
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equation (49), we find that

s2�ŝ2
sys� .

1

Nc

�s2
noise � s2

sys�2 �55�

giving s�ŝ2
sys� . �0:0053�2; so that s2

sys � �0:0047�2 ^ �0:0053�2:
Note that this is consistent with zero, i.e. even if we supposed that

there were no systematics, the excess shear signal that we would

attribute to real lensing would be consistent with zero.

We can check this result against our next simulation, which now

includes a 1.5 per cent rms shear in 30 8 � 8 arcmin2 cells. We can

first use this simulation to derive an independent constraint on s sys.

ŝ2
sys � s2

total 2 s2
noise 2 s2

lens �56�
where we let slens � 0:015; i.e. the input rms shear.

For this simulation, we find snoise . 0:0130; stotal . 0:0193

(see Fig. 12). The error for s sys this time is computed as follows

s2�ŝ2
sys� .

1

Nc

�s2
noise � s2

sys � s2
lens�2: �57�

However, since s2
total 2 s2

noise , 0:0152; we can only find an upper

limit for s sys here; we find that s�s2
sys� � ^�0:0082�2; consistent

with the null simulation result. Accordingly, in what follows, we

will use the null simulation estimate for s2
sys:

Turning this around, we can use equation (43) to estimate the

rms shear in these simulations (ignoring our knowledge of the

input rms shear). We obtain (using the null simulation estimate of

s sys) slens . 0:013: The uncertainty in s2
lens is calculated using

equation (49) for detection and equation (47) for measurement.

We obtain s�s2
lens� � �0:0060�2 for detection, and s�s2

lens� �
�0:0082�2 for measurement. Notice that this is the same value as

s�s2
sys�; since we cannot independently find s sys and s lens for the

simulations. The measured rms shear is thus fully consistent with

the input rms shear of 1.5 per cent (Fig. 12).

An analogous analysis is done for the 5 per cent rms shear

simulations; see Table 3. Again, we recover the input rms shear

within the uncertainties. Note again that, since s2
total 2 s2

noise ,
0:052; only an upper limit can be found for s sys here. We can

conclude that the simulations clearly show that in the relevant

regimes, our method is unbiased.

9.2 Observed fields

We now consider the observed fields. The distribution of shear for

each of the 26 cells is plotted on Fig. 13, along with circles

corresponding to snoise and s tot. The mean shear components are

�g1 � 20:00097 ^ 0:0034; g2 � 0:0021 ^ 0:0034; fully consis-

tent with zero as they should be in the absence of systematic

effects. In addition, we are measuring a total shear variance in

excess of the noise. We now determine whether this detection is

significant.

The value for the rms noise is snoise � 0:018; somewhat larger

than in our simulations. This is due to increased noise from stellar

ellipticity fitting and, in poorer seeing cases, lower number

density. The total rms shear is stot � 0:024; and using ssys �
0:0047 from the null simulations, we obtain slens � 0:0156 (from

equation. 43).

Using equation (49), we find the error in s lens to be s�ŝ2
lens� .

�0:0082�2 for the statistical error only. If we also include the

uncertainty on the systematic (by adding it in quadrature), we

obtain s�ŝ2
lens� . �0:0084�2: We therefore quote our result as

s2
lens � s2

lens;measured ^ s�ŝ2
lens�statistical ^ s�ŝ2

sys�
� �0:0156�2 ^ �0:0082�2 ^ �0:0047�2: �58�

The significance of our detection of the cosmic shear is therefore

�S=N�detect � s2
lens

s�ŝ2
lens�total

. 3:4 �59�

In terms of measuring the amplitude of the cosmic shear, we use

equation (47) and find s�s2
lens� � �0:0119�2; including the

uncertainty on the systematic we obtain s�s2
lens� � �0:0121�2:

We therefore find

s2
lens � s2

lens;measured ^ s�ŝ2
lens�statistical ^ s�ŝ2

sys�
� �0:0156�2 ^ �0:0119�2 ^ �0:0057�2; �60�

Figure 12. Mean g1 and g2 for 30 simulated cells with rms 1.5 per cent

shear. The dashed circle shows the noise rms, the solid circle shows the

total rms.

Figure 13. Mean g1 and g2 for the observed cells. The dashed circle shows

the noise rms, the solid circle shows the total rms.

638 D. J. Bacon, A. R. Refregier and R. S. Ellis

q 2000 RAS, MNRAS 318, 625±640

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/318/2/625/1028084 by C
alifornia Institute of Technology user on 20 M

ay 2020



where we have included in s sys the uncertainty in our KSB shear

calibration (see Section 7). Thus we find that �S=N�measure . 1:7:
The final measurement we can make is the cross-correlation

covariance using equation (51). We find that s�1 . 0:0115;s�2 .
0:0105; leading to s� � 0:0156: For a detection, s�s2

�� .
�0:0088�2 (equation 54), so that the significance of the detection

is �S=N�detect . 3:2 for the cross-correlation. For a measurement,

s�s2
�� . �0:0119�2 (equation 53), so �S=N�measure . 1:7:

9.3 Cosmological implications

A key question we must now address is the redshift distribution of

our background sources. At the median magnitude of the original

catalogue �R � 25:2 ^ 0:2; Table 2, Section 3.2), photometric

redshift estimators in various HST and ground-based datasets

suggest a mean redshift z . 1±1:2 (Fernandez-Soto, Lanzetta &

Yahil 1999, Poli et al 1999, Rhodes 1999). More importantly, for

the survey sample, which is effectively limited at a median

magnitude of R . 23:4 ^ 0:2; we make use of the recently

completed deep spectroscopic survey of Cohen et al (2000) which

indicates a median redshift at this limit z � 0:8 ^ 0:2; the

uncertainty here includes the observed field-to-field variations in

this limiting depth as in Table 2.

