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ABSTRACT

When gas accretes onto a black hole, at a rate either much less than or much greater
than the Eddington rate, it is likely to do so in an “adiabatic” or radiatively ineffi-
cient manner. Under fluid (as opposed to MHD) conditions, the disk should become
convective and evolve toward a state of marginal instability. The resulting disk struc-
ture is “gyrentropic,” with convection proceeding along common surfaces of constant
angular momentum, Bernoulli function and entropy, called “gyrentropes.” We present
a family of two-dimensional, self-similar models which describes the time-averaged
disk structure. We then suppose that there is a self-similar, Newtonian torque and
that the Prandtl number is large. This torque drives inflow and meridional circulation
and the resulting flow is computed. Convective transport will become ineffectual near
the disk surface. It is conjectured that this will lead to a large increase of entropy
across a “thermal front” which we identify as the effective disk surface and the base
of an outflow. The conservation of mass, momentum and energy across this thermal
front permits a matching of the disk models to self-similar outflow solutions. We then
demonstrate that self-similar disk solutions can be matched smoothly onto relativistic
flows at small radius and thin disks at large radius. This model of adiabatic accre-
tion is contrasted with some alternative models that have been discussed recently.
The disk models developed in this paper should be useful for interpreting numerical,
fluid dynamical simulations. Related principles to those described here may govern
the behaviour of astrophysically relevant, magnetohydrodynamic disk models.

Key words: accretion: accretion disks — black hole physics — hydrodynamics —
broad absorption line quasars

1 INTRODUCTION

Recent X-ray observations of putative black holes in the
nuclei of nearby elliptical galaxies show that they are ex-
tremely underluminous, some eight and four orders of mag-
nitude below the Eddington and Bondi luminosities, respec-
tively (e.g., Di Matteo et al. 2000; Baganoff et al. 2001;
Mushotzky et al. 2000). These observations have stimulated
a fresh look at the nature of the accretion process. It ap-
pears that when the hole is “underfed,” specifically when the
mass accretion rate is well below the fiducial Eddington rate,
ṁ ≡ Ṁ/ṀE ≪ 1, where ṀE = 4πGM/cκ (with M denot-
ing the black hole mass and κ, the relevant opacity), the ra-
diative efficiency may be quite small, up to six orders of mag-
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nitude smaller than the traditional value ∼ 0.1 c2 ∼ 1020 erg
g−1.

One rationalisation of this observation (e.g.,
Quataert & Narayan 1999, and references therein), is
that the gas accretes quite rapidly under the action of
viscous stress but the dissipated energy is taken up almost
exclusively by the ions, which do not radiate directly
and which cannot heat the electrons efficiently. In a large
number of recent publications, it has been supposed that
electrons are heated minimally in this manner and that
there is a conservative inflow in which hot ions advect
essentially all of their binding energy across the black hole
event horizon.

However, these “Advection-Dominated Accretion Flow”
(ADAF) solutions have a serious and fundamental short-
coming — the accreting gas is generically unbound and can
escape to infinity. The reason why this happens is that the
gas is likely to be supplied with sufficient angular momen-
tum to orbit the hole and its inflow is controlled by the
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2 Roger D. Blandford & Mitchell C. Begelman

rate at which angular momentum is transported outward.
This angular momentum transport, describable as a locally-
acting torque, is necessarily associated with a transport of
energy. If we attempt to conserve mass, angular momentum
and energy in the flow, we find that the Bernoulli function
— the energy that the gas would have if it were allowed to
expand adiabatically to infinity — is twice the local kinetic
energy (Blandford & Begelman 1999, henceforth BB99).
In conventional accretion disks, this energy is radiated away
and the gas remains bound. However, when cooling is unim-
portant on the inflow time — we call this case “adiabatic”
by analogy with the terminology for supernova remnants —
something else must happen to the energy.

In an alternative description of adiabatic accretion,
BB99 proposed that the inflow is non-conservative and that
the radial energy transport drives an outflow that carries
away mass, angular momentum and energy, allowing the disk
to remain bound to the hole. (This was not a new proposal.
Shakura & Sunyaev (1973) were aware of this possibility and
it has been discussed in many subsequent studies.) In these
“ADiabatic Inflow-Outflow Solutions” (ADIOS), the final
accretion rate into the hole may be only a tiny fraction (in
extreme cases < 10−5) of the mass supply at large radius (al-
though this is not required). This leads to a much smaller
luminosity than would be observed from a conservative flow.
This is important from an observational perspective, be-
cause different assumptions about the extent and nature of
the outflow affect the derived densities, temperatures, etc.,
of the emitting regions, and can lead to very different con-
clusions based on phenomenological fits to multi-band data.
In particular, most ADAF models posit essentially thermal
emission, whereas ADIOS models are supposed to involve
nonthermal emission by relativistic electrons as may be ac-
celerated in the trans-sonic, shearing, magnetized flow sur-
rounding the black hole. It has long been tempting (e.g.,
Blandford 1984; Rees et al. 1982) to associate underfed ac-
cretion onto very massive black holes with radio galaxies
and quasars, and the presence of an outflow provides a nat-
ural agency for collimating relativistic jets, which are proba-
bly powered by electromagnetic or hydromagnetic processes
close to the event horizon.

The epitome of an underfed black hole is the Galactic
Centre (e.g., Melia & Falcke 2001). Here the rate of gas
supply at the Bondi radius (r ∼ 105m, where m ≡ GM/c2)
is estimated to be ∼ 1021 g s−1 (e.g., Di Matteo et al. 2000)
while the bolometric luminosity is no more than ∼ 1036 g
s−1, giving an efficiency of conversion of mass supply to
radiant energy of . 10−6c2 — hardly an advertisement
for gravity power! Subsequent observations of Sgr A∗ have
shown that the X-ray emission is rapidly variable and has a
steep spectrum (Baganoff et al. 2001), which is inconsistent
with simple ADAF models that predicted a bremsstrahlung
spectrum produced far from the black hole. Furthermore,
Aitken et al. (2000) (cf. Bower et al. (2003)) have measured
mm linear polarisation, which suggests that the plasma den-
sity close to the black hole is much less than would be asso-
ciated with a conservative inflow (Agol 2000).

As pointed out in Begelman & Meier (1982);
Blandford, Jaroszyński & Kumar (1985) and BB99,
the ADIOS analysis may also be appropriate for “overfed”
accretion, when Ṁ ≫ ṀE . Here the emissivity is large
enough that radiation is emitted freely. However, the

opacity is also large, so that the photons cannot escape
on an inflow timescale and are trapped by the flow.
Hence the radiative efficiency, defined by the ratio of the
escaping luminosity to the mass supply, is also low. At
high accretion rates, the gas is again found to be unbound
and it is proposed that inflow can take place only in the
presence of a compensating outflow. There are also good
observational reasons for believing that radiatively-driven
outflows are associated with overfed accretion. The Galactic
source SS433 (Margon 1984; King, Taam & Begelman
2000) appears to be an accreting black hole from which
gas escapes at a rate at least a hundred times the critical
rate. Galactic superluminal sources, like GRS1915+112
(Mirabel & Rodriguez 1999), also appear to be accreting
rapidly and driving powerful outflows. Overfed, massive
holes have long been associated with radio-quiet quasars
which are classified as broad-absorption line quasars when
viewed from an equatorial direction (e.g., Blandford 1984;
Weymann 1997). Although we do not understand enough
physics to predict the maximum mass accretion rate for an
underfed disk and the minimum one for the overfed case,
the principle is clear — the classical, thin accretion disk is
only a good description for a limited range of intermediate
mass accretion rates and may only apply to a minority of
accreting black holes.

There is now some observational evidence for the propo-
sition that radiation-dominated accretion flows are also
“demand-limited” rather than “supply-driven.” An argu-
ment, originally due to So ltan (1982), associates the en-
ergy radiated by AGN (mostly quasars) with the mass of
the relict black holes. The most recent estimate of these
two quantities, allowing for the redshift of the emitted pho-
tons and the bolometric correction for unobserved emission
(Yu & Tremaine 2002), (but see Fabian (2003)), finds that
they are in the ratio ∼ 0.1 − 0.2c2. This implies that the
binding energy of the accreting gas as it crosses the event
horizon cannot be much less than ∼ 0.1 as would be true
of a radiation-dominated ADAF. Either black holes with
M ∼ 108M⊙, which account for most of the relict mass, ac-
quire most of their mass during thin disk accretion, which
requires an unlikely fine-tuning of the mass supply rate, or
most of the mass supplied is blown away. (Note that this
constraint does not require quasars to satisfy the Eddington
limit (Begelman 2002).)

BB99 presented a family of simple, one-dimensional
similarity solutions that span a large range of allowed flows,
parametrised by the rates at which mass, angular momen-
tum and energy are extracted. There was no discussion of
the extraneous physical considerations that would allow one
to determine these parameters within a broad range limited
only by general thermodynamic and mechanical considera-
tions. In this paper, we present a more detailed, fluid dynam-
ical description of ADIOS disks that exhibits the manner by
which the global transport of mass, angular momentum and
energy might depend upon the microphysics assumed. We
explicitly ignore magnetic field in this paper, so the solutions
presented below are not directly applicable to observed disks
but they are useful for bringing out salient principles. They
may also aid in analyzing numerical simulations.

In particular, we base our models on the predic-
tion that adiabatic fluid disks are convective (Bardeen
1973; Paczyński & Abramowicz 1982; Begelman & Meier
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1982; Blandford, Jaroszyński & Kumar 1985). In more
recent developments, Quataert & Narayan (1999) and
Narayan, Igumenshchev & Abramowicz (2000) have pro-
posed that convection transports energy outward while
carrying angular momentum inward (cf. Ryu & Goodman
1992; Balbus 2000). This type of flow has been styled a
Convection-Dominated Accretion Flow or “CDAF.” In an-
alytic models of a CDAF, the inward radial transport of
angular momentum by convective motions exactly cancels
the outward transport by viscous torque and the net mass
accretion rate is very small.

In this paper, we adopt a quite different model
for the convection. Following Bardeen (1973);
Paczyński & Abramowicz (1982); Begelman & Meier
(1982) and Blandford, Jaroszyński & Kumar (1985), we
argue that the convective transport is vertical rather
than radial, consistent with the Høiland criterion. When
convection is efficient, it implies that the disk structure
is “gyrentropic” — that is to say the isentropes coincide
with “isogyres” (surfaces of constant specific angular
momentum). This is the state of marginal, convective
instability and it leads to the transport of mass, angular
momentum and energy to the disk surface where these
quantities can be removed by the outflow. This prescription
allows us to compute two-dimensional, hydrostatic disk
models. However, these models do not describe inflow.
We therefore add an explicit, though small, viscosity that
leads to a torque across the gyrentropes. We show that this
torque must also drive a meridional circulation which can
be computed. These circulating disk models are accurate
only in the limit of small viscosity, when the convection
can be efficient almost to the disk surface, just as happens
in solar-type stars. The viscosity in accretion disks is not
now thought to be so small and, as a consequence, the
outflow can have a significant impact on the disk structure.
We therefore further modify our circulation disk models by
truncating them at a “thermal front” where the convective
energy flux is transformed into heat so that the associated
pressure can self-consistently drive an outflow to infinity.
In the case of an ion-dominated flow, the region of the disk
downstream of the thermal front may be identified with an
active corona.

