
A workflow for accurate metabarcoding using nanopore MinION sequencing

Bilgenur Baloĵlu1, Zhewei Chen2, Vasco Elbrecht1,3, Thomas Braukmann1, Shanna MacDonald1, Dirk

Steinke1,4

1Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
2California Institute of Technology, Pasadena, California, USA
3Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn,

Germany
4Integrative Biology, University of Guelph, Guelph, Ontario, Canada

Corresponding author: Bilgenur Baloglu (bilgenurb@gmail.com)

Keywords: Bioinformatics pipeline, metabarcoding, Nanopore sequencing, Rolling Circle

Amplification

mailto:bilgenurb@gmail.com

Supplemental Material and Methods

S1 ASHURE data processing workflow

ASHURE is a python (v3.7.6) based analysis pipeline and library designed to perform consensus error

correction and clustering of concatemeric reads obtained from Oxford nanopore sequencing devices.

The codebase is divided into two files. bilge_pype.py contains functions for manipulating fastq data,

passing subprocess calls to alignment tools, drawing interactive plots, and calling python scientific

libraries. ashure.py imports and uses bilge_pype.py as a python library to execute the data processing

workflow. The architecture of the pipeline, the parameters used, and the user interface code can be

found in the ashure.py file. Python workflow data is organized in pandas data frames, and outputs are

returned as text files in CSV format. In the below section, we provide a detailed overview of the

ASHURE analysis workflow.

Suppl Figure 1: Flow diagram of the ASHURE pipeline

S1.1 Pseudo reference database generation

The ASHURE pipeline uses pseudo reference sequences to find concatemers in each raw read. The

pseudo reference database is generated by searching for subsequence windows in the raw reads that

contain both forward and reverse primers. These subsequences are extracted and reoriented to 5ô->3ô

to yield sequences containing the forward primer, an errored copy of the gene of interest, and the

reverse primer. COI was ~700bp long, and only raw reads (500-1200bp long) containing a single copy

of COI were used to construct the pseudo reference database.

The following alignment parameters are used in minimap2 to find primer sequences:

minimap2 -k5 -w1 -s 20 -P primers.fa reads.fa > output.paf

The following commands are passed on to ASHURE to build the pseudo reference database:

python3 ashure.py prfg -fq fastq/*.fq -p primers.csv -fs 500-1200 -o database.csv -r

S1.2 Concatemer identification

Concatemers are identified by mapping each raw read against the pseudo reference database with

minimap2. Putative concatemers sites are sorted by the alignment score. Only the highest-scoring non-

overlapping alignments in each raw read are kept for downstream analysis.

The following parameters are used in minimap2 to find concatemers:

minimap2 -k10 -w1 database.fa reads.fa > output.paf

The following commands are passed on to ASHURE to find concatemer sites:

python3 ashure.py fgs -fq fastq/*.fq -db database.csv -o concatemers/ -r

S1.3 Consensus error correction

For raw reads with more than one concatemer, concatemers are extracted, reoriented 5'->3', and multi-

aligned with spoa (Vaser et al. 2017) to generate an error-corrected consensus sequence for each read.

The following parameters are used in spoa:

spoa -n -15 -g -10 -l 0 -r 0 concatemers.fq > output.txt

The following commands were passed on to ASHURE to perform multi-alignment and consensus:

python3 ashure.py msa -i concatemers/ -o1 msa/ -o2 corrected_reads.csv -r1 -r2

S1.4 Primer identification

Error corrected reads are mapped to forward and reverse primer sequences with minimap2. Primer

pairs are assigned based on the highest combined alignment score.

The following parameters are used in minimap2 to find primer sequences:

minimap2 -k5 -w1 -s 20 -P primers.fa reads.fa > output.paf

The following commands are passed to ASHURE to perform primer assignment and trimming of

corrected reads:

python3 ashure.py fpmr -i corrected_reads.csv -p primers.csv -o1 primer_match.csv -o2

trimmed_reads.csv -r1 -r2

The following commands are passed on to ASHURE to perform concatemer search, multi-alignment,

consensus generation, primer identification, and read trimming:

python3 ashure.py run -fq fastq/*.fq -db database.csv -o1 creads.csv -r fgs,msa,cons,fpmr, trmc

S1.5 Clustering with OPTICS

An augmented implementation of the OPTICS algorithm (Ankerst et al. 1999) in scikit-learn was used

to perform clustering on error-corrected reads and infer the true haplotype sequences present in our

sequencing experiments. The scikit-learn OPTICS takes pairwise distance matrices computed from

sequence data and identifies potential sequence clusters based on density. In ASHURE, OPTICS was

applied to random subsets of the whole sequence dataset in an iterative optimization formulation

similar to mini-batch k-means that seeks to find cluster centers that can optimally represent the whole

dataset. Cluster centers are consensus sequences computed from a multi-alignment of sequences near

the centroid of a cluster and match closely to the error-free haplotype sequences in the mock

community. This modification was done to avoid the computation of large pairwise distance matrices,

which were memory and CPU intensive.

S1.5.1 Overview of the augmented OPTICS algorithm

Suppl Figure 2: Flow Diagram of the clustering workflow

The following steps are performed to obtain cluster centers from error-corrected reads.

1) Primer sequences are trimmed from each error-corrected read. The trimmed reads are provided

as input to the clustering workflow.

2) A random set of 5 sequences is drawn from the trimmed reads to serve as initial cluster centers.