We can now compare these results with those predicted for the

various cosmological models listed in Table 1. First, we compare

our value of s2
lens � �0:016�2 ^ �0:012�2 (with errors which

include cosmic variance). We find that our result is consistent

with the cluster-normalized models tCDM, LCDM and OCDM at

the 0.6±0.9s level, but that it is inconsistent with the COBE-

normalized SCDM model at the 3.0s level. This confirms the fact

that the SCDM model has too much power on small scales when

normalized to COBE.

The cross-correlation variance s2
�lens � �0:0156�2 ^ �0:0119�2

(again with cosmic variance included in the uncertainty) does not

provide as strong a constraint. It is consistent with the models,

with deviations of between 0.1s and 1.4s . This results from the

fact that s2
�lens is expected to have a smaller amplitude than s2

lens

in all models. It is, nevertheless, comforting that, within the

context of the models considered, it is consistent with our

measurement of s2
lens:

We can use our measurement of s2
lens to constrain s8, the

normalization of the matter power spectrum on 8 h21 Mpc scales.

For the LCDM model with Vm � 0:3; we find from equation (18)

that these two quantities are related by

s8 � 0:894z20:648
s

slens

0:01

� �0:8 �61�

For our value of s lens and setting zs � 0:8 ^ 0:2 (see Section 3.2)

and propagating errors, this yields

s8 � 1:47 ^ 0:24 ^ 0:46 � 1:47 ^ 0:51; �62�
where the first error arises from the uncertainty in zs and the

second from that of s2
lens: This corresponds to a 2.9s measurement

of s8. We can compare this with the cluster abundance

determination which yields s8 � �0:6 ^ 0:1�V20:53
m �

�1:13 ^ 0:19��Vm=0:3�20:53: We see that our result is consistent

with this independent determination. Note that the uncertainty in

zs does not dominate our uncertainty for s8.

1 0 C O N C L U S I O N S

Using 14 8 � 16 arcmin2 fields observed homogeneously with the

WHT, we have detected a shear signal arising from weak lensing

by large-scale structure. Neglecting cosmic variance (to test the

null hypothesis corresponding to the absence of lensing), we find

a shear variance in 8 � 8 arcmin2 cells of �0:016�2 ^ �0:008�2 ^
�0:005�2; where the errors correspond to 1s statistical and

systematic uncertainties, respectively. This corresponds to a

detection significant at the 3.4s level. Including (Gaussian)

cosmic variance, the shear variance is �0:016�2 ^ �0:012�2: This

is consistent with the value expected for cluster-normalized

CDM models �slens � �1:0±1:3� � 1022�: On the other hand, the

COBE-normalized SCDM model is rejected at the (3.0s )

level. We have verified our results by measuring the cross-

correlation of the shear in adjacent cells. We find that the

resulting cross-correlation variance for detection is �0:016�2 ^
�0:009�2; and for measurement is �0:016�2 ^ �0:012�2; in

agreement with that expected in cluster-normalized CDM

models. This is consistent with all the models considered at the

1s level.

Our measurement was derived after a careful accounting of the

systematic effects that can produce a spurious shear signal. We

find that the most serious systematic effect is the PSF over-

correction for faint objects in the shear measurement method. We

have shown, however, that by keeping only sufficiently bright

objects �S=N . 15�; this effect can be made to be smaller than the

statistical uncertainty. Our methods have been tested using

detailed numerical simulations of the shear signal from appro-

priately constructed synthetic sheared images. We find very good

statistical agreement between the simulated and the observed data.

An extensive description of the simulations will be described in

Bacon et al. (in preparation).

For a given cosmological model, our measurement can be

turned into a measurement of s8, the normalization of the mass

power spectrum on 8 h21 Mpc scales. For a LCDM model with

Vm � 0:3; we get s8 � 1:5 ^ 0:2 ^ 0:5; where the errors are 1s
uncertainties resulting from the uncertainty in the redshift of the

background galaxies and from our measurement error, respec-

tively. This result is consistent with the s8 value derived from

cluster abundance �s8 � �1:13 ^ 0:19��Vm=0:3�20:53; Viana &

Liddle 1996).

The uncertainty in our measurement is clearly dominated by

cosmic variance and statistical errors. This can be improved by

increasing the number of fields Nf. Since the signal-to-noise ratio

scales as
������
Nf

p
; a four-fold improvement in Nf should yield a

6.8s detection and a 3.4s measurement of the rms shear. This,

and the presence of other wide-field cameras, offers good

prospects for the improvement of the measurement of s8 from

cosmic shear. On the other hand, the determination of s8 from

cluster abundance is currently measured only at the 6s level and

is fundamentally limited by the finite number of nearby clusters,

for which accurate temperatures can be determined. In addition,

it depends sensitively on the assumption of Gaussian initial

conditions. It is therefore likely that cosmic shear measurements

will supplant cluster abundance for the normalization of the

power spectrum. With an even larger number of fields, one can

also measure the shape of the power spectrum by looking at the

correlation of the shear between and within nearby fields. The

advent of wide-field cameras will make this possible in the near

future.
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