One important difference between adiabatic accretion
disks and their conventional, radiative counterparts is that,
as they are thick, with opening angles ∼ 1, the distinction
between the thermal timescale and the viscous timescale
(e.g., Frank, King & Raine 2001) is lost. The outflow ad-
justs on a timescale ∼ O(Ω−1), where Ω is the angular
frequency, whereas, as long as it is dynamical stable, the
disk structure changes on a longer timescale, ∼ O(α−1Ω−1),
where α is the conventional viscosity parameter. These con-
siderations will prove to be important when we discuss how
a disk relaxes to a particular configuration in response to its
assumed microphysical properties.

In the following section, we generalize the one-
dimensional treatment of disk accretion in BB99 to accom-
modate alternative equations of state and introduce six mod-
els that span the types of flows that can be described by
our solutions. In § 3, we discuss two-dimensional convec-
tive stability in a rotating disk and derive models of two-
dimensional gyrentropic disks in hydrostatic equilibrium.
We next introduce a Newtonian, viscous stress that drives

inflow and meridional circulation and supplies mass, angu-
lar momentum and energy to the disk surface (§ 4). Finally,
these disk models are modified to match self-similar outflows
(§ 5). A legitimate concern about self-similar disk models is
that they may be invalid because they must fail at large and
small radii. In § 6, we demonstrate that our self-similar solu-
tions can be matched onto a general relativistic flow close to
the hole, and to a thin disk near an outer, transition radius.
This is followed in § 7 by a critical comparison with some
alternative descriptions of adiabatic accretion that have ap-
peared in the recent literature. We summarize our main con-
clusions in § 8. We shall discuss the more relevant problem
of magnetic accretion in Paper II and the application to
selected astronomical sources in Paper III.

2 ONE-DIMENSIONAL DISKS

2.1 Conservation Laws

In BB99, we gave a simple explanation of why conservative,
adiabatic accretion disk flows are unbound. Specifically, we
showed, using a one-dimensional model, that the Bernoulli
function, defined by

B = H +
Ω2R2

2
−

1

R
, (1)

equals Ω2R2 when the total energy and angular momen-
tum fluxes vanish. Here, Ω is the angular frequency, H =
γP/(γ−1)P is the enthalpy per unit mass, P is the pressure,
P is the density and GM has been set to unity. Radiation-
dominated and gas-dominated accretion correspond to adi-
abatic exponents γ = 4/3, 5/3, respectively. A positive
Bernoulli function implies that an element of gas already
has enough internal energy, after expanding adiabatically
and doing work on its surroundings, to escape to infinity.
Before we discuss possible mechanisms for effecting this re-
moval, we must reprise and generalise the 1D results.

For convenience, we introduce an entropy function

S = P 1/γ/P , (2)

which is monotonically related to the true thermodynamic
entropy in thermal equilibrium. (We shall not require that
the gas be in local thermodynamic equilibrium, only that
P ∝ Pγ when an element of gas changes its density in such
a manner that there is negligible dissipation and heat ex-
change with its surroundings.)

For the moment we ignore vertical gradients, and sup-
pose that the flow is stationary. (The assumption of sta-
tionarity need not seriously restrict our conclusions, if they
are applied to the time-averaged flow.) The disk is hypoth-
esised to evolve under a combination of internal torque and
external loss of mass, angular momentum and energy. This
allows the remaining gas to flow radially inward at a rate
small compared with the rotational speed. In the absence
of a better prescription and in order to elucidate general
principles, we adopt, initially, a self-similar disk mass inflow

Ṁ = −MVr ∝ Rn; 0 6 n < 1, (3)

where M is the mass per unit radius and M, Vr, n substi-
tute for µ,−v, p of BB99, respectively. The reason for the
restriction n > 0 is that gas is only supposed to leave the
disk and for the inequality n < 1 is that the energy flowing
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4 Roger D. Blandford & Mitchell C. Begelman

outward through the disk presumably decreases with radius
as it is released mostly at small radius and is carried off by
an outflow. We can also use eq. (3) to define the mass loss

per unit radius

J ≡
dṀ

dr
= n

Ṁ

r
. (4)

Here, and in what follows, we shall treat the disk and outflow
as symmetric about the equatorial plane, so that all integral
quantities refer to one hemisphere.

We next suppose that the disk angular momentum in-

flow also varies as a power law

FL = Ṁ(L− G) = λṀR1/2 =
2n(1 + η)ṀL

1 + 2n
(5)

where L = R2Ω is the specific angular momentum of the disk
and G (≡ G in BB99) is the generalised, internal torque per
unit Ṁ and is assumed to be positive. As we discuss further
below, this equation can be regarded as a definition of the
torque but it has to be interpreted carefully in the presence
of convection. We replace the parameter λ of BB99 with a
new parameter η. With this definition, the specific angular
momentum of the gas removed is

dFL

dṀ
= (1 + η)L. (6)

Gas dynamical outflows that exert no reaction torque on
the disk have η = 0. However, if there are magnetic fields
present, as we shall discuss explicitly in Paper II, then η > 0
or if the outflow originates below the disk surface, as we dis-
cuss in §5, then η < 0 and so we shall retain this generality.
Provided that this torque can be regarded as a local vari-
able, then the second law of thermodynamics requires that
it oppose the velocity shear (e.g., Landau & Lifshitz 1959)
so that

0 6 η <
1

2n
. (7)

However, angular momentum transport need neither be
local in this sense (e.g., Ryu & Goodman 1992; Balbus
2000; Narayan, Igumenshchev & Abramowicz 2000;
Quataert & Chiang 2000) nor necessarily describable in
the language of fluid mechanics (Quataert & Gruzinov
2000)). Furthermore, the first inequality in eq. (7) is not
strictly required when there is internal circulation, as we
shall discuss below.

In a similar fashion, we assume a self-similar variation
of the disk energy outflow and replace the energy parameter
ǫ of BB99 with the dimensionless parameter β according to

FE = Ṁ(GΩ −B) =
ǫṀ

R
=

−n(β − 1)ṀB

(1 − n)
. (8)

The quantity ṀGΩ represents the mechanical work per-
formed by the generalized torque from eq. (5), while ṀB
is the energy advected inward by the gas. With this defini-
tion of β, we have that

dFE

dṀ
= (β − 1)B, (9)

in parallel to eq. (6). There may be additional contributions
to the energy flux, particularly associated with convection,
hydromagnetic wave transport and thermal conduction. We
shall include the first of these below.

We can combine equations (6) and (9) to obtain the
useful relations

G =
(

1 − nβ

1 − n

)

BR2

L
=
(

1 − 2nη

1 + 2n

)

L. (10)

Bound disks with B < 0, G > 0 require a minimum energy
outflow with

β >
1

n
> 1. (11)

In the limit of a thin disk, B → −1/2R,L → R1/2 and

β →
3 − 4n(1 − n)η

n(1 + 2n)
. (12)

This additional, lower limit on β imposes an additional,
lower limit on η

η >
3 − n(1 + 2n)β

4n(1 − n)
. (13)

In simple, fluid models with η = 0,

β > βmin ≡
3

n(1 + 2n)
. (14)

As explained in BB99, the self-similar scalings for pres-
sure and density are P ∝ Rn−5/2,P ∝ Rn−3/2, which trans-
form the approximate radial equation of motion into the
form

Ω2R2 −
1

R
+ (5/2 − n)

P

P
= 0. (15)

Combining with eq. (1), we obtain

L =

[

2(5 − 2n)[1 − (γ − 1)BR] − 2γ(3 − 2n)]

5 − 2n + γ(2n− 1)

]1/2

R1/2.(16)

Combining eq. (16) with eq. (10) allows us to solve for
L,B,G as explicit functions of n, β, η subject to inequali-
ties (3), (7), (11), and (13).

However, in this paper we shall follow a different ap-
proach. Instead of emphasizing the full range of outflow
models that might be possible, we shall explore the man-
ner in which the local physics might dictate a particular,
global solution. It is then more convenient to express n, β, η
in terms of the fluid variables that describe the disk. A con-
venient, general choice is L,B,G and we find that

n(L,B) =
(5 − γ)L2/R + 10(γ − 1)BR + 2(3γ − 5)

2(γ − 1)(2 + 2BR − L2/R)
(17)

independent of G. Lengthier expressions can be derived for
β(L,B,G) and η(L,B,G), which will not be reproduced. For
the special case of interest here, η = 0, it is simplest to solve
eq. (10) for β

β(L,B) =
(1 + 2n)BR − (1 − n)L2/R

n(1 + 2n)BR
, (18)

and substitute eq. (17). In this case, β is also independent
of G.

2.2 Illustrative Models

In this paper we shall use six examples of combined disk-
wind flows to allow us to explore a range of models described
by our approach and which illustrate some more general
principles. We introduce here the one-dimensional versions
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Figure 1. Four disk models of self-similar, gyrentropic accretion discussed in the text and located on the n− β/βmin plane assuming a
fluid disk with η = 0, γ = 5/3. (Model II has γ = 4/3; Model VI has large β.) The ordinate is the ratio of the scaled energy outflow to
that required for a thin disk with L = R1/2, B = −0.5/R. The dashed lines are contours of constant L/R1/2 in the case of 1D models
and ℓ0 for 2D models; the solid lines are contours of constant BR for 1D models and b0 for 2D. The points correspond to the values of
β/βmin for 1D models. The vertical lines passing upward through these points connect the equivalent values of β/βmin for circulation
models to those for the outflow models (cf. Table 1). Using these and other measures, it can be shown that the 1D models provide a
surprisingly good representation of the 2D models.

All 1D 2D Circ. Out. Wind

No. γ ℓ0 b0 n β θd β β η bd θw bw v∞ θj

I 1.67 0.75 -0.15 0.58 3.01 0.42 2.86 3.27 -0.10 -0.31 0.64 0.62 0.77 0.39
II 1.33 0.90 -0.20 0.58 3.12 0.60 2.87 3.26 -0.09 -0.30 0.91 0.59 0.89 0.39
III 1.67 0.75 -0.03 0.91 1.74 0.18 1.54 1.69 -0.03 -0.19 0.36 0.11 0.19 0.32
IV 1.67 0.75 -0.25 0.17 14.4 0.56 13.9 17.6 -0.76 -0.37 0.77 5.60 2.74 0.66
V 1.67 0.99 -0.46 0.58 2.38 1.34 2.33 2.59 -0.14 -0.49 1.40 0.55 1.13 1.34
VI 1.67 0.63 -0.02 0.58 10.0 0.11 7.05 8.25 -0.09 -0.11 0.34 0.78 0.47 0.24

Table 1. Physical parameters that characterise the six disk-outflow models, identified by Roman numerals. The models are described in
four formalisms of increasing sophistication: a 1D model, a 2D gyrentropic model extending to zero pressure and density, the same with
the internal circulation and convective heat flux computed self-consistently (Circ.), and a disk whose surface is chosen to be a thermal
front that coincides with the base of the outflow (Out). The models are parametrised by the specific heat ratio γ, the equatorial Bernoulli
function b0 (= RB for 1D models) and the scaled, equatorial angular momentum ℓ0 (= R−1/2L for 1D models). These parameters are
sufficient to derive the mass loss exponent n and the energy loss exponent β in 1D, assuming that η = 0. The basic 2D treatment adds
a disk opening angle θd. A viscous torque is introduced in the circulation models which modifies the derived energy loss rate. Further
modifications to θd, β, η occur in the outflow models. The scaled Bernoulli function changes from bd to bw on crossing the thermal front
(at an angle θw) in the outflow models. Asymptotically, the wind flows on the surface of an evacuated cone with scaled speed v∞ and
opening angle θj .
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6 Roger D. Blandford & Mitchell C. Begelman

of these models which we shall shortly describe in two di-
mensions. The principal 1D and 2D characteristics of these
models are listed in Table 1 and plotted for four of these
models, with η = 0 and γ = 5/3, in Fig. 1.

