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Abstract

This paper establishes a general equivalence between discrete choice and
rational inattention models. Matejka and McKay (2015) showed that when
information costs are modelled using the Shannon entropy, the choice proba-
bilities in the rational inattention (RI) model take the multinomial logit form.
We show that, for one given prior over states, RI choice probabilities may
take the form of any additive random utility discrete choice model (ARUM)
when the information cost is a Bregman information, belonging to a class de-
fined in this paper. The prior information of the rationally inattentive agent is
summarized in a constant vector of utilities in the corresponding ARUM. We
illustrate our results utilizing the nested logit, an empirically relevant discrete
choice model.
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1 Introduction

In many situations where agents make decisions under uncertainty, information
acquisition is costly (involving pecuniary, time, or psychological costs); therefore,
agents may rationally choose to remain imperfectly informed about the available
options. This idea underlies the theory of Rational Inattention (RI), which has
become an important paradigm for modeling boundedly rational behavior in many
areas of economics (Sims, 2003, 2010). In this paper, our main contribution is to
establish a general equivalence between additive random utility discrete choice and
RI models. Matějka and McKay (2015) showed that when information costs are
modelled using the Shannon mutual information between actions and states, the
resulting choice probabilities in the RI model take the familiar multinomial logit
form, leading to the “RI-logit” model, as we will refer to it below. This is a very
appealing result, providing a microfoundation as well as alternative interpretation
for the multinomial logit model.

However, the RI-logit model has the “independence of irrelevant alternatives”
(IIA) property, which states that, in a given state, the ratio of the choice prob-
abilities of two alternatives does not depend on the utility of a third (irrelevant)
alternative.1 In many empirical contexts, the IIA property implies restrictive and
unrealistic substitution patterns among the choice options, as illustrated in the fol-
lowing example.

Example 1 Consider a rationally inattentive consumer facing a choice between
pineapple (good 1), mango (good 2), and cheesecake (good 3). A priori, the con-
sumer does not know the value associated with each good but has fixed prior beliefs
about the possible realizations of the valuation vectorV. Assume thatV has four
equally likely possible states:

(
v1,v2,v3,v4

)
=

0

B
@
0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

1

C
A ,

1In the context of the RI model, we interpret IIA as a comparison across states, holding the DM’s
prior fixed. For further details about IIA we refer the reader to Maddala (1986, 3.2) and Anderson
et al. (1992).
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and assume that we observe corresponding choice probabilities p
(
v1
)
=

(0.41, 0.41, 0.18) and p
(
v2
)
= (0.46, 0.37, 0.17) for the first two states.2 These

probabilities reflect a situation where an increase (from 0 to 0.1) in the value of
good 1, the pineapple, causes consumers to substitute disproportionately from the
mango rather than from the cheesecake. However, such outcomes violate the IIA
property, as the choice probability for mango decreases by 10 % while the choice
probability for cheesecake decreases only by 4 %; hence, they cannot arise from
the RI-logit model. !

The root of the problem in the previous example is that the Shannon mutual
information embodies an important and strong assumption of symmetry: the Shan-
non entropy is invariant to permutation in its arguments; therefore reordering the
choice options does not affect the information cost. This makes the cost of process-
ing information context independent (Hobson, 1969) and hence it cannot take into
account that some choice options are more similar than other options.3

In this paper we introduce a new class of generalized entropies that allows us to
define cost functions that embody information related to the identity of alternatives.
Formally, our generalized entropy is defined as the negative convex conjugate of
the surplus function of an Additive Random Utility Model (ARUM), and allows
patterns such as those in the example above to be accommodated in a RI model.
The new generalized entropies are not required to be symmetric. This contributes
to making RI models empirically relevant. In fact, we show that, depending on
the choice of information cost, a RI model can yield the same choice probability
system as any ARUM; this includes specifications such as nested logit, multinomial
probit, and so on, that are often employed in empirical work.

Based on our definition of generalized entropy, we introduce a class of gen-
eralized RI models. In particular, we define a general class of information cost
functions where the Shannon entropy is replaced by our generalized entropy. This

2The choice probabilities here are generated, not by a RI-logit model, but by a RI-nested logit
model, introduced in this paper.

3This example considers how choices vary across different states of the world. This is distinct
from the exercises in Matějka and McKay (2015), who consider how choices vary as priors or choice
sets change. For empirical analysis, the change in choices across states is often most relevant: for
instance, in demand analysis, researchers wish to uncover how consumer choices depend on changes
in product prices, which can be considered as a change from one state to another.
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generalizes the Shannon mutual information since this cost function arises when
the ARUM is the multinomial logit model. Because of this connection with the
ARUM class we label our general RI model as “RI-ARUM”. As we will show,
an RI-ARUM model exists corresponding to any ARUM, implying that rationally
inattentive behavior can lead to choice probabilities that violate the IIA property,
as in the above example.
Related literature. Besides the papers already mentioned above, the main

equivalence result in this paper is related to several strands of literature. This paper
contributes to the growing literature on rational inattention with more general cost
functions. Hébert and Woodford (2017) provide a foundation for the rational inat-
tention model based on a dynamic information accumulation process. In particular,
they introduce a class of “neighborhood-cost” functions, which allows them to re-
flect varying similarity of states to one another. Morris and Yang (2016) use ideas
from global games to develop a rational inattention framework, in which it is more
difficult for players to distinguish between nearby states. Our results complement
these, but instead of allowing cost functions to reflect that some states are more
similar than others, we introduce cost functions that may reflect that some choice
options are more similar than others which, as illustrated in the example above, is
relevant for the empirical implications of the rational inattention model.

Caplin et al. (2017) and Frankel and Kamenica (2018) study properties that
may be required of information cost functions. We propose to use Bregman infor-
mation (Banerjee et al., 2005) based on generalized entropy.

Our results also relate to the literature on perturbed utility models. Anderson
et al. (1988) derived the representative consumer model underlying the logit model,
showing that the direct utility has an entropy form. This observation was gener-
alized by Hofbauer and Sandholm (2002), who showed that the choice probabili-
ties generated by any ARUM can be derived from a deterministic model based on
payoff perturbations that depend nonlinearly on the vector of choice probabilities.
Fosgerau and McFadden (2012) provide a foundation for applications of consumer
theory to perturbed utility problems with nonlinear budget constraints. Fudenberg
et al. (2015) provide an axiomatic characterization of a class of perturbed random
utility models. Allen and Rehbeck (2019) consider identification. Fosgerau et al.
(2019) construct a class of inverse demand models that are useful for estimating
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demand for differentiated products using Berry’s (1994) method. We contribute
to that literature in two ways. First, we provide an explicit characterization of the
perturbation term corresponding to general ARUM. Second, our equivalence result
allows us to interpret the class of perturbed random utility models in terms of RI
arguments.

