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Supplemental Material and Methods

S1 ASHURE data procesing workflow

ASHURE is a python (v3.7.6) based analysis pipeline and library designed to perform consensus error
correction and clustering of concatemeric reads obtained from Oxford nanopore sequencing devices.
The codebase is divided into two fildslge pype.pyontins functions for manipulating fastq data,
passing subprocess calls to alignment tools, drawing interactive plots, and calling python scientific
libraries.ashure.pymports and usesilge_pype.pys a python library to execute the data processing
workflow. The architecture of the pipeline, the parameters used, and the user interface code can be
found in theashure.pyfile. Python workflow data is organized in pandas data frames, and oatputs
returned as text files in CSV formdh the below section we provide a detailed overview of the
ASHURE analysis workflow.
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Suppl Figure 1: Flow diagram of the ASHURE pipeline
S1.1 Pseudo reference database generation

The ASHURE pipeline uses pseudo reference sequences to find concatemers in eaadl. rélere
pseudo reference database is generated by searching for subsequence windows in the raw reads th
contain both forward and reverse primers306The
to yield sequences containing the forward prinagr,errored copy of the gene of interest, and the
reverse primer. COl was ~700bp long, and only raw readsX{800bp long) containing a single copy

of COIl were used to construct the pseudo reference database.



The following alignment parameters are usethinimap?2 to find primer sequences:
minimap2-k5-w1-s 20-P primers.fa reads.fa > output.paf

The following commands are passed on to ASHURE to build the pseudo reference database:
python3 ashure.py pridq fastq/*.fg-p primers.csvfs 5001200-0 database.csv

S1.2 Concatemer identification

Concatemers are identified by mapping each raw read against the pseudo reference database witt
minimap2. Putative concatemers sites are sorted by the alignment score. Oigli¢sesboring non
overlapping alignments in each raw read are kept for downstream analysis.

The following parameters are used in minimap2 to find concatemers:

minimap2-k10-w1 database.fa reads.fa > output.paf

The following commands are passed on to AIRHE to find concatemer sites:

python3 ashure.py fgfg fastg/*.fq-db database.csw concatemerst

S1.3 Consensus error correction

For raw reads with more than one concatemer, concatemers are extracted, reor&\tath&'mult
aligned with spoa (¥ser et al. 2017) to generate an eomrected consensus sequence for each read.

The following parameters are used in spoa:

spoa-n-15-g-10-1 0 -r O concatemers.fq > output.txt

The following commands were passed on to ASHURE to perform-aligtimern and consensus:
python3 ashure.py msaconcatemers/ol msato2 corrected_reads.csvl -r2

S1.4 Primer identification

Error corrected reads are mapped to forward and reverse primer sequences with minimap2. Primer
pairs are assigned based on the higb@sbined alignment score.

The following parameters are used in minimap2 to find primer sequences:
minimap2-k5-w1l-s 20-P primers.fa reads.fa > output.paf

The following commands are passed to ASHURE to perform primer assignment and trimming of
correctel reads:

python3 ashure.py fpmri corrected reads.csv-p primers.csv -0l primer_match.csv-02
trimmed_reads.csvl -r2



The following commands are passed on to ASHURE to perform concatemer searchligmntent,
consensus generation, primer identificaf and read trimming:

python3 ashure.py rwiq fastq/*.fg-db database.cswl creads.csw fgs,msa,cons,fpmr, trmc
S1.5 Clustering with OPTICS

An augmented implementation of the OPTICS algorithm (Ankerst et al. 1999) inlsaikitwas used

to perfom clustering on errecorrected reads and infer the true haplotype sequences present in our
sequencing experiments. The scikiarn OPTICS takes pairwise distance matrices computed from
sequence data and identifies potential sequence clusters basedion teASHURE, OPTICS was
applied to random subsets of the whole sequence dataset in an iterative optimization formulation
similar to mintbatch kmeans that seeks to find cluster centers that can optimally represent the whole
dataset. Cluster centergaronsensus sequences computed from a-alighment of sequences near

the centroid of a cluster and match closely to the drear haplotype sequences in the mock
community. This modification was done to avoid the computation of large pairwise distatrages,

which were memory and CPU intensive.

S1.5.1 Overview of the augmented OPTICS algorithm
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Suppl Figure 2: Flow Diagram of the clustering workflow



The following steps are performed to obtain cluster centers fromaearaacted reads.

1)

2)

3)

4)

5)

6)

Primer sequences are trimmed from each eroorected read. The trimmed reads are provided
as input to the clustering workflow.

A random set of 5 sequences is drawn from the trimmed reads to serve as initial cluster centers.

Refining the cluster centers

i) The trimmed reads are mapped to cluster centers with minimap2 and assigned to each
cluster center based on the highest alignment score.

i) For each cluster, a random set of 2000 sequences is drawn, and the pairwise distance matrix
(see Section S2.1) for thesequences computed with minimap2.

iii) The pairwise distance matrix is used by OPTICS to compute new cluster labels and
reachability measures for these sequences.

iv) For each new cluster label, the first 20 sequences ordered by the lowest reachability are
multi-aligned with spoa to generate a consensus sequence, which serves as the updated
cluster cente

Searching for rare clusters

i) Trimmed reads are mapped to the newly updated cluster centers.

i) A random set of 2000 sequences are drawn from the Iquegtile of poorly aligned reads.

iii) The pairwise distance matrix for this subset is computed with minimap2 and used by
OPTICS to identify potential new sequence clusters missed by the previous random
sampling in step 4.

iv) For each new cluster label identifiegt OPTICS, cluster centers are computed via multi
alignment as in step 4d and added to the master list.