2.2.1 Model I: Fiducial, ion-supported disk

This reference model assumes that the hole is underfed so
that the gas pressure is ion-dominated (with γ = 5/3). We
suppose that the gas has moderate pressure (parametrised
by B = −0.15/R) and centrifugal support (parametrised by
L = 0.75R1/2) and consequently moderate mass and energy
loss rates (n ∼ 0.6, β ∼ 3).

2.2.2 Model II: Radiation-supported disk

Overfed, radiation-dominated accretion with γ = 4/3. L,B
are chosen to give similar values of n, β to Model I.

2.2.3 Model III: Thick disk

A much less bound version of Model I (B ∼ −0.03/R) but
with a similar circular velocity. The 2D disk is very thick
with a small opening angle, θ ∼ 0.2. The mass loss rate
is high (n ∼ 0.9) and so the energy loss parameter is low
(β ∼ 1.7).

2.2.4 Model IV: Intermediate disk

A more tightly bound version of Model I (B = −0.25/R),
with a somewhat thinner disk. The mass loss rate is rela-
tively small (n ∼ 0.2) and so β ∼ 14 has to be correspond-
ingly large to compensate.

2.2.5 Model V: Fast disk

A fast, thin disk (L ∼ 0.99R1/2). In order to create a model
to explore this limit we choose to keep the mass loss rate
index n equal to that of Model I.

2.2.6 Model VI: Slow disk

A slowly rotating, thick disk (L ∼ 0.6R1/2), that is very
weakly bound (B ∼ −0.02/R), but with similar mass loss
index to that of Model I. Again β ∼ 10 is large.

3 TWO-DIMENSIONAL DISKS

3.1 Høiland Criteria

In order to make a two-dimensional model of a slowly accret-
ing and consequently hydrostatic disk, we must specify some
relationship among the thermodynamical variables P,P , S,
etc. Our choice depends upon considerations of stability. An
adiabatic, fluid accretion disk naturally develops a negative,
radial entropy gradient as heat is generated in its interior.
If rotation were unimportant, it would become unstable ac-
cording to the Schwarzschild criterion. However, a Keple-
rian disk has a positive angular momentum gradient and, if
we were to ignore entropy, it would be stable according to

the Rayleigh criterion. For thin disks, the rotational stabil-
isation dominates the entropy destabilisation. However, for
thick disks, the two effects must be compared directly.

To do this, consider a small, flat ribbon of fluid with
an azimuthal length much greater than its width which,
in turn, is much greater than its thickness. Let the rib-
bon undergo a displacement in the poloidal plane, paral-
lel to its width. Assume that the motion is sufficiently slow
that the ribbon remains in pressure equilibrium with its sur-
roundings and sufficiently rapid that its entropy S is un-
changed (e.g., Goldreich & Schubert 1967; Tassoul 1978;
Begelman & Meier 1982). The net buoyant acceleration on
the ribbon is then given by

δ~abuoy = −(δ~r · ∇)S
(

∂ lnP

∂S

)

P

(

∇P

P

)

= (δ~r · ∇)S ∇

(

P 1−1/γ

1 − 1/γ

)

, (19)

where the spatial gradients are in the surrounding medium.
If the displacement is also rapid enough for the ribbon’s
specific angular momentum L to be unchanged during the
displacement, the surplus centrifugal acceleration of the rib-
bon relative to its surroundings is likewise given by

δ~acent = −(δ~r · ∇)L2

(

~R

R4

)

= (δ~r · ∇)L2∇
(

1

2R2

)

. (20)

The total acceleration is the sum of equations (19) and (20).
If a virtual displacement δ~r is made, the virtual work

done, per unit mass of fluid, is δW = Uijδriδrj/2, where the
tensor U is given by

U = ∇

(

P 1−1/γ

1 − 1/γ

)

⊗∇S + ∇
(

1

2R2

)

⊗∇L2. (21)

Only the symmetric part of U need be retained and we can
rotate axes in the r − θ plane so that it is diagonal. The
flow will be unstable if there exists a displacement δ~r such
that δW > 0. If the trace of U is positive, then there must
be unstable displacements. This leads to the first Høiland
instability condition,

∇

(

P 1−1/γ

1 − 1/γ

)

· ∇S + ∇
(

1

2R2

)

· ∇L2 > 0. (22)

Disks that satisfy this inequality are unstable in the equa-
torial plane to radial displacements. If we adopt our self-
similar scalings and impose hydrostatic balance in the equa-
torial plane, then this instability condition can be re-written
as

R3Ω2 <
3γ − 5 − 2nγ + 2n

γ − 5 − 2nγ + 2n
≡ a(γ, n). (23)

For γ = 5/3 (4/3), a(γ, n) increases from 0 (3/11) to
2/7 (5/13) as n increases from 0 to 1. It turns out that all
of the 1- and 2-dimensional models discussed below strongly
violate inequality (23). For this reason, we argue that adia-
batic, fluid disks are quite stable to radial convection.

Nonetheless, when Tr(U) < 0, a second Høiland crite-
rion must be considered and there will still be a range of
unstable displacement directions if
[

∇

(

P 1−1/γ

1 − 1/γ

)

×∇
(

1

2R2

)

]

·
[

∇S ×∇L2
]

< 0 (24)

or
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(∇P ×∇R) · (∇S ×∇L) > 0. (25)

In our application, the onset of instability is always associ-
ated with a change in sign of ∇S ×∇L, not ∇P ×∇R.

In order to interpret inequality (25), it is useful
to define a series of 2D surfaces that are tangent on
an equatorial ring lying in the disk midplane and on
which S,B,L, R,Ω, r, P,P are constant (Fig. 2). It is
straightforward to show, by combining the Høiland cri-
teria with the equation of hydrostatic equilibrium and
its curl, that the surfaces of constant S,L,B,R,Ω, r, P,P ,
must be nested in order of increasing Gaussian curva-
ture in a stable, fluid disk (Begelman & Meier 1982;
Blandford, Jaroszyński & Kumar 1985). (Actually, it is not
formally required that the “isorotes” [Ω = constant surfaces]
be less curved than spheres, r = constant, though this is true
for all of our solutions.)

The surfaces on which the Bernoulli function B is con-
stant are particularly important. We call these “isoberns.”
Using the equation of hydrostatic equilibrium, it can be
shown that

∇B = H∇ lnS + Ω∇L. (26)

Equation (26) implies that the isoberns lie between the “iso-
gyres” (surfaces of constant L) and the isentropes. Stability
requires that the isogyres lie inside the isentropes (eq. [25]).
When the disk is marginally stable, S,L,B are constant on
a common surface, which we call a “gyrentrope.” We ar-
gue that adiabatic, fluid disks should evolve quickly towards
this state and we call such disks “gyrentropic” (cf. Bardeen
1973). In a marginally unstable disk, the growing eigen-
modes have displacements that lie between the isentropes
and the isogyres. In other words, near marginal stability,
thin ribbons of gas move in opposite directions roughly along
the nearly coincident isentrope/isogyre/isobern = gyren-
tropic surfaces.

3.2 Numerical Simulations

There have been many simulations of fluid dynamical ac-
cretion disks, both two- and three-dimensional. In particu-
lar, Stone, Pringle & Begelman (1999) (SPB99) have carried
out two-dimensional simulations of adiabatic disks evolving
under a variety of prescriptions. Gas was supplied at an
intermediate radius and endowed with viscosity. It spread
inward (and outward) on a viscous timescale and became
strongly convective, developing a gyrentropic structure at
intermediate radii. Convection transported energy and an-
gular momentum primarily along gyrentropes. In directions
normal to the gyrentropes, the only means of transporting
energy and angular momentum were via the viscous stress
and advection. Since viscosity transports angular momen-
tum outward with a positive divergence in the equatorial
regions, the loss of angular momentum was balanced by a
combination of meridional flow and convective transport of
angular momentum between high latitudes and the equato-
rial region. When the gas was marginally unstable according
to criterion eq. (25), convection exchanged mass, energy and
angular momentum between the disk interior and high lati-
tude and not radially outward throughout the disk.

The details of this balance between convection and cir-
culation in the simulations depended upon the form of the

P

P

r

W

R

L

B

S

Figure 2. Structure of convectively-stable accretion disks. Level
surfaces of density (P), pressure (P ), spherical radius (r), angu-
lar frequency (Ω), cylindrical radius (R), angular momentum (L),
Bernoulli function (B) and entropy (S) passing through an equa-
torial ring of radius r. The configuration shown is dynamically
stable according to both Høiland criteria eq. (25). When the or-
der of the isentropes and isogyres is reversed, the flow becomes
convectively unstable.

viscous stress. For example, when the viscosity ν was set
to be proportional to ρ (Run B of SPB99), the viscous
torque was balanced partially by inflow in the equatorial
zones. But at high latitudes, where the gyrentropic surfaces
themselves became roughly radial, the angular momentum
flux was dominated by convective transport and the mass
flux was generally outward, producing a quadrupolar flow
pattern. When the viscosity was chosen to satisfy the self-
similar scaling law, ν ∝ r1/2, (Run K of SPB99), convec-
tion along gyrentropes was strikingly demonstrated in the
cross-correlation of the entropy and the angular momentum
(Fig. 3).

SPB99 measured separately the radial mass inflow and
outflow rates and found that they both obey Ṁ ∝ r very
roughly. The net mass accretion rate, given by the inflow
rate minus the outflow rate, is approximately independent
of r and equals the inflow at the inner radius. In other words,
the mass reaching the hole at rin is a fraction ∼ (rin/rout)
of that supplied at rout. This is a strong indication that
the flows had not become stationary which would probably
require a continuous supply of gas at large radius.

3.3 Global Consequences of the Gyrentropic

Hypothesis

We have argued, on the basis of the one-dimensional treat-
ment, that a rotating flow will have B > 0 unless there is
some means of removing energy. We have also argued that
such a flow will become convective and that the natural di-
rection of energy transport is along gyrentropes, where B
is constant, to the disk surface. This strongly suggests that
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8 Roger D. Blandford & Mitchell C. Begelman

Figure 3. Cross-correlation of specific angular momentum and
specific entropy from Run K of SPB99, showing convection along
gyrentropic surfaces. A time-sequence of frames from this simu-
lation shows both inflow and outflow of fluid elements parallel to
these surfaces, particularly apparent at mid- and high latitudes.

adiabatic, fluid disks lose energy though some form of out-
flow from their surfaces.