Finally, the rational inattention framework has also inspired some recent empir-
ical work; see Caplin et al. (2016), Joo (2019), Brown and Jeon (2019) and Porcher
(2019). These papers primarily utilize the Shannon/multinomial logit framework.
The results in this paper may enable researchers to apply rational inattention mod-
els far more general than the multinomial logit model, as they show that choice
behavior emerging from any ARUM model may emerge from rationally inatten-
tive behavior.
Layout. Section 2 introduces the rational inattention model. Section 3 intro-

duces the ARUM framework, and uses convex analysis to generate some insights
into the fundamental structure of these models. Using this structure, we introduce
a class of generalized entropies and present a few key results. Section 4 shows
how generalized entropy can be used to define the information cost in the ratio-
nal inattention model, leading to the class of RI-ARUM models. Then we present
the key result from this paper, which establishes the equivalence between choice
probabilities emerging from the discrete choice model, and those emerging from
RI-ARUM models. Section 5 discusses the specific case of the nested logit model,
which has proven useful in many empirical models. We show how rationally inat-
tentive behavior can generate choice probabilities with substitution patterns that
violate IIA, as in the above example. Two examples demonstrate some properties
of the RI-nested logit. Section 6 concludes. All proofs are in the Appendix.
Notation: Throughout this paper, for vectors a and b, a · b denotes the vec-

tor scalar product
P
i aibi, such that, e.g., 1 · q =

P
i qi. A univariate function

applied to a vector is understood as coordinate-wise application of the function,
e.g., eq = (eq1 , ..., eqN ). Consequently, a + q = (a+ q1, ..., a+ qJ) for scalar
a. The gradient with respect to a vector v is rv; e.g., for v = (v1, ..., vN ),
rvW (v) =

(
@W (v)
@v1

, ..., @W (v)
@vN

)
. The unit simplex in RN is !.
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2 Rational inattention

We introduce the rational inattention model. The decision maker is presented with a
group ofN options, from which he must choose one. Each option has an associated
payoff v = (v1, ..., vN ), but the vector of payoffs is unobserved by the decision-
maker (DM). Instead, the DM considers the payoff vector V to be random, taking
values in a set V ⊂ RN ; for simplicity, we take V to be finite. The DM possesses
some prior knowledge about the available options, given by a probability measure
µ, where µ(v) = P(V = v) > 0 for all v 2 V .

The DM’s choice is an action i 2 {1, ..., N} and we write pi(v) as shorthand
for the conditional probability that the action is i in state V = v. The payoff
resulting from action i is Vi . The vector of choice probabilities conditional onV =

v is then p(v) = (p1(v), . . . , pN (v)), and p(·) = {p(v)}v2V is the collection of
conditional probabilities. Given the conditional probabilities p(·) and the prior µ,
it is convenient to have notation for the unconditional choice probabilities and we
let p0i = Epi(V) =

P
v2V pi (v)µ (v) and p0 = (p01, . . . , p0N ).

The problem of the rationally inattentive DM is to choose the conditional dis-
tribution p(·), balancing the expected payoff against the cost of information. The
DM’s strategy is a solution to the following problem:

max
p(·)

{E (V · p (V))− Information Cost} . (1)

2.1 The RI-logit model: the Matějka and McKay (2015) result

The key element in program (1) is the choice of the information cost function.
In specifying information costs, researchers have used concepts from information
theory (Cover and Thomas, 2006). Specifically, much of the existing literature
(Sims, 2003; Matějka and McKay, 2015) has utilized the mutual Shannon informa-
tion between payoffs and actions to measure the information costs4; that is, letting
"(q) = −q · logq denote the Shannon entropy, the information cost is specified

4More formally, Matějka and McKay (2015) study the problem where agents first choose an
information structure (mapping from state of the world to information signals) and then, based on
signals, choose optimal actions.
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as

κ(p (·) , µ) ≡ "(E(p(V)))− E("(p(V))) (2)

= −
NX

i=1

p0i log p
0
i +

X

v2V

 
NX

i=1

pi(v) log pi(v)

!

µ(v).

Plugging this into (1), the rationally inattentive DM chooses the system of con-
ditional probabilities p (·) to optimize5

max
p(·)

{E (V · p (V))− κ(p (·) , µ)} (3)

=max
p(·)

(
X

v2V

{
p(v) · [v + logp0]− p(v) · logp(v)

}
µ(v)

)

subject to

pi(v) ≥ 0 for all i,
NX

i=1

pi(v) = 1. (4)

Solving this, the DM finds conditional choice probabilities

pi(v) =
p0i e

vi

PN
j=1 p

0
je
vj

for i = 1, . . . , N, (5)

that satisfy p0i = Epi(V). We may rewrite (5) as

pi(v) =
evi+log p

0
i

PN
j=1 e

vj+log p0j
=

eṽi
PN
j=1 e

ṽj
, (6)

where ṽi = vi + log p
0
i . This may be recognized as a multinomial logit model in

which the payoff vector v is shifted by logp0. Remarkably, the influence of the
prior information µ is completely captured by this shift vector logp0.

Below, we show that this equivalence between the rational inattention model
and the logit discrete choice model can be extended to the entire class of additive

5Our presentation of the rational inattention paradigm here follows Sims (2003, 2010), in which
agents are modelled as choosing directly their conditional choice probabilities {p(v)}v2V , taking
the prior distribution µ(v) as given.
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random utility discrete choice models, by suitably generalizing the information
cost function "(). We will also find that a location shift vector that completely
captures the influence of the prior information. Before turning to these results, we
briefly review some properties of the ARUM class and establish some new results
that are useful for working with generalized entropies.

3 Random utility models and generalized entropy

Consider a DM making a utility maximizing discrete choice among a set of i =
1, . . . , N options. The utility of option i is

ui = vi + εi, (7)

where v = (v1, . . . , vN ) is deterministic and ε = (ε1, . . . , εN ) is a vector of
random utility shocks. This is the classic ARUM framework pioneered by Mc-
Fadden (1978). Our presentation of the ARUM framework here will emphasize
convex-analytic properties which will be important in drawing connections with
the rational inattention model in what follows.

Assumption 1 The random vector ε follows a joint distribution with finite means
that is absolutely continuous, independent of v, and fully supported on RN .

Assumption 1 leaves the distribution of the ε’s unspecified, thus allowing for
a wide range of choice probability systems far beyond the often used logit model.
Importantly, it accommodates arbitrary correlation in the εi’s across options, which
is reasonable and realistic in applications.

The DM then has choice probabilities

qi(v) ≡ P
(
vi + εi = max

j
[vj + εj ]

)
, i = 1, ..., N.

An important concept in this paper is the surplus function of the discrete choice
model (so named by McFadden, 1981), defined as

W (v) = E!(max
j
[vj + εj ]). (8)
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Under Assumption 1,W (v) is convex and differentiable and the choice prob-
abilities coincide with the derivatives ofW (v):6

@W (v)

@vi
= qi(v) for i = 1, . . . , N

or, using vector notation, q(v) = rW (v). This is the Williams-Daly-Zachary
theorem, famous in the discrete choice literature (McFadden, 1978, 1981).

From the differentiability ofW and the Williams-Daly-Zachary theorem it fol-
lows that the choice probabilities emerging from any random utility discrete choice
model can be expressed in closed-form as7:

qi(v) =
Ti (e

v)
PN
j=1 Tj (e

v)
for i = 1, . . . , N , (9)

where the vector-valued functionT(·) = (T1(·), ..., TN (·)) : RN+ 7! RN+ is defined
as the gradient of the exponentiated surplus, i.e.