Merging redundant cluster centers

i) Redundant cluster centers generated by steps 4 and 5 are identified by OPTICS using the
cosine similarity matrix oflgnment scores as the input. See Section S2.2 for the equation
to compute cosine similarity.

i) For each set of redundant cluster centers identified by OPTICS, the first 100 sequences
closest to each cluster center is drawn.

iii) The pairwise distance matrix fahis subset is computed with minimap2 and used by
OPTICS to compute new cluster labels and generate new cluster centers as in step 4d. If
two cluster centers are redundant, OPTICS will relabel their subsets as a single cluster and
return one updated clusteenter, which replaces the original set. If two cluster centers are
not redundant, OPTICS will label the sequences as separate clusters and return updated
cluster centers using the megiignment computation described in step 4d.

Steps 3 to 5 are reped for 10 iterations to assure convergence of cluster centers toward the
haplotype sequences or true cluster centers.

7) The final cluster center sequences are returned as a CSV file of sequences.

The following commands are passed on to ASHURRetdorm clustering on a list of sequences:
python3 ashure.py clsttrimmed_reads.csw centers.csw¥N 2000-cs 20-ts 4-iter 10-r

-N 2000 is the subset size for random sampling

-cs 20 is the number of sequences from the centroid usatuforalignment

-ts 4 denotes how many partitions to split for step 4. Here, the lower 4th quartile.
-iter 10 means ten iterations of steps 3 to 5 are run



S1.5.2 Cluster centers and reachability

The OPTICS algorithm establishes cluster centroids basetherdistances between a set of
neighboring points. All data points are then ordered relative to their distance from these centroids. Dips
and rises in the reachability plot (see Supplementary Figures 4a and 6a) denote boundaries betweer
clusters of data pots that have noaniform density. The region with the lowest reachability for a
given cluster represents the center of the cluster (see Supplementary Figures 5 and 6). Cluster center:
are sequences computed from a maliggnment in this low reachabilityegion. Sequences with low
reachability also happen to be more effree (see Supplementary Figures 4b and 6b). Thus, cluster
centers computed from these sequences will match closely with the true haplotype sequence. This
procedure is analogous to comipgtthe centroid for a set of data points #mkans clustering.

S1.5.3 Random sampling and iterative optimization

The naive implementation of OPTICS in scildarn was not suitable for clustering of large sequence
datasets. For datasets containing ntben 200,000 sequences, the pairwise distance and OPTICS
computations become prohibitively CPU and memory intensive for a standard laptop computer. For
example, a 200,000 by 200,000 matrix of 32bit floating point numbers would require 160Gb of
memory.

To avoid CPU and memory intensive processing of large pairwise distance matrices, the OPTICS
implementation in scikitearn was modified to work on random subsets of the whole dataset using the
algorithm described in Section S1.5.1. The idea was to estinestieie cluster centers by using subsets

of the whole dataset. Iteratively populating and updating the cluster centers allows convergence toward
the true haplotype sequence. This approach was somewhat successful because most cluster cente
returned did m@h closely to the haplotype sequences. Supplementary Figure 3 shows a significant
overlap between the positions of haplotype sequences and cluster centers. Supplementary Figure 4t
shows a low error rate for both haplotype sequences and their associatedagnters.

A drawback of this approach is that rare or underrepresented clusters can sometimes be missed in
sampling if too few iterations of the algorithm are run. Some cluster centers returned may also be
suboptimal. A good stop condition for thierative procedure has not yet been found, which means
there is still room for improvement.



Suppl Figure 3 tSNE plot of haplotype sequences, cluster centers, and COI sequences extracted from
a small subset of base called reads. Spatial distancesavepaited from pairwise distances between

each sequence using tSNE. Blue diamonds represent haplotype sequences. Red squares represe
cluster centers computed from this subset of base called reads. Circles represent sequences colorize
by their membershifp each cluster center.



Suppl Figure 4: a) Reachability vs ordering plot of haplotype sequences, cluster centers, and COI
sequences shown in Supplementary Figures 3 and 4b. Dips in the reachability plot represent clusters
identified by scikiil ear nds | mpl ement ati on oderingplfTdf €aBe b)
sequences shown in Supplementary Figures 4a and 3. Blue diamonds represent haplotype sequence
Red squares represent cluster centers. Circles represent sequences colorized by their membership t
each cluster center.

Suppl! Figure 5: tSNE plot of COI sequences shown in Supplementary Figure 3. Spatial distances
were computed from pairwise distances between each sequence using tSNE. Unlike Supplementary
Figure 3, haplotype sequences and cluster centers were excluded from the comptithtt tSNE

plot as the presence of cluster centers can bias the tSNE results. a) Circles represent sequence
colorized by their haplotype identity. b) Circles were colorized by read error relative to their haplotype
sequence. c) Circles were colorizsdreachability.