However, as emphasized by
Abramowicz, Lasota & Igumenshchev (2000), the con-
dition that B > 0 somewhere does not automatically imply
outflow. Consider a general, axisymmetric disk with surface
described by the equation r = rd(θ). As with a star, the
surface properties of a disk can be quite subtle, but it is
reasonable to suppose that the enthalpy at the top of the
convection zone is much smaller than in the interior and
can be ignored. In addition, the pressure will be small;
consequently, the surface will be an isobar. Resolving the
equation of motion along the disk surface, we obtain a
differential equation that relates its shape to the variation
of B on the surface (and, indirectly, within the disk):

d ln rd
d ln sin θ

=
−2(1 + Br)

1 + 2Br
. (27)

From the form of this equation, we discover that the disk
surface can have B > 0 provided that d ln sin θ/d ln rd <
−1/2, that is to say within a funnel where the cross section
increases with height slower than parabolically. However,
outside such a funnel, the surface must have B < 0 if it is
to remain bound. Indeed, when the disk latitude decreases
with r, as it must eventually, then −1 < Br < −1/2 must
be satisfied along the free surface. Note, especially, that if
the disk surface is conical, as it is in our similarity solutions,
then

B(r, θd) =
−1

2r
(28)

over the entire surface.
The requirement that B < 0 on the surface of a stable

disk (excluding a funnel), however, is inconsistent with hav-
ing B > 0 in the interior. This is because the second Høiland

criterion, eq. (25), requires that B increase with altitude. It
is for these reasons that we argue that conservative, adia-
batic, fluid accretion disks do not exist and, instead, there
must always be outflows.

3.4 Self-Similar, Gyrentropic Disks

We now present an elementary description of two-
dimensional, self-similar, adiabatic, gyrentropic fluid disks.
We shall make two key approximations in this description
— that the only motion is rotational and that the disks are
gyrentropic all the way to their surfaces where the density
and pressure vanish simultaneously. Both of these approxi-
mations become accurate in the limit that the rate of dissi-
pation tends to zero. In § 4, we shall introduce a prescription
for relaxing the first of these and in § 5, we shall address the
second.

In two dimensions, our assumption of self-similarity re-
quires that the pressure, density and specific angular mo-
mentum satisfy the scalings:

P = rn−5/2p(θ), P = rn−3/2ρ(θ), L = r1/2ℓ(θ). (29)

(Note that we consistently use upper case for the physical
variables and lower case for their angular variations.)

The equations of motion are

1

P

∂P

∂r
= −

1

r2
+

L2 csc2 θ

r3
(30)

1

Pr

∂P

∂θ
=

L2 cot θ csc2 θ

r3
, (31)

from which we obtain

(5/2 − n)p/ρ = 1 − ℓ2 csc2 θ (32)

p′/ρ = ℓ2 cot θ csc2 θ, (33)

where the prime denotes differentiation with respect to θ.
Now consider the entropy function

S = P 1/γP−1 = s(θ)r
−a
1−a , (34)

where a(γ, n) is defined in eq. (23) and s = p1/γρ−1.
Gyrentropicity implies that S = S(L) and so self-

similarity requires that

S ∝ (r1/2ℓ)
−2a
1−a . (35)

This provides an algebraic relation among p,ρ, and ℓ.
The solution to equations (32), (33) and (35) is

ℓ =
{

a + [a2 + ℓ20(ℓ20 − 2a) csc2 θ]1/2
}1/2

sin θ (36)

p =

(

1 − ℓ2 csc2 θ

5/2 − n

)

γ
γ−1

s
−γ
γ−1 (37)

ρ =

(

1 − ℓ2 csc2 θ

5/2 − n

) 1

γ−1

s
−γ
γ−1 (38)

s = s0

(

ℓ

ℓ0

)

−2a
1−a

(39)

where ℓ0 = ℓ(π/2), etc., measures the angular momentum,
etc., in the midplane at radius r0. Equivalently, we can write

S = s0

(

L

ℓ0

)

−2a
1−a

. (40)

c© 0000 RAS, MNRAS 000, 000–000



Two Dimensional Adiabatic Flows onto a Black Hole: I. Fluid Accretion 9

The disk terminates at a free surface where p, ρ → 0 and so
the disk opening angle is given by

sin θd = ld = ℓ0

(

ℓ20 − 2a

1 − 2a

)1/2

. (41)

We next use eq. (36) to solve for the gyrentropes,
L = const. These are given by

r = rL(θ) = r0ℓ
2
0/ℓ

2. (42)

The gyrentropes intersect the disk surface at a radius

r = rd = r0(1 − 2a)/(ℓ20 − 2a). (43)

The Bernoulli function, which is also constant on gyren-
tropes, can be calculated using eq. (1) as

b = rB = −
ℓ2d
2ℓ2

, (44)

consistent with eq. (40). Eq. (44) also allows us to relate the
value of the Bernoulli function at the midplane (θ = π/2)
to the midplane angular momentum:

b0 = −
ℓ20 − 2a

2(1 − 2a)
. (45)

Equivalent to eq. (40), we have

B = b0

(

L

ℓ0

)−2

. (46)

The two autonomous relations, equations (40) and (46), are
equivalent to the self-similar relation eq. (3) and the as-
sumption of gyrentropicity and can be used to replace self-
similarity when making a model of the inner disk (cf. § 6.2).
Note that we are only free to specify two functional relations
among L, S,B because these relations must be consistent
with the equations of motion, equations (30) and (31).

3.5 Two-Dimensional Gyrentropic Disk Models

For an assumed value of the specific heat ratio, γ, the above
relations suffice to specify a two-parameter family of self-
similar disk models. To facilitate comparison with the one-
dimensional models, we choose these two additional param-
eters to be R−1/2L → ℓ0 and RB → b0. The mass loss
exponent n can then be thought of as being given implicitly
by eq. (45), which is identical to the 1D relation, eq. (17).
In addition, we must also specify the midplane entropy, s0,
which fixes the pressure and density. However, s0 does not
change the shape of either the disk or the isogyres and can
be set to unity without loss of generality.

The six two-dimensional models, corresponding to the
six illustrative one-dimensional models (§ 2.2), are exhibited
in Fig. 4. These models demonstrate that the gyrentropes
are generically negatively curved surfaces, implying that the
isorotes (surfaces of constant Ω) are positively curved. They
also show that the disks thicken, for a given equatorial angu-
lar momentum ℓ0, as the mass loss rate, measured by n, de-
creases. Conversely, for a given value of n, the disks thicken
as the rotational support, measured by ℓ0, decreases and
the pressure becomes more important. Observe that chang-
ing the specific heat ratio is relatively unimportant. In this
way, adiabatic accretion is rather different from spherical
accretion, where γ = 5/3 constitutes a singular limit.

4 CIRCULATION DISKS

4.1 Energy and Angular Momentum Transport

We have so far treated the disk as being in circular mo-
tion and strictly gyrentropic. We now relax the first of these
assumptions. Suppose that there is a local torque per unit
length

G ≡
dṀG

ds
(47)

(where ds is an element of length in the meridional plane),
that is small enough that we can treat its effect as perturba-
tive upon the fundamental, gyrentropic flow pattern. (Note
that G is integrated over azimuth.) We conjecture that this
torque will eventually drive a fluid disk to marginal insta-
bility everywhere, so that the isentropes lie just “inside”
the isogyres and that, except near the disk surfaces, we can
continue to approximate the disk angular momentum distri-
bution as gyrentropic.

As was discussed in § 3.1, the convective motions con-
sist of slender ribbons of fluid moving between these two
surfaces. We suppose that the angle between the isogyres
and isentropes will open up just enough to allow the rele-
vant transport to take place. Heat and angular momentum
can be convected in this manner as a displaced ribbon can
exchange both quantities with its surroundings. The rela-
tive efficiency with which this happens will depend upon
the effective Prandtl number, Pr. We assume that the local
thermal conductivity is much higher than the local effective
viscosity, implying that Pr is large and that the meridional
flow is driven by the torque as opposed to thermal conduc-
tion. It then follows that the displacements will nearly follow
the isogyres and that the convective transport of heat Q will
be more important than the convective transport of angular
momentum, because the ribbons develop larger departures
from local thermal than mechanical equilibrium. We will
consequently ignore convective angular momentum trans-
port and suppose that the only torque is Newtonian, i.e.,
G ∝ −∇Ω. (Alternative prescriptions are certainly possible
and we shall consider some in the following paper. However,
we contend that our prescription is the natural choice for
high Pr, fluid disks.)

Convection, along gyrentropes, involves relatively rapid,
forward and backward motions that average to give a net
mass flux per unit length parallel to the gyrentropes, after
integrating in azimuth. To this must be added the steady
inflow (or outflow) of the gas perpendicular to the gyren-
tropes. The two flows are combined into a single poloidal
mass current vector

~J = 2πRP ~Vp = rn−1~j(θ) (48)

where ~Vp ≡ [Vr, Vθ].

4.2 Torque Density

Consistent with the preceding discussion, we write

~G ≡ rn−1/2~g(θ) (49)

= −2παR3P∇ ln Ω (50)

= 3πα sin3 θp[1,−2ω′/3ω]rn−1/2 (51)
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Figure 4. The six simple 2D disk models described in § 3.5 and Table 1. The isobars, isorotes and gyrentropes are shown with dotted,
dashed and solid contours, respectively. In these models, it is assumed that convection is efficient and extends all the way to the disk
surface. The outflow does not influence the disk structure in these models.

where ω = r3/2Ω = ℓ csc2 θ is the scaled angular ve-
locity, α ≡ νPΩ/P is the standard viscosity parameter
(Shakura & Sunyaev 1973) and ν is the kinematic viscosity.
~G can be treated as a poloidal vector in this approximation
although it is really a third rank tensor. In order to comply
with our self-similar assumption, we set α = constant. This
ensures that the characteristic inflow and circulation speeds
are fixed fractions (∝ α) of the Keplerian value.

4.3 Conservation Laws

We can now write down equations representing the conser-
vation of mass and angular momentum:

∇ · ~J = 0; ∇ · (L~J + ~G) = 0. (52)

Adopting our self-similar prescription, these equations com-
bine to give two ordinary differential equations,

j′θ =
2n

ℓ
[ℓ′jθ + (n +

1

2
)gr + g′θ] = −njr. (53)

This can be solved for an assumed value of n subject to
the boundary condition jθ(π/2) = 0. Note that solutions to
this equation automatically conserve mass. If we start by
assuming that Ṁ ∝ rn, then the net mass flowing across

a hemispherical surface, Ṁ = −r
∫ π/2

θd
dθJr, automatically

satisfies dṀ/dr = −Jθ(θd), as required. The solutions for

the flow and the torque (Fig. 5) show that there is a net
inflow across the gyrentropes and that the total mass inflow
at a given radius in a disk of given shape satisfies Ṁ ∝
s
−γ/(γ−1)
0 α.

However, superimposed upon this inflow is a quadrupo-
lar circulation, directed inward in the equatorial region and
outward near the disk surface. In some, though not all, solu-
tions the combined, radial flow is outward at high latitude.

Although the solution for ~J is finite at the disk surface,
the velocity ~V = ~J/2πRP diverges. This signals the failure
of our model for convective energy transport, as we discuss
in the following section. By contrast, the torque density ~G
vanishes at the disk surface according to eq. (49). The an-
gular momentum incident on the disk surface is then

dFL

dr
= −LJθ = L

dṀ

dr
⇒ η = 0, (54)

where we have used eq. (6). This confirms that the outflow-
ing gas only carries off its own specific angular momentum,
cf. eq. (7), BB99.

We next solve for the convective energy flux ~Q. This
must be directed along the gyrentropes and so we can write
it in the form

~Q ≡ [2ℓ′,−ℓ] q(θ)rn−2. (55)

The equation of energy conservation becomes
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Figure 5. Circulation model for the fiducial illustrative example I. a) Poloidal mass flux ~j from eq. (53). It is assumed that the mass
flow extends all the way to the disk surface. Note that, although the net poloidal flow is inward, the flow is actually outward near the
disk surface. b) The two components of the mass flux ~j and the assumed viscous torque ~g, as well as the convective heat flow along the
gyrentropes, measured by q. The vertical line marks the location of the thermal front in the outflow model (cf. § 5).