T(ev) = rv
(
eW (v)

)
. (10)

For the specific case of multinomial logit, the εi’s are i.i.d. across options iwith
a type 1 extreme value distribution, the surplus function isW (v) = log

(PN
i=1 e

vi
)
,

implying that Ti(ev) = evi . Thus, Eq. (9) becomes the familiar multinomial logit
choice formula: qi(v) = evi/

P
j e
vj .

Based on (9), we may refer to T as the scaled demand mapping. We will use
the inverse of the scaled demand mapping to construct an information cost. The
inverse must allow the zero demands that arise in the rational inattention model.
Existence of such an inverse is established by the following proposition.

Proposition 2 (Invertibility) Let Assumption 1 hold. Then the function T (·) has
a continuous extension to T : RN+0 ! RN+0 that is surjective, injective and hence

6The convexity of W (·) follows from the convexity of the max function. Differentiability fol-
lows from the absolute continuity of !. See Shi et al. (2018), Chiong and Shum (2019), and Melo
et al. (2019) for semiparametric econometric approaches based on these convex-analytic properties
of discrete-choice models.

7By direct differentiation of eW (v), and applying the Williams-Daly-Zachary theorem, we have
qi(v) = Ti(e

v)/eW (v) for all i. Imposing
P

i qi(v) = 1 we have
P

i Ti(e
v) = eW (v).

9
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globally invertible. Moreover, the function S(·) defined as S(·) = T−1(·) satisfies
Si (q) = 0 iff qi = 0 for i = 1, . . . , N .

In what follows we refer to S as the inverse scaled demand mapping. For
any discrete choice model, there is a close relationship between the corresponding
inverse scaled demand (S) and surplus (W ) functions. They are related in terms of
convex conjugate duality. Since the social surplus function W for any ARUM is
convex, we know that there exists a convex conjugate function W ∗ satisfying the
problem8

W (v) = max
q2!

{q · v −W ∗(q)} (11)

where the maximum on the right-hand side is attained at q(v) = rW (v).
The next proposition establishes a specific structure of the surplus functionW

and its convex conjugateW ∗.9

Proposition 3 (Generalized entropy functions) Consider an ARUM discrete choice
model satisfying Assumption 1, with surplus functionW (·). Then

(i) The surplus functionW (v) is equal to

W (v) = log

 
NX

i=1

Ti(e
v)

!

(12)

for the vector-valued function T as defined in Eq. (10).

(ii) The convex conjugate of the surplus functionW (v) is

W ∗(q) =

(
q · logS(q) q 2 !
+1 otherwise,

(13)

8For details see (Rockafellar, 1970, ch. 12). Briefly, for a convex function g(x), its convex
conjugate function is defined as g∗(y) = maxx {x · y − g(x)}, which is also convex. Fenchel’s
theorem then establishes that g(x) = maxy x · y − g∗(y). When x and y are scalar and g(x) is
differentiable, then g(x) and g∗(y) are inverse mappings to each other. Vohra (2011) applies these
ideas to the mechanism design setting.

9To the best of our knowledge, this result is new in the literature on random utility models, and
may be of independent interest. In particular, this result is related to the literature on perturbed
random utility models, which has been focused on characterizing choice probabilities as the solution
of a deterministic optimization problem (Hofbauer and Sandholm (2002); Fosgerau and McFadden
(2012); Fudenberg et al. (2015)).
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where S(·) is the inverse mapping for theT function in Eq. (10). We call the
negative convex conjugate −W ∗(·) a generalized entropy.

Remark 4 (RI-logit revisited.) To see how this works in a special case, let us
consider the multinomial logit model. In this case, T is the identity, implying that
its inverse, S(q) = q, is also just the identity. Then by Proposition 3(ii), the
negative convex conjugate of the surplus function is −W ∗(q) = −q · logq =
−
P
i qi log qi, which is just the Shannon (1948) entropy.
Moreover, we see that Eq. (13) implies that the RI-logit optimization problem

(3), written as

max
p(·)

X

v2V

{
p(v) · [v + logp0]−W ∗(p(v))

}
µ(v),

has the multinomial logit choice probabilities in Eq. (6) as solution. !

Proposition 3(i) generalizes the “logsum” formula for the multinomial logit
model to the entire class ARUM. Similarly, generalizing from the logit case,−W ∗,
the negative convex conjugate of the surplus W of any ARUM may be viewed as
a generalized entropy. In particular, Proposition 3(ii) shows how the generalized
entropy may be expressed in terms of the inverse scaled demand S as −W ∗ (q) =

−q · logS(q).
To aid further interpretation of the generalized entropy function, note that Eq.

(8) implies that the surplus function can be written as

W (v) =

NX

i=1

qi(v)(vi + E(εi|ui ≥ uj , j 6= i)).

Combining this with (11), we obtain an alternative expression for the generalized
entropy, as a choice probability-weighted sum of expectations of the utility shocks
ε:10

−W ∗(q) =
X

i

qiE[εi|ui ≥ uj , j 6= i].

10See Chiong et al. (2016).
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In this way, different distributions for the utility shocks ε in the random utility
model will imply different generalized entropies.

Wemay also interpret− logS (q) as follows. Given q in the interior of the sim-
plex, there exists v such that (q,v) satisfy (9), see Norets and Takahashi (2013).
Then, using (12),11

− logSj (q) =W (v)− vj ,

which means that − logSj (q) is the expected utility gain from the discrete choice
relative to the deterministic utility component of option j. This coincides with the
 j(·)mapping introduced in Lemma 1 of Arcidiacono and Miller (2011), which is
a key component for the estimation procedures developed in that paper.

Proposition 8 in the Appendix contains important mathematical properties of
the class of inverse scaled demand functions S, which are used in proving the key
propositions in the remainder of the paper.

4 Generalizing the RI-logit model: RI-ARUMmodels with
Bregman Information Cost

In this section we generalize the equivalence result between rational inattention and
multinomial logit. We begin by generalizing the rational inattention framework
described in Section 2, using generalized entropy in place of the Shannon entropy.
Specifically, we let S be the inverse scaled demand corresponding to some ARUM
satisfying Assumption 1, and define "S (p) = −p · logS (p) as the corresponding
generalized entropy.

For a strictly convex function f , the Bregman (1967) divergence associated
with f is a function of probability vectors (p,q) to the real line defined byDf (p||q)
≡ f (p)− f (q)−rf (q) · (p− q). It measures the vertical distance from f (p)
to a tangent hyperplane to f at the point q. By convexity of f , this distance is pos-
itive and increasing away from q. When p = p (V) is random, we can consider
the expected Bregman divergence EDf (p (V) ||q), which measures the expected
divergence of p (V) from q. Banerjee et al. (2005) show that EDf (p (V) ||q) is

11We have logS(q) = logS(T(ev)/(
P

j Tj(e
v))) = log(ev/(

P
j Tj(e

v))) = v − W (v).
where we have used the fact that S is homogeneous of degree 1.
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minimized at q = Ep (V) = p0 for any choice of f . Banerjee et al. (2005) use
this observation to define the Bregman information of p (V) as EDf

(
p (V) ||p0

)
,

noting that this is the expected distortion, as measured by the Bregman divergence,
when replacing a random p (V) by the optimal constant vector p0.