3) Refining the cluster centers

i) The trimmed reads are mapped to cluster centers with minimap2 and assigned to each

cluster center based on the highest alignment score.

ii) For each cluster, a random set of 2000 sequences is drawn, and the pairwise distance matrix

(see Section S2.1) for these sequences computed with minimap2.

iii) The pairwise distance matrix is used by OPTICS to compute new cluster labels and

reachability measures for these sequences.

iv) For each new cluster label, the first 20 sequences ordered by the lowest reachability are

multi-aligned with spoa to generate a consensus sequence, which serves as the updated

cluster center.

4) Searching for rare clusters

i) Trimmed reads are mapped to the newly updated cluster centers.

ii) A random set of 2000 sequences are drawn from the lower quartile of poorly aligned reads.

iii) The pairwise distance matrix for this subset is computed with minimap2 and used by

OPTICS to identify potential new sequence clusters missed by the previous random

sampling in step 4.

iv) For each new cluster label identified by OPTICS, cluster centers are computed via multi-

alignment as in step 4d and added to the master list.

5) Merging redundant cluster centers

i) Redundant cluster centers generated by steps 4 and 5 are identified by OPTICS using the

cosine similarity matrix of alignment scores as the input. See Section S2.2 for the equation

to compute cosine similarity.

ii) For each set of redundant cluster centers identified by OPTICS, the first 100 sequences

closest to each cluster center is drawn.

iii) The pairwise distance matrix for this subset is computed with minimap2 and used by

OPTICS to compute new cluster labels and generate new cluster centers as in step 4d. If

two cluster centers are redundant, OPTICS will relabel their subsets as a single cluster and

return one updated cluster center, which replaces the original set. If two cluster centers are

not redundant, OPTICS will label the sequences as separate clusters and return updated

cluster centers using the multi-alignment computation described in step 4d.

6) Steps 3 to 5 are repeated for 10 iterations to assure convergence of cluster centers toward the

haplotype sequences or true cluster centers.

7) The final cluster center sequences are returned as a CSV file of sequences.

The following commands are passed on to ASHURE to perform clustering on a list of sequences:

python3 ashure.py clst -i trimmed_reads.csv -o centers.csv -N 2000 -cs 20 -ts 4 -iter 10 -r

-N 2000 is the subset size for random sampling

-cs 20 is the number of sequences from the centroid used for multi-alignment

-ts 4 denotes how many partitions to split for step 4. Here, the lower 4th quartile.

-iter 10 means ten iterations of steps 3 to 5 are run

S1.5.2 Cluster centers and reachability

The OPTICS algorithm establishes cluster centroids based on the distances between a set of

neighboring points. All data points are then ordered relative to their distance from these centroids. Dips

and rises in the reachability plot (see Supplementary Figures 4a and 6a) denote boundaries between

clusters of data points that have non-uniform density. The region with the lowest reachability for a

given cluster represents the center of the cluster (see Supplementary Figures 5 and 6). Cluster centers

are sequences computed from a multi-alignment in this low reachability region. Sequences with low

reachability also happen to be more error-free (see Supplementary Figures 4b and 6b). Thus, cluster

centers computed from these sequences will match closely with the true haplotype sequence. This

procedure is analogous to computing the centroid for a set of data points in k-means clustering.

S1.5.3 Random sampling and iterative optimization

The naive implementation of OPTICS in scikit-learn was not suitable for clustering of large sequence

datasets. For datasets containing more than 200,000 sequences, the pairwise distance and OPTICS

computations become prohibitively CPU and memory intensive for a standard laptop computer. For

example, a 200,000 by 200,000 matrix of 32bit floating point numbers would require 160Gb of

memory.

To avoid CPU and memory intensive processing of large pairwise distance matrices, the OPTICS

implementation in scikit-learn was modified to work on random subsets of the whole dataset using the

algorithm described in Section S1.5.1. The idea was to estimate the true cluster centers by using subsets

of the whole dataset. Iteratively populating and updating the cluster centers allows convergence toward

the true haplotype sequence. This approach was somewhat successful because most cluster centers

returned did match closely to the haplotype sequences. Supplementary Figure 3 shows a significant

overlap between the positions of haplotype sequences and cluster centers. Supplementary Figure 4b

shows a low error rate for both haplotype sequences and their associated cluster centers.

A drawback of this approach is that rare or underrepresented clusters can sometimes be missed in

sampling if too few iterations of the algorithm are run. Some cluster centers returned may also be

suboptimal. A good stop condition for this iterative procedure has not yet been found, which means

there is still room for improvement.

Suppl Figure 3: tSNE plot of haplotype sequences, cluster centers, and COI sequences extracted from

a small subset of base called reads. Spatial distances were computed from pairwise distances between

each sequence using tSNE. Blue diamonds represent haplotype sequences. Red squares represent

cluster centers computed from this subset of base called reads. Circles represent sequences colorized

by their membership to each cluster center.

Suppl Figure 4: a) Reachability vs ordering plot of haplotype sequences, cluster centers, and COI

sequences shown in Supplementary Figures 3 and 4b. Dips in the reachability plot represent clusters

identified by scikit-learnôs implementation of OPTICS. b) Read error vs ordering plot of same

sequences shown in Supplementary Figures 4a and 3. Blue diamonds represent haplotype sequences.

Red squares represent cluster centers. Circles represent sequences colorized by their membership to

each cluster center.

Suppl Figure 5: tSNE plot of COI sequences shown in Supplementary Figure 3. Spatial distances

were computed from pairwise distances between each sequence using tSNE. Unlike Supplementary

Figure 3, haplotype sequences and cluster centers were excluded from the computation of the tSNE

plot as the presence of cluster centers can bias the tSNE results. a) Circles represent sequences

colorized by their haplotype identity. b) Circles were colorized by read error relative to their haplotype

sequence. c) Circles were colorized by reachability.