∇ · [B ~J + Ω ~G + ~Q] = 0. (56)

This furnishes a first order differential equation for q(θ),

ℓq′−(2n−3)ℓ′q+jrb−jθb
′−(n−1)ωgr−ω′gθ−ωg′θ = 0, (57)

which can be solved subject to q(π/2) = 0.
The supply of energy to the disk surface is given by

dFE

dr
= JθB + Qθ. (58)

Comparing with eq. (9) we deduce that

β =
Qθ

JθB
=

ℓdqd
jθdbd

=
−2 sin θdqd

jθd
(59)

where ℓd, bd are given by equations (41) and (28) and jθd, qd
are given by solutions of the differential equations (53) and
(57). β is then a function of ℓ0, n and, implicitly of ℓ0, b0 as
in the 1D models.

In the important limit when the disk expands all the
way to the pole, with θd, ℓd → 0 and ℓ0 → (2a)1/2, b0 → 1/2,
then β → ∞.

4.4 Circulation Disk Models

We have computed circulation disk models corresponding to
the 1D, 2D models discussed in § 2.2, § 3.5. In Fig. (5), we
exhibit the flow pattern for our fiducial Model I (adopting a
viscosity parameter α = 0.03). We also present the angular
variations of the mass flux, torque and convective heat flux.
The poloidal flow is fundamentally quadrupolar, inward at
low latitude and outward at high latitude. The flows for the
other five circulation models are qualitatively similar.

5 OUTFLOW DISKS

5.1 Efficiency of Convection

We now turn to the second of our modifications to the ba-
sic gyrentropic disk model, which introduces features that
may be largely absent from existing numerical simulations
due to inadequate resolution and/or missing physical pro-
cesses. We allow for the fact that convection of energy and
angular momentum will not be efficient close to the disk sur-
face so that the gyrentropic approximation may no longer
hold. We have already argued that the convection will be
along the isogyres. Assuming that the isogyres and the
isentropes have the unstable ordering with an angle δ be-
tween them, then, according to standard mixing-length the-
ory (e.g., Hansen & Kawaler 1994), the convective energy
flux, integrated over azimuth, will be given by

Q ∼ 2πRPv3c (60)

∼ 2πRP 3/2P−1/2(~hP · ∇ lnS)3/2 (61)

∼ 2πRP 3/2P−1/2δ3/2 (62)

where vc is the convection speed and ~hP is a vector of length
equal to the pressure scale height and tangent to the isogyre.
(We drop numerical constants of order unity.) The Mach
number of the convective motions is given by

Mc ∼ δ1/2 ∼

(

QP1/2

2πRP 3/2

)1/3

∼

(

qℓρ1/2

2πp3/2 sin θ

)1/3

. (63)

5.2 Thermal Front

We now make the ansatz that, when Mc reaches a cer-
tain critical value Mc,crit, which we choose, arbitrarily,
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Figure 6. Poloidal flows for the six outflow disk models listed in § 2.2 and Table 1. Within the disk, the conditions are identical to

those presented in Fig. 5. However, the disk is presumed to terminate at a thermal front (with opening angle θw; dashed line) where the
convective heat flux and the viscosity abruptly vanish and across which the flows of mass, momentum and energy are conserved. This is
where the outflow begins (cf. § 5.2). The outflow lies between cones with opening angles θj , θw. The flow at small radius is omitted.

though not unreasonably, to be unity, the convective motions
rapidly dissipate and the convective energy flux is quickly
converted into heat, increasing the entropy of the gas. Si-
multaneously, we suppose that the torque ceases to act and
that the viscous transport of angular momentum and en-
ergy stops abruptly. In reality, this transition is likely to
occur gradually through the dissipation of turbulent wave
modes and the acceleration of the flow within an extended
region. However, approximating this transition as a discon-
tinuity, located at a biconical thermal front, suffices for us
to make a simple model.

We impose jump conditions at this transition by requir-
ing that the mass, momentum and energy fluxes are equal
on either side of the transition.

[Jθ ] = 0 ⇒ jθw = jθ,th (64)

[JθVr] = 0 ⇒ vr,w = vr,th (65)

[2πRP + JθVθ] = 0

⇒ jθ,th(vθ,w − vθ,th) = 2π sin θw(pth − pw) (66)

[Gθ + JθL] = 0 ⇒ jθ,th(ℓw − ℓth) = gθ,th (67)

[GθΩ + JθB + Qθ] = 0

⇒ jθ,th(bth − bw) = ℓthqth − gθ,thωth. (68)

These equations allow us to solve for the initial physical
conditions (specifically pw, ρw, ~vw) at the base of the wind
(designated w) in terms of those upstream from the thermal
front (designated th). The disk now terminates at an opening
angle θw rather than θd and equations (54) and (59) must

be replaced with

η =
gθ,th

ℓthjθ,th
(69)

β =
ℓthqth − gθ,thωth

jθ,thbth
. (70)

Note that η will now be negative because the isorotes are
less curved than spheres. This is an artificial consequence of
locating the effective disk surface inside the disk. In general,
η is usually small for fluid disks and it is a fair approximation
to ignore it.

5.3 Wind Solutions

We now turn to the structure of a thermally-driven, gas dy-
namical wind and describe simple similarity solutions along
the lines of those first derived by Bardeen & Berger (1978).
We suppose that a gas dynamical wind is launched from
the surface of the disk located at θ = θw with initial con-
ditions determined by the jump conditions at the thermal
front. In the solutions that we shall consider, the increase in
entropy at the thermal front is sufficient to change the sign
of the Bernoulli function and render the gas unbound. We
suppose that in its subsequent flow we can ignore viscous
stress and mixing of mass, angular momentum and energy
between streamlines.

We continue to adopt the self-similar scalings and gen-
eralize the velocity to a three-dimensional vector,
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~V = r−1/2[vr(θ), vθ(θ), vφ(θ)], (71)

in spherical polar coordinates. The equations of continuity,
motion and entropy conservation can be written:

ρ′

ρ
+

v′θ
vθ

= − cot θ −
nvr
vθ

(72)

v′r
vr

=
(v2r + 2v2θ + 2v2φ − 2)ρ + (5 − 2n)p

2ρvrvθ
(73)

v′θ
vθ

+

(

p

ρv2θ

)

p′

p
=

2v2φ cot θ − vrvθ

2v2θ
(74)

v′φ
vφ

= −
vr
2vθ

− cot θ (75)

1

γ

p′

p
−

ρ′

ρ
=
(

a

1 − a

)

vr
vθ

(76)

where a prime denotes differentiation with respect to θ.

These equations can now be rearranged:

p′ = γpρ[(1 + 2n(a− 1) + a)vrvθ

+2(a− 1)(v2φ + v2θ) cot θ]

2(a− 1)(γp− ρv2θ)
(77)

ρ′ = −ρ[vr(2γpa + (2n− 1)(a− 1)ρv2θ)

+2(a− 1)ρvθ(v2φ + v2θ) cot θ]

2(1 − a)vθ(γp− ρv2θ)
(78)

v′r =
(5 − 2n)p + ρ(2v2φ + v2r + 2v2θ − 2)

2ρvθ
(79)

v′θ = [vr(−2γp(a + na− n) + (a− 1)ρv2θ)

−2(a− 1)(γp + ρv2φ)vθ cot θ]

2(a− 1)(γp− ρv2θ)
(80)

v′φ =
−vφ(vr + 2vθ cot θ)

2vθ
. (81)

These equations have three integrals, as may be readily veri-
fied. The entropy S, the Bernoulli function B and the specific
angular momentum L are conserved along streamlines. We
conclude that, as with the disk, S = S(L), B = B(L) in the
wind, although for a quite different reason. The entire flow
can then be labeled using the disk gyrentropes that extend
out to the thermal front where they are replaced by the wind
gyrentropes.

Now consider the wind flow well away from the disk.
There is potentially a critical point where vθ = (γp/ρ)1/2,
the adiabatic sound speed. (The reason why only the θ com-
ponent of the velocity is involved is that self-similarity and
axisymmetry prescribe the other two components.) How-
ever, solutions satisfying appropriate boundary conditions
never reach their critical speeds. From a mathematical point
of view, these winds are “breezes,” and vθ is always subsonic,
even if the radial velocity becomes strongly supersonic. (In
fact, vθ must be subsonic, under all conditions, for γ < 3/2.)

As B is conserved in the outflow we can use its value
at the thermal front to compute the asymptotic wind speed.
We express the speed, v∞, by tracing the flow back to the
thermal front on a flow line and then back to the midplane
on a gyrentrope. v∞ is then given in Table 1 in units of the
Keplerian speed at this point.

5.4 Outflow Disk Models

We have integrated equations (77)–(81) and produced
matched flows for the six examples (Fig. 6). We find that it
is generally possible to obtain physically plausible solutions
for viable disk models. For each of our examples, which span
a much larger volume of parameter space than we envisage
is occupied by real disks, we find that the viscous dissipa-
tion creates so much heat that it easily unbinds the gas
downwind of the thermal front. The outflow always occu-
pies a hollow cone on account of the centrifugal barrier. The
computed thermal fronts lie somewhat below the surfaces of
the computed 2D disks (i.e. , θw > θd) and so the outflow
disks are somewhat thinner than the equivalent circulation
disks, but not by a large factor for reasonable values of α
and Mc,crit. The jet cones have angles θj that are not much
smaller than the thermal front cone angles, θw. The values
of β computed in these more complete models do not dif-
fer greatly from those in our simple 1D and circulation disk
models. The values of the angular momentum loss param-
eter η are generally small except for Model IV, where it is
compensating for the low mass loss rate.

We have made a very simple, two-part model to account
for the dissipation. We suppose that there is distributed,
Newtonian dissipation within the disk, and a discontinuous
entropy production front at the disk surface. How do our re-
sults depend upon the choice of α, which controls the former
process, and Mc,crit, which controls the latter? For Model I,
we find that increasing α from 0.03 to 0.1 causes the ther-
mal front to be located at greater density in the disk, where
the opening angle is θw = 0.78 as opposed to 0.64. The cone
excluded by the jet has a correspondingly larger opening an-
gle, increasing to θj = 0.46 from 0.39. Conversely, when we
reduce α to 0.01, the thermal front is located at θw = 0.57,
i.e., closer to the surface of the original gyrentropic disk at
θd = 0.42, so that the original gyrentropic model becomes
more accurate. (In addition, θj falls to 0.33.)

When we separately reduce Mc,crit to 0.7 we find that
the thermal front is located deeper in the disk, at θw = 0.76,
and that the jet cone angle increases to θj = 0.55 as the
outflow is launched with a lower speed relative to the surface
of the thermal front. Our models are therefore not strongly
sensitive to the values of α and Mc,ccrit, and the sense of
the changes that variations in these parameters bring about
are as expected.

6 NON-SELF-SIMILAR FLOW AT SMALL

AND LARGE RADII

6.1 Energy Release in Adiabatic Flows

We have so far concentrated upon self-similar models of adi-
abatic accretion flows because these allow us to generate
self-consistent solutions through solving ordinary differential
equations. However, as was made clear in BB99, the require-
ment that energy be carried away somehow from an adia-
batic flow follows from general conservation laws and is not
dependent upon self-similarity. If, for example, the viscous
torque were to decrease suddenly at the radius where the
disk becomes neutral, the thickness and the outflow would
also be expected to exhibit abrupt changes. However there
would still be a need for the energy released at small radius

c© 0000 RAS, MNRAS 000, 000–000



14 Roger D. Blandford & Mitchell C. Begelman

to be carried off in an outflow. In the context of the present
paper, the disks should still convect energy to their surfaces
and drive meridional circulation.