We define accordingly an information cost as the Bregman information as-
sociated with the negative of the generalized entropy "S, i.e. κS (p (·) , µ) =
ED−"S

(
p (V) ||p0

)
.12 Proposition 5 below establishes that

κS (p (·) , µ) = "S
(
p0
)
− E"S (p(V)) (14)

= −p0 · logS
(
p0
)
+
X

v2V

[p (v) · logS (p (v))]µ (v) .

In particular, the information cost κ(p(·), µ) is equal to the Bregman informa-
tion, associated with the (negative) Shannon entropy, which is well known as the
mutual (Shannon) information. The interpretation of our information cost κS is
analogous to the information cost for the RI-logit model, in Eq. (2) above. It mea-
sures consumers’ action adjustment costs associated with shifting behavior from
the state-independent unconditional choice probabilities p0 to the state-dependent
conditional choice probabilities p(v).13 Taking information cost κS as Bregman
information means that the information cost inherits properties of the Bregman
divergence, as stated in the next proposition.

Proposition 5 For any generalized entropy function "S, the information cost
κS (p (·) , µ) in (14) is the expectation of the Bregman divergence associated with
"S of p (·) and p0. Hence it is convex in p (·) when holding p0 constant and
κS (p (·) , µ) = 0 if action and state are independent.

The information cost κS takes context into account by construction; that is,
going back to Example 1, exchanging the labels of good 1 (pineapple) and good 3
(cheesecake) affects information costs and therefore choices by design. Allowing
the information cost function to depend on context in this way entails some loss of

12Strict concavity of !S is established in Proposition 8 in the Appendix.
13Using Bayes’ rule, such a shift in choice probabilities corresponds to a change in beliefs from

the prior µ to a posterior µ(v|i) / pi(v)µ(v), which Caplin and Dean (2015) and Chambers et al.
(2018) refer to as “revealed posterior” distributions.
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generality, as it need not satisfy Blackwell’s information ordering. In particular, S
is not invariant with respect to permutation in its arguments. Example 5.2 below
illustrates this for the case of κS corresponding to a nested logit model.

Using the generalized cost function κS just introduced, we now define a new
RI model describing a DM who chooses the collection of conditional probabilities
p (·) = {p(v)}v2V to maximize his expected payoff less the general information
cost

max
p(·)

{E (V · p (V))− κS(p (·) , µ)} (15)

=max
p(·)

(
X

v2V

{
p(v) · [v + logS(p0)]− p(v) · logS(p(v))

}
µ(v)

)

.

We refer this model as RI-ARUM in order to make explicit the fact that the
cost function (14) is defined in terms of the generalized entropy "S(q) which is
derived from an ARUM. The maximization problem in Eq. (15) is an extension
of the maximization problem in Eq. (11) that is representative for the ARUM.
In fact, holding p0 fixed, the RI-ARUM objective function (15) above coincides,
pointwise in v, with the problem (11), where the generalized entropy function is
W ∗ (p) = −p · logS(p) as stated in Proposition 3. This connection underlies the
finding, elaborated in the following proposition, that the optimal conditional choice
probabilities for any RI-ARUMmodel have the logit-like closed form from Eq. (9)
above.

Proposition 6 Let T be the scaled demand of an ARUM and let S = T−1 be the
inverse scaled demand. Let p (·) be the solution to the corresponding RI-ARUM
model and p0 = Ep(V). Then

(i) The unconditional probabilities satisfy the fixed point equation

p0 = E

0

@
T
(
eV+logS(p

0)
)

PN
j=1 Tj

(
eV+logS(p0)

)

1

A . (16)

(ii) The conditional probabilities are given in terms of the unconditional probabil-
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ities by

p (v) =
T
(
ev+logS(p

0)
)

PN
j=1 Tj

(
ev+logS(p0)

) . (17)

(iii) The optimized value of (15) is

E log
NX

j=1

Tj

(
eV+logS(p

0)
)
= EW

(
V + logS

(
p0
))
. (18)

The unconditional and conditional choice probabilities in (16) and (17) gen-
eralize the corresponding expressions for the RI-logit model in a straightforward
way. We note in particular that the influence of the prior information is captured
completely by the vector logS(p0). The implications of prior for the behavior of
an RI-ARUM agent can be summarized by a vector in RN where N is the number
of choice options. This is true regardless of the form of the prior beliefs.

Part (i) of the proposition shows that the solution of the RI-ARUM model in-
volves a fixed point problem; in what follows, we assume that a solution exists. In
general, the uniqueness of a solution to RI-ARUM is not guaranteed. By Cover and
Thomas (2006, Thm 2.7.4), the mutual (Shannon) information κ(p(·), µ) is convex
as a function of the conditional probability p (·), and strictly convex when the con-
ditional probabilities differ from the unconditional probability p0. In this case, the
equations in Proposition 6 uniquely identify the solution to the RI-ARUM model.
By extension, as we show in Proposition 10 in the Appendix, this conclusion also
applies to the nested logit model. Whether it applies to all RI-ARUM remains an
open question.

Proposition 6(i) also implies that an important feature of the RI-ARUM model
is that some p0i may be zero, in which case the corresponding pi (v) are also zero.
To see this, consider Eq. (17). When p0i = 0, then Proposition 2(ii) implies that
logSi(p

0) = −1 and hence pi(v) = 0. Following the literature, we refer to the
set of options chosen with positive probability as the consideration set (e.g. Caplin
et al. (2018)).

Proposition 6(iii) indicates an alternative way for calculating the value attained
by optimal rationally inattentive behavior. In particular, Eq. (18) shows that the
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optimal value of program (15) can be computed as the expected surplus function
of the appropriately shifted ARUM. This generalizes the corresponding Lemma 2
in Matějka and McKay (2015).

While Proposition 6 does not explicitly characterize the consideration set emerg-
ing from a RI-ARUM problem, Corollary 9 in the Appendix describes one impor-
tant feature that it has, namely that it excludes options that offer the lowest utility
in all states of the world.

4.1 Equivalence between discrete choice (ARUM) and rational inat-
tention

We now establish the central result of this paper, namely the equivalence between
additive random utility discrete choice models and RI models. In particular, we
show that the choice probabilities generated by an RI-ARUM lead to the same
choice probabilities as a corresponding ARUM and vice versa. In particular, com-
paring the expressions for the choice probabilities in the RI-ARUM model in (17)
to those in an ARUM in (9), it is clear that such a result is available: the expressions
for the choice probabilities are identical except for the location shift of the deter-
ministic utility components v by the vector logS

(
p0
)
in the RI-ARUM model.

Proposition 7 For every RI-ARUM with prior (µ,V), inverse scaled demand S
and choice probabilities p (v) there is an ARUM defined on the consideration set
of the RI-ARUM that yields the same choice probabilities for all v 2 V .

Conversely, for every ARUM with choice probabilities q (v) and inverse scaled
demand S and given a prior (µ,V) such that the corresponding information cost
κS (p (·) , µ) is strictly convex, there is a location shift vector c such that the
RI-ARUM with prior (v! µ (v − c) ,V + c) and inverse scaled demand S has
choice probabilities p that satisfy p (v − c) = q (v) for all v 2 V .

This proposition implies a new interpretation of ARUM models as describing
boundedly rational behavior, which suggests that in order to apply an ARUM, one
need not assume that decision makers are completely aware of the valuations of
all the available options. This is important, as it is clearly unrealistic to expect
decision makers to be aware of all options when the number is large.
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At the same time, despite the formal equivalence in the choice probabilities in
ARUM and RI-ARUMmodels under the conditions of Proposition 7, there are sev-
eral important differences between them. The RI-ARUM model also allows some
options to have zero unconditional choice probabilities p0i . Since choice probabil-
ities are necessarily positive in the ARUM under Assumption 1, the equivalence
is defined only for the options which are in the consideration set of the RI-ARUM
model, as is clear from Proposition 7.

Moreover, the equivalence requires fixing the prior over states (µ,V); a prior
is part of the RI-ARUM model but needs to be added to the random utility model.
When we consider two choice scenarios with different priors, the subsequent choices
in the RI-ARUM and ARUM models can deviate considerably. In particular, the
RI-ARUM class allows options in the choice set to be complements, in the sense
that increasing the payoff of an option in some state may lead to an increase in the
choice probability of some other options. Such complementarities are explicitly
ruled out by ARUM discrete choice models.14

Additionally, we have necessary and sufficient conditions for a system of choice
probabilities to be consistent with an ARUM (Fosgerau et al., 2013). By Proposi-
tion 7, the same conditions are then necessary for a system of choice probabilities
that derives from an RI-ARUM and some fixed prior.

Starting from a given ARUM model, proceeding to the corresponding RI-
ARUM model requires deriving the convex conjugate function corresponding to
the social surplus function of the given ARUM. Explicit closed forms for the con-
vex conjugate functions are available, as far as we are aware, only for the multino-
mial and nested logit models. However, in general, the mass transport approach in
Chiong et al. (2016) can be used to simulate the convex conjugate function for any
ARUM, via computationally straightforward linear programming algorithms.

14Indeed, in empirical papers utilizing discrete-choice demand models, complementarities be-
tween choices can be typically accommodated only by modelling consumers as choosing “bundles”
of options in the choice set; see, eg. Gentzkow (2007) and Fox and Lazzati (2017). Such an approach
may become intractable as the dimensionality of the choice set increases. In contrast, complemen-
tarities can arise in the RI model both from correlation in the priors (as pointed out by Matějka
and McKay (2015)), and also from the form of the generalized entropy information cost functions
considered in this paper.
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In what follows, we illustrate these features for a specific example; namely, we
study a RI-ARUM model in which the choice probabilities are equivalent to those
from a nested logit discrete choice model, a frequently-used model in empirical
applications.

5 The RI-nested logit model

From an applied point of view, an important implication of Proposition 7 is that it
allows us to formulate rational inattention models that have complex substitution
patterns, going beyond the multinomial logit case. In this section, we consider an
RI-ARUM model with information cost derived from a nested logit model. The
nested logit choice probabilities are consistent with a discrete choice model in
which the utility shocks ε have a certain generalized extreme value joint distrib-
ution. Among applied researchers, the nested logit model is often preferred over
the multinomial logit model because it allows some products to be closer substi-
tutes than others, thus avoiding the restrictions implied by the IIA property.15

We partition the set of options i 2 {1, . . . , N} into mutually exclusive nests,
and let gi denote the nest containing option i. Let ζgi 2 (0, 1] be nest-specific
parameters. For a valuation vector v, the nested logit choice probabilities are given
by

qi(v) =
evi/ζgi

P
j2gi e

vj/ζgi
·

e
ζgi log

(P
j2gi

e
vj/!gi

)

P
all nests g e

ζg log
(P

j2g e
vj/!g

) . (19)

The inverse scaled demand S corresponding to a nested logit model is

Si(q) = q
ζgi
i

0

@
X

j2gi

qj

1

A
1−ζgi

. (20)

Applying Proposition 7, the nested logit choice probabilities (19) are the same as
15In order to be consistent with the definition of IIA, when applied to RI models we assume that

the DM’s prior is fixed. This assumption allows us to keep the choice set constant so that we can
focus on changes in the utilities associated to alternatives. For further details about IIA see Maddala
(1986, Chap. 2), and Anderson et al. (1992).

18

Electronic copy available at: https://ssrn.com/abstract=2889048



those from a RI-ARUM model with valuations

vi − ζgi log p
0
i − (1− ζgi) log

0

@
X

j2gi

p0j

1

A , i 2 {1, . . . , n} . (21)

The inverse scaled demand S for the nested logit model in Eq. (20) has several
interesting features, relative to the Shannon entropy. First, Eq. (20) allows us to
write the generalized entropy "S(p) as

"S(p) = −
NX

i=1

ζgipi log pi −
NX

i=1

(1− ζgi)pi log

0

@
X

j2gi

pj

1

A . (22)

The first term in Eq (22) captures the Shannon entropy within nests, whereas the
second term captures the information between nests. According to this, we may in-
terpret Eq. (22) as an augmented version of the Shannon entropy. It is also apparent
from (22) that "S(p) is not invariant to reordering of the choice probabilities, due
to the second term.

Second, when the nesting parameters ζgj = 1, then S is the identity (Sj(p) =
pj for all j), corresponding to the Shannon entropy. When ζgj < 1, then Sj(p) ≥
pj ; here, S(p) behaves as a probability weighting function that tends to overweight
options j belonging to larger nests. At the extreme ζgj ! 0, all options within
the same nest effectively collapse into one aggregate option and become perfect
substitutes.

We denote this model as RI-nested logit (hereafter RI-NL). Using this model,
we consider two examples, emphasizing both differences and similarities of the
RI-NL vis-a-vis the RI-logit model.

5.1 Example 1: mango-pineapple-cheesecake continued

We return to the earlier pineapple-mango-cheesecake example from Section 1. For
these three products, we consider a model with two nests, in which the tropical
fruits pineapple (good 1) and mango (good 2) are placed in one nest g1, while
cheesecake (good 3) is placed by itself in a second nest g2. For the nesting parame-
ters, we choose ζg1 = 0.5. The value of ζg2 is irrelevant since nest g2 comprises
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just one alternative. Recall that there are four equally likely possible states:

(
v1,v2,v3,v4

)
=

0

B
@
0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

1

C
A . (23)

Solving this RI-NL model leads to logS(p0) which is a constant vector plus
(0, 0,−1.18)>. Hence the nested logit model with payoffs shifted by this vec-
tor produces the same choice probabilities as the RI-NL. The RI-NL conditional
choice probabilities,

0

B
@
0.41 0.46 0.37 0.40

0.41 0.37 0.46 0.40

0.18 0.17 0.17 0.19

1

C
A ,

do not satisfy IIA and are hence not compatible with the RI-logit model.16

Conversely, we can start with the nested logit model with the payoffs given
in (23) above and the same nest parameters as before. The conditional choice
probability vectors for this model are

(
p1,p2,p3,p4

)
=

0

B
@
0.29 0.33 0.27 0.28

0.29 0.27 0.33 0.28

0.41 0.40 0.40 0.44

1

C
A ,

and the unconditional choice probability vector is p0 = (0.29, 0.29, 0.41)> under
the uniform prior. The corresponding location shift vector logS

(
p0
)
is

(0, 0,−0.001)> up to a constant and shifting the payoffs by this amount produces
RI-NL conditional choice probabilities that are equal to the nested logit choice
probabilities.