Furthermore, self-similar solutions cannot describe im-
portant features of the flow at small and large radius where
self-similarity must fail. In this section, we discuss relativis-
tic flow at small radius and non-self-similar flow near the
outer transition radius.

6.2 Relativistic Flow at Small Radius

A convenient form of the equation of hydrostatic balance for
a stationary, axisymmetric flow is

−
∇P

P̃H̃
= ~̃A = ∇ ln Ẽ −

Ω̃∇L̃

1 − Ω̃L̃
(82)

where c = 1, ~̃A is the acceleration and the relativistic en-
thalpy per unit rest mass is H̃ = 1 +H = 1 + γP/(γ − 1)P̃ ,
with P̃ now representing the proper density of rest mass.
This applies to both radiation-dominated (γ = 4/3) and
ion-dominated (γ = 5/3) flows. Ẽ = −u0 is the energy at
infinity, Ω̃ = uφ/u0 is the angular velocity and L̃ = −uφ/u0

is the fluid angular momentum. [Note that the relativistic
definition of angular momentum differs from the conven-
tional dynamical choice of uφ. It is more convenient for fluid
dynamical use (Bardeen 1973; Seguin 1975).] These essen-
tially kinematical quantities are related through

Ẽ(r, θ, L̃) = (−g00 + 2g0φL̃− gφφL̃2)−1/2

Ω̃(r, θ, L̃) =
g0φ − gφφL̃

g00 − g0φL̃
. (83)

where gαβ is the contravariant form of the metric tensor in
Boyer-Lindquist coordinates for a hole with specific angular
momentum a. For illustration we adopt the value a = 0.95m.

The relativistic generalization of eq. (26) is

∇ ln B̃ = (1 − H̃−1)∇ lnS +
Ω̃∇L̃

1 − Ω̃L̃
, (84)

where

B̃ = H̃Ẽ (85)

is the relativistic Bernoulli function and the entropy function
is still given by eq. (2). Note that the Bernoulli function now
includes a contribution from the rest mass.

The two non-relativistic Høiland criteria, equations
(22) and (25), have relativistic counterparts (Seguin 1975;
Blandford, Jaroszyński & Kumar 1985). The first criterion
for marginal instability generalizes to become:

1

H̃2
∇

(

P 1−1/γ

1 − 1/γ

)

· ∇S − ~γ · ∇L̃ > 0 (86)

where

~γ =
d~̃A

dL̃
=

E4∇L̃

g20φ − g00gφφ
−

∇Ω̃

(1 − Ω̃L̃)2
(87)

and the derivative is performed assuming only circular mo-
tion. The second criterion also generalizes to become

(∇P × ~γ) · (∇S ×∇L̃) > 0. (88)

We find that the first Høiland criterion is even more strongly
satisfied in the inner disk (where the entropy gradient

changes to become stabilizing) than in the self-similar disk.
We conjecture that the flow will evolve to a state of marginal
stability according to the second Høiland criterion so that
the entire disk is gyrentropic.

In order to construct a gyrentropic inner disk model,
we need to introduce two autonomous functions S(L̃), B̃(L̃)
as described in § 3.4. What we actually do is ultimately
equivalent. We specify equatorial distributions of angular
momentum and entropy, L̃(r0), S̃(r0), from which we can de-
duce S̃(L̃), that are chosen to match onto the non-relativistic
functions at large radius. In addition, the angular momen-
tum must equal the relativistic Keplerian value at two radii
— a radius rm where the pressure is maximized and a
smaller radius rc (the “cusp” radius) where the pressure and
its gradient vanish. The particular form of L̃ that we use is

L̃(r0) = ℓ0r
1/2
0 [1 + c1 exp(−c2r0)] (89)

where the constants c1 = 1.78,, c2 = 0.18 are chosen to fit a
disk with rc = 1.84m, rm = 6m (Fig. 7).

The entropy function is required to satisfy the first
Høiland criterion and has to be tuned to allow the Bernoulli
function, derived below, to match the non-relativistic form
B(r0) = b0r

−1
0 at large radius. We use

S(r0) = r
−a
1−a

0 [1 + c3 exp(−c4r0)]. (90)

The choices c3 = 5.0, c4 = 0.85 produce a suitable solution.
In order to compute the Bernoulli function, we use

eq. (83) to compute the energy Ẽ and the angular veloc-
ity Ω̃ as functions of equatorial radius r0. We then rewrite
eq. (84) in the form

dB̃

dr0
= (B̃ − Ẽ(r0))

d lnS

dr0
(r0) +

Ω̃(r0)B̃

1 − Ω(r0)L̃(r0)

dL̃

dr0
(91)

and solve this differential equation to infer the variation
B̃(r0) and, consequently, B̃(L̃) (Fig. 7).

The next step is to solve for the disk structure away
from the equatorial plane. Again we use eq. (84), this time
written in the form:

dB̃

dL̃
(L̃) = (B̃(L̃)−Ẽ(r, θ, L̃))

d lnS

dL̃
(L̃)+

Ω̃(r, θ, L̃)B̃(L̃)

1 − Ω(r, θ, L̃)L̃
(92)

and solve this for L̃(r, θ). This enables us to calculate
S(r, θ), B(r, θ) and then to compute E(r, θ),Ω(r, θ) using
eq. (83). Finally, we can calculate the pressure using

P =

[(

γ − 1

γS

)(

B̃ − Ẽ

Ẽ

)]
γ

γ−1

(93)

and plot the isobars (Fig. 8).
Although our choice of functions in equations (89) and

(90) is arbitrary and has no immediate physical basis, our
procedure does illustrate how to construct self-consistent
disk models given a more comprehensive theory of relativis-
tic convection. It is straightforward, in principle, to general-
ize the non-relativistic, self-similar development of circula-
tion and outflow disk models to the non-self-similar regime.
We could use the relativistic generalizations of equations
(52) and (56) to derive partial differential equations for
the poloidal velocity for a non-self-similar circulation and
outflow. However, there is little point in carrying out this
exercise as the assumed autonomous relations that define
the gyrentropes are arbitrarily prescribed. It is, instead,
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Figure 7. a) Assumed relativistic, fluid angular momentum variation, L̃ (solid) for a gyrentropic disk around a Kerr hole with a = 0.9m.
The Keplerian variation (dashed) is shown for comparison. The two angular momenta must coincide at the cusp radius rc = 1.84m and at
the pressure maximum at rm = 6m. At large radius the fluid angular momentum asymptotes to the Model I self-similar solution (dotted).
Also shown are the radius of zero binding energy rmb = 1.5m and the radius of marginal stability rms = 1.93m. b) Derived variation of
the relativistic Bernoulli function B̃(r0) (dashed). Like the entropy, it asymptotes quickly to the non-relativistic form B(r0) = b0r

−1
0 .

0 2 4 6 8 10

0

1

2

3

4

5

Figure 8. Model of the inner regions of gyrentropic accretion disk orbiting a Kerr black hole with the assumed angular momentum and
entropy distributions displayed in Fig. 7. The gyrentropes are displayed as bold contours. The cusp is located between the marginally
bound and marginally stable orbits. The isobars are shown as light contours surrounding the pressure maximum.

more valuable to solve the time-dependent 2D and 3D fluid
dynamical equations numerically, making different assump-
tions about the viscosity and, perhaps, the heat transport.
The principles that we have developed here should be of use
in interpreting such a computation.

6.3 Transition Disk

Self-similarity must also break down at some outer radius,
which either represents an outer boundary condition associ-
ated with the mass supply or the radius beyond which radia-
tive losses are significant. In the ion-dominated case, cooling
near the outer transition radius rt (i.e., between a thin ra-
diative disk and an ADIOS) is likely to be dominated by
thermal bremsstrahlung of the one-temperature (Te = Ti)
plasma, provided that rt > 2000m (where m = GM/c2 is

the gravitational radius). Equating the cooling rate and the
inflow time, we find that adiabatic flow is possible for

rt < 109 α4

ṁ2
t

m, (94)

where ṁt ≡ Ṁt/ṀE is the mass flux crossing into the nonra-
diative region (the mass supply). Given a power-law scaling
of ṁ with index n at r < rt, the mass flux reaching the black
hole (the accretion rate) is

ṁacc < 10−9nα−4nṁ1+2n
t . (95)

For example, if ṁt = 0.01, α = 0.03 and n = 0.6 (as in
Model I), the accretion rate can be as low as ṁacc ∼ 10−6,
four orders of magnitude lower than the supply rate. Since
ṁacc ≪ 50α2 ∼ 0.05, the ADIOS easily satisfies the con-
dition for a two-temperature flow close to the black hole
(Rees et al. 1982) — which is more stringent than the con-
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dition for adiabatic flow at large radii — implying that
the adiabatic flow, once established, will extend all the way
from rt in the vicinity of the hole. For conservative inflow
models, this condition is more difficult to satisfy. Moreover,
for the parameters we have chosen rt can be as large as
∼ 107m; thus the flow could exhibit self-similarity over sev-
eral decades in radius.

Similar considerations apply to accretion flows with
ṁ ≫ 1. Here the transition from radiative to nonradia-
tive flow occurs at the trapping radius, rt ∼ rtrap ∼ ṁtm
(Begelman 1979). The accretion rate is given by ṁacc ∼
ṁ1−n

t .

We note that models for the transition between the
thin disk and nonradiative flow have been studied mainly
in the context of ADAF models, in which conserved mass
flux through the disk is assumed (e.g., Kato & Nakamura
1998; Manmoto et al. 2000). These models generally require
a zone of anomalous emissivity near rt in order to soak up
the outward energy flux, which cannot be accepted by the
thin disk in a smooth transition. This problem is avoided
if we allow for the onset of mass (and angular momentum)
loss in the transition region.

In order to demonstrate that a smooth transition is pos-
sible under ADIOS models, we combine the analyses of § 2.1
and § 6.2 and make a one-dimensional model for a disk where
we choose functional forms for the radial variation of L,B,G
that interpolate between the thick and thin limits. We em-
phasize that these functions, although plausible, have no
physical basis and are only intended to demonstrate how a
physical solution might be constructed. In particular, these
models are not consistent with a simple α−type parametri-
sation of the viscous couple, in which G is an increasing
function of pressure. It may not be possible to construct
self-consistent models for all reasonable forms of G; in some
cases, solutions may be time-dependent.

We choose to match to model I and adopt a self-similar
thin disk with ℓout = 0.95, bout = −0.45. We require that
the mass and angular momentum loss rates → 0 as R → ∞
and that the energy loss rate approach the standard value
for a thin disk ℓ2out − bout per unit mass flow. We anticipate
that this energy loss will change from outflow to radiation
with increasing radius, though we do not need to specify
how rapidly this occurs. We do require the flows of mass,
momentum and energy, Ṁ , FL, and FE , to vary monoton-
ically with radius; this does restrict the types of function
that we choose. (Note that there is a constant positive an-
gular momentum flux, FL,out, flowing inward through the
outer disk.) However there is still considerable freedom left
and so we do not believe that these solutions are particularly
contrived.

Without loss of generality we set the mass supply rate
from the outer disk and the pressure at R = 1, in the middle
of the transition region, to unity. We also simplify matters
by setting η = 0. Our interpolating functions are:

L(R) =
{ℓout + ℓ0 + (ℓout − ℓ0) tanh[lnR/w]}R1/2

2
(96)

B(R) =
bout + b0 + (bout − b0) tanh[lnR/w]

2R
(97)

FL(R) =
2nℓ0R

1/2Ṁ

(1 + 2n)

[

1 +
(

2nℓ0
(1+2n)FL,out

)2

R

]1/2
(98)

and G is given by eq. (5). After some experimentation, we
find that the choices w = 0.8, FL,out = 0.5 lead to plausible
solutions. It is straightforward to solve for the sound speed,
pressure, density and entropy function using eq. (1) and in-
tegrating the radial equation of motion. We then solve for Ṁ
by integrating eq. (6) and FE(R) using eq. (8). Our results
for this particular example are exhibited in Fig. 9.

These one-dimensional results can be used to verify that
the disk remains stable according to the first Høiland cri-
terion. If the disk remains gyrentropic, and the case for
this weakens as it becomes increasingly radiative, then it
is straightforward to repeat the analysis carried out in § 6.2
and construct a two-dimensional model. The gyrentropes re-
main close to right cylinders in the transition disk.

6.4 Choice of Disk–Outflow Model

We argued in § 2.1 that three internal parameters that char-
acterise self-similar disks, which we chose to be ℓ0, b0 and
a torque parameter, determine the nature of the outflow,
as measured by n, β and η. How is this linkage estab-
lished in practice? A comprehensive answer to this question
must await more numerical experiments but some qualita-
tive guidelines can be uncovered using our models. The first
point is that angular momentum and mass are supplied to
the adiabatic flow at the transition radius and are lost as
the gas flows inward. Likewise, the energy derives from the
relativistic regime and flows outward. The ratio of angular
momentum flux to supplied mass flux in the transition re-
gion, FL/Ṁ , which is presumably set by local and outer
boundary conditions, can have an influence on the subse-
quent inflow. If this ratio is large, then the disk will rotate
rapidly and this can be propagated inward. Likewise, the en-
ergy per unit accreted mass — FE/Ṁ — emerging from the
relativistic inner disk controls the disk pressure and thick-
ness and this can propagate outward.

However, this is not the whole story. The local physics
within the self-similar regime is also important. If the rate
of production of entropy near the disk surface is high, then
mass loss will increase. Conversely, when it is low there will
be more internal circulation to larger radii, where energy
can escape more easily. If the disk has an organized mag-
netic field, then the loss of angular momentum per unit mass
will be larger and the internal angular momentum transport
will be diminished. Mathematically, we should think of cou-
pled differential equations for the flows of mass, energy and
angular momentum that have to be solved with boundary
conditions at both small and large radius, just as with the
theory of stellar structure.

7 ALTERNATIVE MODELS OF ADIABATIC,

FLUID ACCRETION

7.1 Non-Convective Models

In an alternative description of thick accretion disks, pio-
neered by Paczyński & Abramowicz (1982) for radiation-
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Figure 9. Model of the transition disk that connects the self-similar disk to an outer thin disk. The inner disk is chosen to have the
parameters of fiducial Model I. The outer disk is a much thinner self-similar disk with L(R) = 0.95R1/2, B(R) = −0.45R−1. The top
three panels show the variation of the Bernoulli function B and the disk thickness Z = (P/PΩ2)1/2, the pressure P and the entropy S,
the angular momentum L and the torque G. The bottom three panels show the flows of mass, angular momentum and energy through
the disk, and the associated outflows per unit radius.

dominated tori, (cf. Rees et al. (1982) for the ion-dominated
case), the flow is idealized as a quasi-stationary torus orbit-
ing the black hole, in hydrostatic equilibrium with an ad hoc

entropy distribution that is commonly chosen to be bary-
tropic, P = P (S). If this flow were convectively stable, the
entropy would have to rise vertically as there can be no rota-
tional stabilisation when a Høiland interchange is performed
in the vertical direction. As there is a pressure maximum,
and the isentropes coincide with the isobars in a barytropic
flow, the isentropes would have to be a set of nested tori
with minimum entropy at the pressure maximum.

However, this configuration cannot be stationary. To
see this, note that the conservation laws, equations (52) and
(56) (with Q = 0), combine to give the entropy conservation
law

~G · ∇Ω + H ~J · ∇ lnS = 0. (99)

Now, with a local torque, the first term in eq. (99) will
be negative, consistent with the second law of thermody-
namics (cf. Landau & Lifshitz (1959)). This implies that
~J ·∇ lnS > 0, i.e., there must be a mass flux directed toward
increasing entropy. However, this would mean that there
must be a mass source (∇· ~J 6= 0) at the pressure maximum.
It is therefore clear that convectively stable, barytropic tori
cannot be stationary. This conclusion is not altered by the
inclusion of general relativity and is probably generally true
for two-dimensional, Høiland-stable disk flows, although we
have not been able to give a proof. Typically, what will
happen is that any initially stable flow will quickly become
convective, due to the action of the viscous stress, and the
topology of the isentropes will change so that the entropy
decreases with increasing cylindrical radius.

7.2 Advection-Dominated Accretion Flows

As outlined in § 1, the original ADAF idea (Ichimaru 1977;
Narayan & Yi 1994, 1995) was that the inflow would be

conservative with all the mass supplied at large radius flow-
ing across the horizon. This would probably be the case as
long as there were no angular momentum. However, as soon
as the inflow is controlled by viscous torque that can be
treated perturbatively, there seems no escape from the con-
clusion that most of the mass supplied escapes in an out-
flow, powered by the energy released by the small fraction
of the gas that accretes onto the hole. (It is, in principle,
possible that the viscous torques could be strong enough to
ensure radial inflow which would vitiate this conclusion, but
there is strong analytical and numerical evidence that nei-
ther fluid nor magnetofluid torques could ever be this large.)
At a global level, the physical inconsistency is manifested in
a positive Bernoulli function, indicating that parcels of mat-
ter near the surface of the disk can escape to infinity with
positive energy after doing work on their surroundings. At a
local level, the positive energy condition implies convective
instability (in the hydrodynamic limit), providing a frame-
work for understanding the mechanism of energy, angular
momentum, and mass transport. In Paper II, we will show
that analogous arguments carry over to magnetohydrody-
namic disks, despite the fact that the stability and transport
mechanisms are likely to be quite different.

For these reasons, we argue that black holes surrounded
by radiatively inefficient flows are likely to accrete matter
at a rate far smaller than the rate at which mass is sup-
plied at large radii. The gas density close to the hole, from
where most of the observed emission derives, is therefore
likely to be orders of magnitude smaller than derived under
the ADAF framework, implying that interpretations of ob-
servational data within the latter framework are incorrect.
We note, however, that the ADIOS framework developed in
this paper does not automatically predict the relationship
between the accretion rate and the supply rate. This de-
pends not only on additional information about the outer
supply (or “transition”) radius, but also on the microphys-
ical mechanisms that increase the entropy and power the
wind at the thermal front. (In particular, the MHD winds
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to be discussed in Paper II may be capable of carrying away
the required energy and angular momentum with very little
loss of mass.)

7.3 Convection-Dominated Accretion Flows

The CDAF idea was developed to address the
energetic difficulties encountered by ADAFs
(Narayan, Igumenshchev & Abramowicz 2000;
Quataert & Gruzinov 2000). These models are based
on the surprising fact that fluid dynamical turbulence,
as might arise, for example, from convection, is capable
of transporting angular momentum radially inward in an
accretion disk (cf. Ryu & Goodman 1992; Balbus 2000;
Quataert & Chiang 2000). In CDAF models, it is supposed
that the inward convective stress essentially balances the
outward viscous stress locally. As a consequence, both the
mass flux and the net angular momentum flux, which have
different natural scalings with radius, must vanish while
the energy flux is directed outward. In the two-dimensional
model of Quataert & Gruzinov (2000), B ∼ 0 everywhere
and the flow must extend all the way to the pole. More
detailed models assume that B is very small, of order the
binding energy at the outer (or transition) radius, and
that a small conservative accretion flow is responsible for
powering the outward flux of energy. The latter is assumed
to be disposed of (e.g., by radiation or slow outflow) far
from the black hole.

As convective transport is essentially nonlocal, there
is no thermodynamic objection to the average convective
torque being negative, although there may be thermody-
namic limitations on the extent to which the (macroscopic)
convective stress can cancel the (microscopic) viscous stress
locally (Balbus & Hawley 2002). However, the invocation
of radial convective transport does seem arbitrary, given the
nature of the convective instability. Recall that, at marginal
stability in the hydrodynamic (non-MHD) limit, the unsta-
ble motions are along the gyrentropes, along roughly spher-
ical surfaces. Radial modes are highly stable. Now if there is
no means of extracting energy from the disk surface or the
disk extends to the poles, then there will be no net transport
and the disk may be forced toward a state in which radial
convection can develop. This tendency may be present in
numerical simulations by SPB99, some of which show large
mass circulations with very small net mass flux.

Convection along gyrentropes is explicity suppressed,
for example, in the CDAF model by Quataert & Gruzinov
(2000), which extends all the way to the polar axis. We be-
lieve that this model is physically implausible for two rea-
sons. The first is that flows that do not contain a central
funnel have a singular velocity along the axis vφ(0) = 1.
The rates of shearing, dissipation and entropy production
near the axis will therefore diverge, driving a powerful out-
flow which creates a funnel (cf. BB99). Because of the sym-
metry at this point, the viscous stress at the pole cannot
be balanced by convective stresses. The second reason is
that, unlike with the case of accretion onto a star, there
is no means of supporting a column of gas along the rota-
tion axis above a black hole: the centrifugal force acts along
a perpendicular direction to the gravity and the pressure
force must vanish close the event horizon of the hole (cf.
Narayan, Kato & Honma 1997, , BB99). Once the funnel

exists, we assert that convection will preferentially operate
along gyrentropes, leading to mass and energy loss from the
funnel walls.

CDAFs also face secular difficulties related to the global
mass supply and energy flow. In CDAFs, as in ADIOS
models, the accretion rate reaching the black hole is far
smaller than the mass supply at large radii. However, un-
like ADIOS models, there is no means of escape for the vast
majority of the supplied matter, which does not make it
to the black hole. In the hydrodynamical simulations by
SPB99 and others, this is not an issue because these cal-
culations track the evolution of a finite torus; matter is
not continuously supplied. (Moreover, the runs are not long
enough to track the evolution of the outer flow.) But in
a CDAF with a continuous mass supply, there is no al-
ternative but to establish an increasing reservoir of mat-
ter that is unable to accrete. Thus, CDAFs cannot rep-
resent steady-state flows. Moreover, there is a continuous
flow of energy into the outer parts of a CDAF, where it
will also build up unless there is some escape route. It has
been proposed that the outer parts of ADAFs may adjust to
radiate away this energy (Ball, Narayan & Quataert 2001;
Abramowicz & Igumenshchev 2001), but it has not been
demonstrated that this will happen naturally. Another pos-
sibility is that the energy flux will power a wind at some
outer radius. We contend that this too is a less likely resolu-
tion than a scheme in which the wind is released continously
from all radii.