For comparison, we also compute the case where the nesting parameter has
been set to ζg1 = 0.4, which makes the alternatives pineapple and mango closer
substitutes than before. The RI-NL unconditional choice probability vector be-

16But even with the logit specification, the IIA property can break down if the DM is able to
consume more than one product, ie. bundles of goods (c.f. Gentzkow, 2007).
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comes p0 = (0.45, 0.45, 0.10)> and the RI-NL conditional choice probabilities
become 0

B
@
0.45 0.51 0.39 0.44

0.45 0.39 0.51 0.44

0.10 0.10 0.10 0.11

1

C
A .

The changes across states deviate more from IIA than when ζg1 = 0.5. It appears
that, as goods 1 and 2 become more substitutable, the DM is able to make better
choices in states where goods 1 or 2 are optimal. This comparative statics suggests
that increasing the substitutability between a set of goods corresponds to shifts in
the information structure towards signals which allow the DM to better distinguish
between states in which these goods are optimal.

5.2 Example 2: swapping alternatives can lead to increased informa-
tion cost

As we have stated through the paper, our cost functions embody information re-
lated to the identity of alternatives. In order to see how this feature works in prac-
tice, consider a nested logit with four choice options, nests formed by options 1-2
and 3-4, and with two states v1 =

(
1
4 ,
1
4 ,
1
4 ,
1
4

)
and v2 =

(
1
8 ,
3
8 ,
1
8 ,
3
8

)
. Define

logSi (q) = ζ log qi + (1− ζ) log
(P

j2gi qj

)
, where gi is the nest that contains

option i. A garbling that swaps alternatives 2 and 3 will move probability mass
across nests in state 2 but not in state 1. Then the probability distribution across
nests is independent of the state without garbling but not with garbling and there-
fore this garbling increases the information cost κS .

6 Conclusions

The central result in this paper is the equivalence between an additive random util-
ity discrete choice model and a corresponding RI-ARUM. Thus any additive ran-
dom utility discrete choice model can be cast as a model of rationally inattentive
behavior, and vice-versa for any RI-ARUM; we can go back and forth between
the two paradigms.17 Then, in order to apply an ARUM, it is no longer necessary

17In a similar vein, Webb (2019) demonstrates an equivalence between random utility models and
bounded-accumulation or drift-diffusion models of choice and reaction times used in the neuroeco-
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to assume that decision makers are completely aware of the valuations of all the
available options. This is important, as it is clearly unrealistic to expect decision
makers to be aware of all options when the number is large.

Our equivalence result is at the individual level, hence it also holds for ARUM
with random parameters, including the mixed logit or random coefficient logit
models which have been popular in applied work.18

Our equivalence result generalizes to perturbed random utility models (e.g.
Hofbauer and Sandholm (2002) and Fudenberg et al. (2015)) where the information
cost is the Bregman information associated with a (negative) generalized entropy
(Fosgerau et al., 2019). We are also exploring connections between our results
and those in the decision theory literature. Gul et al. (2014), for instance, show
an equivalence between random utility and an “attribute rule” model of stochastic
choice, and we conjecture that our results may be useful in showing similar results
for other decision-theoretic models.

Finally, there are rational inattention models outside the RI-ARUM framework;
that is, rational inattention models with information costs outside the class of gen-
eralized entropies introduced in this paper.19 Obviously, choice probabilities from
these non-RI-ARUM models would not be equivalent to those which can be gen-
erated from ARUM models; it will be interesting to examine the empirical distinc-
tions that non-RI-ARUM choice probabilities would have.

The properties in Proposition 8 are satisfied by any ISD corresponding to an
ARUM but do not characterize ARUM. In fact, the properties may be used to de-
fine a class of generalized entropies that is strictly larger than the class consisting
of those generalized entropies corresponding to ARUM (see Fosgerau et al., 2019).
We have not found direct conditions that characterize those generalized entropies
that correspond to ARUM. We have chosen in this paper to work with the gener-
alized entropies that derive from ARUM in order to emphasize the main point of
the paper: the connection between RI with our information cost and ARUM. How-
ever, the conclusions of Proposition 6 extend without change to the case when S

nomics and psychology literature.
18See, for instance, Berry et al. (1995), McFadden and Train (2000), Fox et al. (2012).
19As an example, the function g(p) = −

PN
i=1 log(pi) is not a generalized entropy function;

thus a rational inattention model using this as an information cost function would lie outside the
RI-ARUM framework.
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is an inverse scaled demand that satisfies the conclusions of Proposition 8 but not
necessarily corresponds to an ARUM. For applications it is then possible to work
with such generalized entropies without needing to check that they correspond to
an ARUM.
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Matějka, F. and McKay, A. (2015) Rational Inattention to Discrete Choices: A
New Foundation for the Multinomial Logit Model American Economic Review
105(1), 272–298.

McFadden, D. (1978) Modelling the choice of residential location in A. Karlquist,
F. Snickars and J. W. Weibull (eds), Spatial Interaction Theory and Planning
Models Vol. 673 North Holland Amsterdam pp. 75–96.

McFadden, D. (1981) Econometric Models of Probabilistic Choice in C. Manski
and D. McFadden (eds), Structural Analysis of Discrete Data with Econometric
ApplicationsMIT Press Cambridge, MA, USA pp. 198–272.

McFadden, D. and Train, K. (2000) Mixed MNL Models for Discrete Response
Journal of Applied Econometrics 15(November 1998), 447–470.

Melo, E., Pogorelskiy, K. and Shum, M. (2019) TESTING THE QUANTAL RE-
SPONSE HYPOTHESIS International Economic Review 60(1), 53–74.

Morris, S. and Yang, M. (2016) Coordination and Continuous Choice SSRN Elec-
tronic Journal .

Norets, A. and Takahashi, S. (2013) On the surjectivity of the mapping between
utilities and choice probabilities Quantitative Economics 4(1), 149–155.

Porcher, C. (2019) Migration with Costly Information.

Rockafellar, R. T. (1970) Convex Analysis Princeton University Press Princeton,
N.J.

Shannon, C. E. (1948) A Mathematical Theory of Communication Bell System
Technical Journal 27(3), 379–423.

Shi, X., Shum, M. and Song, W. (2018) Estimating Semi-Parametric
Panel Multinomial Choice Models Using Cyclic Monotonicity Econometrica
86(2), 737–761.

Sims, C. A. (2003) Implications of rational inattention Journal of Monetary Eco-
nomics 50(3), 665–690.

26

Electronic copy available at: https://ssrn.com/abstract=2889048



Sims, C. A. (2010) Rational inattention and monetary economics Handbook of
Monetary Economics Vol. 3 Elsevier chapter 4, pp. 155–181.

Vohra, R. (2011) Mechanism Design: A Linear Programming Approach Cam-
bridge University Press Cambridge.

Webb, R. (2019) The (Neural) Dynamics of Stochastic Choice Management Sci-
ence 65(1), 230–255.

A Proofs of results in main text

Proof of Proposition 2. Note first that we may write

T (ev) = eW (v)q (v) .

The probabilities in q are never zero since the random utility shocks have full
support. Define for convenience X =

{
v 2 RN |v1 = 0

}
. The results in Norets

and Takahashi (2013) apply to the mapping q: Hence q is a bijection between X
and the interior of the unit simplex!.

To obtain injectivity of T on RN+ , suppose that T (ev) = T
(
ev

0
)
and aim

to show that v = v0. Since Ti (ev) = eW (v)qi (v) and
NP

i=1
qi = 1, we may sum

NP

i=1
Ti (e

v) =
NP

i=1
Ti

(
ev

0
)
to find that W (v) = W (v0) and hence that q (v) =

q (v0). Then by the Norets and Takahashi (2013) result, v = v0 + (c, ..., c) which
leads toW ( v) =W (v0) + c =W (v) + c, and hence c = 0.

Consider next surjectivity and let x 2 RN+ be an arbitrary point. We aim to
solve the equation T (y) = x. By Norets and Takahashi, there exists v 2 X such

that q (v) = x/
NP

i=1
xi. Let c = −W (v) + log

NP

i=1
xi. Then

T
(
ev+c

)
= eW (v+c)q (v) = q (v)

NX

i=1

xi = x,

which establishes that T is a surjection from RN+ to RN+ .
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The next point is to extend T to RN+0. For y on the boundary of RN+0, let
z = {i 2 {1, ..., N} |yi > 0} index the non-zero components of y. If z = ;,
then we let T (y) = (0, ..., 0). For z 6= ;, consider the discrete choice model
(7) with choice restricted to z. Let p̃i, i 2 z (y) be the choice probabilities from
this restricted model and let p̃i = 0 for i /2 z. Similarly let W̃ be the expected
maximum utility for the restricted model. Define then T (y) = eW̃ (p̃1, ..., p̃N ).

The argument that T is a bijection from RN+ to RN+ may be repeated for each
combination of zeros reflected in the set z. Hence the extended function is a bijec-
tion from RN+0 to RN+0.

It remains to show that T is continuous. We will do this by establishing that
the values of T on the boundary of RN+0 are limits of values from sequences in the
interior. A limit point of a continuous function is unique, hence for each boundary
point we need just consider one sequence converging to that point.

Consider first a sequence {yn}1n=1 with limn!1 yn = (0, ...0). As the limit is
unique if it exists, consider yn = y/n for some y 2RN+ . Note thatW (logyn) =

W (logy) − log n ! −1. Then since qi (yn) are bounded between 0 and 1,
T (yn)! (0, .., 0) as required.

Consider then y 2RN+ , let z ⊂ {1, ..., N} be non-empty and define yni = yi

for i 2 z and yni = yi/n for i /2 z. Let F be the cumulative distribution function
of the vector of random utility shocks and let Fi be its partial derivatives. Then
choice probabilities may be written as

qi (v) =

Z 1

−1
Fi (u+ vi − v1, ..., u+ vi − vN ) du. (24)

As above, let q̃ be the choice probabilities when choice is restricted to z. At no
loss of generality, let z =

n
1, ..., Ñ

o
, where 0 < Ñ < N . For i 2 z, use the

dominated convergence theorem together with (24) to see that

lim
n!1

qi (logy
n) =

Z 1

−1
lim
n!1

Fi (u+ log y
n
i − log y

n
1 , ..., u+ log y

n
i − log y

n
N ) du

=

Z 1

−1
Fi
(
u+ log yi − log y1, ..., u+ log yi − log yÑ ,1...,1

)
du

= q̃i.

28

Electronic copy available at: https://ssrn.com/abstract=2889048



These probabilities sum to 1. Hence limn!1 qi (logyn) = 0 for i /2 z.
By dominated convergence,

lim
n!1

W (yn) = lim
n!1

(Z 1

0
(1− F (u− logyn)) du−

Z 0

−1
F (u− logyn) du

)

=

Z 1

0

(
1− lim

n!1
F (u− logyn)

)
du−

Z 0

−1
lim
n!1

F (u− logyn) du

=

Z 1

0

(
1− F

(
u− log y1, ..., u− log yÑ ,1, ...,1

))
du

−
Z 0

−1
F
(
u− log y1, ..., u− log yÑ ,1, ...,1

)
du

= W̃ .

Combining these results, find that T (limn!1 yn) = limn!1T (y
n) as re-

quired.

Finally, defining S(·) = T−1(·) the conclusion follows at once.

Proof of proposition 3. We first evaluateW ∗ (q). If 1 · q 6= 1, then

q · (v + γ)−W (v + γ) = q · v −W (v) + (1 · q− 1) γ,

which can be made arbitrarily large by changing γ and henceW ∗ (q) = 1. Next
consider q with some qj < 0. W (v) decreases towards a lower bound as vj !
−1. Then q ·v−W (v) increases towards+1 and henceW ∗ is+1 outside the
unit simplex !.

For q 2 !, we solve the maximization problem

W ∗(q) = sup
v
{q · v −W (v)}. (25)

Note that for any constant k we haveW (v + k · 1) = k +W (v), so that we may
normalize 1 ·v = 0. Maximize then the Lagrangian q ·v−W (v)−λ (1 · v) with
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first-order conditions 0 = qj − @W (v)
@vj

− λ, which lead to λ = 0. Then

q = rvW (v),

qeW (v) = rv
(
eW (v)

)
= T (ev),

S (q) eW (v) = ev ,

logS (q) +W (v) = v)

q · logS (q) +W (v) = q · v.

Inserting this into (25) leads to the desired result.
For part (i), let q be a solution to problem (11). Then, by the homogeneity of

T we have q = 1
αT(e

v), where α =
PN
j=1 Tj(e

v). Then, by the definition of S it
follows that S(q) = ev

α . Replacing the latter expression in Eq. (11) we get

W (v) = qv − q log (ev/α) ,

= qv − q (log ev + logα) ,

= log

0

@
NX

j=1

Tj(e
v)

1

A .

Proof of Proposition 5. Let " (p) = −p · logS (p) be a generalized entropy.
Then, using Proposition 8, the associated Bregman divergence becomes

D (p||q) = −q · logS (q) + p · logS (p)− (logS (q) + 1) · (p− q)

= p · (logS (p)− logS (q)) ,

where we have used that 1 · (p− q) = 0.
Convexity of D (p||q) in p follows from Proposition 8 or from the fact that it

is a Bregman divergence. Clearly, D (q||q) = 0.
Our information cost is by definition an expected Bregman divergence. We

therefore immediately obtain that it is convex in p (·) holding p0 constant and that
κS (p (·) , µ) = 0 if action and state are independent, since in that case p (V) =
p0.
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Proof of proposition 6. The Lagrangian for the DM’s problem is

# = E (V ·A)−κS(p, µ)+E

0

@γ (V)

0

@1−
X

j

pj (V)

1

A

1

A+E

0

@
X

j

ξj (V) pj (V)

1

A ,

where γ (V) and ξj (V) are Lagrange multipliers corresponding to condition (4).
Before we derive the first-order conditions for pj (v) it is useful to note that we

may regard the terms logS
(
p0
)
and logS (p (v)) in the information cost κS(p, µ)

as constant, since their derivatives cancel out by Proposition 8(iii). Define ṽj =
vj + ξj (v) + logSj

(
p0
)
and ṽ = (ṽ1, ..., ṽN ). Then the first-order condition for

pj (v) is easily found to be

logSj (p (v)) = ṽj − γ (v) . (26)

This fixes p (v) as a function of p0 since then

p (v) = T
(
eṽ
)
exp (−γ (v)) . (27)

If some pj (v) = 0, then wemust have ṽj = −1, which implies that Sj
(
p0
)
=

0 and the value of ξj (v) is irrelevant. If pj (v) > 0, then ξj (v) = 0 . We may then
simplify by setting ξj (v) = 0 for all j,v at no loss of generality, which means that
ṽj = vj + logSj

(
p0
)
.