Even if CDAFs did not face these severe physical
problems, their existence seems unlikely to carry over to
the MHD case, which is more appropriate to astrophysical
disks than the hydrodynamical limit. The dominant insta-
bilities in magnetized disks are magnetorotational, rather
than convective, and the resulting turbulence is likely to
transport angular momentum outward rather than inward
(Balbus & Hawley 2002); but see Narayan et al. (2002);
Igumenshchev (2002) for an alternative view. If this is the
case, then the CDAF approach cannot be generalized to
MHD flows. However, we will argue in Paper II that the
ADIOS approach does carry over. Although MHD disks
cannot attain marginal stability, they nevertheless appear
to develop a well-defined internal structure (barytropicity,
with rotation on cylinders), that provides an equivalent au-
tonomous constraint to our hydrodynamical assumption of
gyrentropicity. Thus, MHD disks admit well-defined circu-
lation patterns and outflows, which we will derive explicitly
in Paper II.

7.4 Weakly-Bound Disks

Finally, we comment on a class of non-radiative ac-
cretion models most recently studied by Paczyński
(1998), but which enjoyed wide popularity in the early
1980’s (e.g., Jaroszyński, Abramowicz & Paczyński 1980;
Paczyński & Wiita 1980, and references therein). In these
models the angular momentum distribution is prescribed,
usually as a function of cylindrical radius along the surface
of the flow, between some inner radius rin and some outer ra-
dius rout. At r > rout the flow is assumed to match a thin Ke-
plerian accretion disk, while at r → rin the flow approaches
a zero-pressure cusp through which material accretes onto
the black hole. For the interesting limit of rout ≫ rin the
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gas in the advection-dominated region is very weakly bound
and one can show (Paczyński 1998) that the cusp must
lie close to the marginally bound orbit at r = 4m (for a
Schwarzschild black hole). There is considerable latitude in
the choice of angular momentum distribution, subject to the
constraints that the angular momentum must be a monoton-
ically increasing function of r, and that the angular momen-
tum and binding energy must match the Keplerian values
at both rin and rout.

One of the rationales for exploring these models is that
the generic form of the angular momentum distribution is
physically motivated, whereas viscous stress prescriptions
are highly uncertain. It is therefore worthwhile, Paczyński
argues, to construct a model based on an assumed angular
momentum law, and then see what kind of viscous stress
prescription is required to make it self-consistent. However,
in his published work he does not discuss the nature of these
stress prescriptions. We now show that weakly bound disk
models require very specific and (we believe) implausible
prescriptions for the viscous stress.

We restrict our attention to the limit rout ≫ rin and use
the notation in Paczyński (1998). Paczyński (1998) eq. (25)
implies that the binding energy is a monotonically increasing
function of rs, the cylindrical radius measured along the
surface. This implies the inequality
∫ rs

rin

1

r2
dj2s
dr

dr <
2j2out
r2out

≈
1

2routrin
j2in (100)

for all rin < rs < rout. Integrating by parts, and using the
inequality js > jin, we finally obtain

j2s < j2in

(

1 +
r2s

2routrin

)

. (101)

Thus, the angular momentum distribution must be a very
weak function of radius, j ≈ jin for rs smaller than the
geometric mean between rin and rout. In other words, any
acceptable angular momentum distribution for this kind of
model must be nearly constant in the inner part of the disk,
while increasing more steeply than Keplerian in the outer
parts (in order to satisfy the outer boundary condition).

Inequality (101) places severe constraints on the vis-
cous stress. Using the α-model viscous couple assumed by
Afshordi & Paczyński (2002) which differs from our as-
sumed torque (eq. [49]) by a factor Ω/ΩKep, and assuming
an internal sound speed vs ∼ vKep (appropriate for a thick
disk), we obtain an inflow speed vr given by

−vr
vKep

≈ α
js

js − jin

(

−
d ln Ω

d ln r

)

. (102)

Substituting from inequality (101) in the limit rs ≪
(rinrout)

1/2, we can write eq. (102) in the form

α <
r2s

8rinrout

−vr
vKep

. (103)

The hydrostatic condition implies −vr/vKep ≪ 1, placing a
tight upper limit on α. The limit is even more severe if we
use our expression (49) for the stress.

If α exceeds the limit given in eq. (103), over any range
of radii, then the inflow will proceed on a free-fall timescale,
violating a principal assumption of the model. This will pre-
sumably continue until the angular momentum distribution

relaxes to state closer to Keplerian, in which case it will re-
semble one of the models discussed above (i.e., an ADAF,
CDAF, or ADIOS). It will also evolve toward a larger bind-
ing energy. We would, of course, argue that the only self-
consistent final state under these circumstances would be
an ADIOS.

Physically, we expect the value of α, or its equivalent in
a more realistic stress model, to be set by the microphysics
of the accretion process and not by the global boundary
conditions — the latter presumably reflect the cooling func-
tion of the gas and/or the nature of the gas supply at rout.
Numerical models of MHD flows suggest that α may fall in
the range ∼ 0.01 − 0.1, which is inconsistent with the limit
derived above unless rout . 100rin. Observations of adia-
batic accretion flows suggest that rout may be larger than
∼ 104 − 105 times rin. Such systems would have to have an
effective α < 10−5 in order to be described self-consistently
by a Paczyński model. Thus, we conclude that weakly bound
disk models are unlikely to apply in many, if not most, cases
of astrophysical interest.

8 DISCUSSION

We have attempted to flesh out the ADIOS concept by con-
structing explicit, two-dimensional models of adiabatic, ac-
creting fluid. Such flows are strongly convective and should
naturally evolve toward a state of marginal stability. We
argue that the convective transport of energy and angu-
lar momentum does not occur primarily in the radial di-
rection but, instead, proceeds primarily along surfaces that
connect the equatorial region to the disk “surface” at high
latitudes. We have demonstrated how to construct models
of two-dimensional disks embodying these principles, and
have then elaborated upon them so as to include poloidal
circulation, inflow and the formation of fluid outflows.

Even in the context of purely fluid disks, our approxi-
mate description of the flow can be challenged. For example,
if the viscous stress, as measured by the parameter α, is not
small, the perturbative ordering: circular speed ≫ convec-
tive speed ≫ meridional circulation/inflow speed will not
be well-satisfied as we require. Our thermal front model for
producing the outflow is, likewise, an oversimplification. It
posits a site where entropy is produced and simple conserva-
tion laws make explicit the connection between the energy
flow along the gyrentropes and the outflow. It seems rea-
sonable that the dissipation should be a strongly increasing
function of the Mach number and that it be efficient when
the flow becomes roughly sonic but this is not required. If
the surface dissipation is small, we suppose that the energy
will be advected by the circulation to large radius. Indeed, as
discussed in § 3.2, several simulations do seem to show this
behaviour which is not consistent with a self-similar flow.
Higher resolution simulations that are run for long enough
to achieve a stationary flow will be needed to understand
the flow of mass, angular momentum and energy through
the disk.

Another concern is that our calculation is expressly
two-dimensional and it is well-known that three-dimensional
convection in non-rotating fluid is quite different from its
two-dimensional counterpart. However, if our convection
model is realistic, it automatically leads to considerable
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smoothing over azimuth which ought to validate the two-
dimensional description. A related concern involves the
unstable, non-axisymmetric, global instabilities that can
develop in the relativistic inner disk described in § 6.2
(Papaloizou & Pringle 1984). As these modes rely upon
reflection from the inner surface of the disk, they are un-
likely to grow to a large amplitude in the presence of inflow
(Begelman, Blandford & Rees 1984; Blaes 1987).

The most fundamental limitation concerns the explicit
neglect of magnetic field in our model. Beyond all reasonable
doubt, the torque in astrophysical accretion disks is hydro-
magnetic in origin (Balbus & Hawley 1998). If the magnetic
fields remained small in strength and length scale and were
locally dissipative, then our treatment could still have va-
lidity. However, the evidence from numerical simulations is
that none of these conditions is well-satisfied in practice. In
particular, the relationship between the momentum transfer
and the dissipation is problematic. With a simple, Newto-
nian viscosity, the connection is clear. There is a local dissi-
pation at a rate ~G ·∇Ω. Entropy is created where the torque
is applied. The introduction of convection into fluid models
complicates this linkage, because it involves the net bodily
transfer of mass carrying its own angular momentum and en-
ergy and transporting an additional energy flux. This effec-
tively makes the dissipation nonlocal. As we shall discuss in
Paper II, magnetized disks may provide even more extreme
examples of non-local dissipation. Unless a magnetic turbu-
lence spectrum is established and the energy cascades down
to a small inner scale where it can be taken up by plasma,
much of the dissipation may be non-local. Indeed, there is
plenty of evidence that much of the dissipation in observed
disks occurs in a hot corona. (In considering this problem it
is important to make the distinction between ion-supported
and radiation-supported disks. The former require that lo-
cal dissipation not heat the electrons to temperatures where
they can radiate efficiently, implying either that most of the
energy either goes into heating the ions or that the energy is
transported away. By contrast, radiation-dominated accre-
tion disks are subject to the magnetorotational instability
but the magnetic stress may saturate at a lower level, per-
haps validating a treatment closer to our fluid models.)

The final missing ingredient is an allowance for global
time-dependence in the flow. There are strong indications
that observed disks accrete episodically. Whether or not this
happens in practice, on all radial scales, depends upon the
details of the transition region. In § 6.3, we argue that there
could be a smooth, stationary transition from a radiative
thin disk to an ADIOS. However, if the outflow is less effi-
cient than we have assumed in carrying off the energy, circu-
lation of the excess energy to the transition region will push
it outward to progressively larger radii until there is catas-
trophic cooling so that the thick disk quickly shrinks. The
whole pattern can repeat in a limit cycle. However, as the
inflow and dynamical timescales are always likely to increase
with radius, these variations should only cause a slow secular
change in the flow pattern at small radii, where most of the
accretion energy is released. In the language of our models
this would be manifested in a change in the entropy scale s0
(cf. § 4.3). The other way in which time-dependence could be
important is if there are local instabilities in the flow pattern.
In the case of adiabatic accretion disks the distinction be-
tween viscous and thermal timescales is blurred. This, cou-

pled with the physical thickness of the disk, makes a formal
instability calculation more complicated and we advocate
direct numerical simulation as the means to explore stabil-
ity of these flows. Few simulations have been evolved long
enough to draw strong conclusions about time-dependence.

We believe that the fluid dynamical analysis is valuable
because it suggests a “modular” procedure for analysing nu-
merical simulations of magnetized flows:

(i) Determine the rule that replaces gyrentropicity for de-
termining the time-averaged disk structure. We will argue in
Paper II, on the basis of numerical simulations and analytic
calculations, that this principle may be barytropicity, im-
plying rotation on cylinders.

(ii) Separate the motion into relatively small scale inter-
changes – with scales no larger than the local pressure scale
height, and larger circulatory flows. The former can be anal-
ysed by computing correlation functions involving velocity,
pressure, density, etc., up to third order so as to understand
the time-averaged transport of mass, angular momentum
and energy as a function of position. The latter will describe
the global flow pattern.

(iii) Understand the surface boundary condition, specifi-
cally the strength and character of the MHD wind from the
disk surface. Central to answering this question is to decide
whether or not large scale magnetic fields are generated, as
is observed in the high latitude wind from the quiet sun, or
whether the fields are tangled on small scale and behave as
an anisotropic gas. This problem will be very hard to tackle
as it combines both local and global features.

We shall address these issues further in Paper II.
Despite all of these shortcomings and concerns, we hope

that the models developed in this paper will provide a guide
to interpreting numerical simulations and, ultimately, the
increasingly detailed observations of radiation from adiabat-
ically accreting black holes and neutron stars.
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