Using that probabilities sum to 1 leads to

exp (γ (v)) =
X

j

Tj

(
eṽ
)

and hence (i) follows. Item (ii) then follows immediately.
Now substitute (17) back into the objective, using pj (v) ξj (v) = 0 , to find

that it reduces to

# = Eγ (V) = E log
X

j

Tj

(
eV+logS(p

0)
)

(28)

We may then use (28) to determine p0. Now apply Eq. (12) to establish part
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(iii) of the proposition.

Proof of Proposition 7. Consider a RI-ARUM model with prior (µ,V), scaled
demand T and choice probabilities p(v) and let C be its consideration set. For i /2
C we have pi(v) = 0 and logSi(p0) = −1 by Proposition 2. Let c = logS(p0).
Then for i 2 C we have

pi(v) =
Ti(e

v+logS(p0))
PN
j=1 Tj(e

v+logS(p0))

= P

(
vi + ci + εi = max

j
{vj + cj + εj}

)

= P

(
vi + ci + εi = max

j2C
{vj + cj + εj}

)
,

which is an ARUM on C.
To prove the converse, let q0 = Eq (v), c = − logS (q0) and consider the RI-

ARUM with prior
(
v! µ

(
v+ logS

(
q0
))
,V − logS

(
q0
))
and scaled demand

T. The RI-ARUM conditional choice probabilities satisfy the first-order condition

pi(v − logS (q0)) =
Ti(e

v−logS(q0)+logS(p0))
PN
j=1 Tj(e

v−logS(q0)+logS(p0))

with p0(v − logS (q0)) = Ep(v − logS (q0)). By strict convexity of the in-
formation cost, the first-order condition uniquely identifies the optimal RI-ARUM
conditional choice probabilities. Then p(v − logS (q0)) = q(v) solves the RI-
ARUM maximization problem.

B Additional results

Proposition 8 (Properties of the inverse scaled demand function) For any ARUM
discrete choice model satisfying Assumption 1, the corresponding inverse scaled
demand S(·) satisfies:

(i) S is continuous and homogenous of degree 1.

(ii) q · logS(q) is convex and strictly convex on the interior of!.
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(iii) S is differentiable with :

NX

i=1

qi
@ logSi(q)

@qk
= 1, k 2 {1, . . . , N},

where q is a probability vector with 0 < qi < 1 for all i.

Proof of Proposition 8. Continuity of S follows from continuity of the partial
derivatives of W , which is immediate from the definition. Homogeneity of S is
equivalent to homogeneity of T. Using the homogeneity property ofW

S−1(λev) = rv(eW (v+log λ)) = λrv(eW (v)) = λS−1(ev),

which shows that T and hence S are homogenous of degree 1.

The requirement that
PN
i=1 qi

@ logSi(q)
@qk

= 1 in the relative interior of the unit
simplex ! may be expressed in matrix notation as

(q1, . . . , qN ) · JlogS(q) = (1, . . . , 1),

where

JlogS(q) =

{
@ logSi (q)

@qj

}N

i,j=1

is the Jacobian of logS(q).
Defining t̂ ≡ logS(q), we have q = T

(
et̂
)
and hence W

(
et̂
)
= log(1 ·

T(et̂)) = log 1 = 0 by Proposition 3. Noting that (log(S))−1(̂t) = T(et̂) the
requirement in part (ii) is equivalent to

(q1, . . . , qN ) = (q1, . . . , qN ) · JlogS(q) · J(logS)−1 (̂t) = (1, . . . , 1) · JT(et̂)(̂t).

Now, use the Williams-Daly-Zachary theorem to find that

(1, . . . , 1) · JT(et̂)(̂t) = rt̂
(
eW(t̂)

)
= eW (ṽ) (q1, . . . qN ) = (q1, . . . qN ) .

as required.
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Convexity of q · logS(q) follows from Proposition 3(ii). To show that q ·
logS(q) is strictly convex for q 2 int!, note first that eW (v) has positive definite
Hessian on the set

{
v 2 RN : 1 · v = 1

}
(Hofbauer and Sandholm, 2002). This

Hessian is equal to the Jacobian of T (ev) = eW (v)q (v), which is then positive
definite. The inverse of T (ev) is logS (q), which then also has a positive definite
Jacobian. But the Hessian of q · logS(q) is logS (q) + 1.

Corollary 9 For some option j, and for all v 2 V , let vj ≤ vi for all i 6= j, and
assume that the inequality is strict with positive probability. Then p0j = 0 (that is,
option j is not in the consideration set).

Proof of corollary 9. Let ◦ denote the Hadamard product, i.e. (a1, ..., aN ) ◦
(b1, ..., bN ) = (a1b1, ..., aNbN ). Assume, towards a contradiction, that p0j > 0.
It follows from cyclic monotonicity (Rockafellar, 1970, Thm. 23.5) that pj (v)
increases as the utility of other options i, i /2 j decrease. Then

p0j = E

0

@ Tj
(
eV ◦ S

(
p0
))

P

k

Tk (eV ◦ S (p0))

1

A (29)

< E

0

B
@

Tj
(
eVjS

(
p0
))

P

k

Tk
(
eVjS (p0)

)

1

C
A (30)

= E

0

@ eVjTj
(
S
(
p0
))

eVj
P

k

Tk (S (p0))

1

A = E

0

@ p0jP

k

p0k

1

A = p0j . (31)

This is a contradiction as desired.

Proposition 10 (Convexity of the Bregman divergence) The Bregman informa-
tion κS (p (·) , µ) = "S

(
p0
)
− E"S (p(V)) associated with a nested logit model

is convex. It is strictly convex when the conditional probabilities differ from the
unconditional probability p0.

Proof of Proposition 10. When" is the Shannon entropy, i.e. when the associated
ARUM is a multinomial logit model, then the Bregman information is the mutual
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(Shannon) information. By Cover and Thomas (2006, Thm 2.7.4), the mutual
(Shannon) information is convex as a function of the conditional probability p (·),
and strictly convex when the conditional probabilities differ from the unconditional
probability p0.

Consider now a nested logit model and note that the corresponding generalized
entropy may be written "S (p) = " ($p) + c>p, where $ is a matrix whose
columns are linearly independent probability vectors. For example, the inverse
scaled demand (20) of the two-level nested logit model may be written as

logSi(q) = ζgi log ζgiqi +
(
1− ζgi

)
log

0

@
X

j2gi

(
1− ζgj

)
qj

1

A

−
(
1− ζgi

)
log
(
1− ζgi

)
− ζgi log ζgi .

Then the NL generalized entropy is the composition of a linear function and a
concave function, plus a linear function. The Bregman information may then be
written

κS (p (·) , µ) = "
(
$p0

)
− E" ($p(V)) ,

which is a composition of a linear function and the convex mutual Shannon infor-
mation, while the linear terms cancel out. Hence it is convex and strictly convex
when the conditional probabilities differ from the unconditional probability p0.
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