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Abstract

For spacecraft swarms, the multi-agent localization algorithm must scale well
with the number of spacecraft and adapt to time-varying communication and
relative sensing networks. In this paper, we present a decentralized, scalable al-
gorithm for swarm localization, called the Decentralized Pose Estimation (DPE)
algorithm. The DPE considers both communication and relative sensing graphs
and defines an observable local formation. Each spacecraft jointly localizes its
local subset of spacecraft using direct and communicated measurements. Since
the algorithm is local, the algorithm complexity does not grow with the number
of spacecraft in the swarm. As part of the DPE, we present the Swarm Reference
Frame Estimation (SRFE) algorithm, a distributed consensus algorithm to co-
estimate a common Local-Vertical, Local-Horizontal (LVLH) frame. The DPE
combined with the SRFE provides a scalable, fully-decentralized navigation so-
lution that can be used for swarm control and motion planning. Numerical
simulations and experiments using Caltech’s robotic spacecraft simulators are
presented to validate the effectiveness and scalability of the DPE algorithm.

Keywords: swarm localization, spacecraft swarm, large scale estimation, and
decentralized estimation.

1. Introduction

Spacecraft swarms have the potential to revolutionize the space industry
by enabling missions such as distributed aperture telescopes, space structure
assemblies, and cooperative deep space explorations (Chung and Hadaegh, 2011;
Cash, 2006; Gdoutos et al., 2018). These multi-spacecraft missions have several
advantages over monolithic satellite missions, such as robustness to individual
spacecraft loss and improved science return (Hadaegh et al., 2016; Brown et al.,
2009). Since ground-in-the-loop control of individual spacecraft is prohibitive
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for swarm missions, the spacecraft swarm must autonomously estimate their
states and maintain their formation.

An essential prerequisite for swarm motion planning and collision-avoidance
algorithms (Morgan et al., 2016) is swarm localization. Swarm localization is
a multi-agent localization problem where the number of agents is so large that
no single agent can maintain the information for all of the agents in the swarm.
Swarm localization is challenging for several reasons. First, in some multi-agent
localization algorithms for small-scale swarms, the time complexity scales at
least linearly with the formation size (Kamal et al., 2012; Açıkmeşe et al.,
2014). Hence, these algorithms are not suitable for large-scale swarms.

Another challenge is the requirement that each spacecraft must estimate
the absolute orbit of a reference spacecraft in order to define a common Local-
Horizontal, Local-Vertical (LVLH) frame estimate (see Figure 1). This estima-
tion is challenging for large-scale swarms as some of the spacecraft in the swarm
may not make a direct measurement of this reference spacecraft (Chung et al.,
2018; Bandyopadhyay and Chung, 2018). Any algorithm suitable for swarm
localization requires a novel approach that explicitly addresses these challenges.
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Figure 1: A spacecraft swarm and its relative sensing and communication networks. The
DPE estimates the spacecraft poses in the local observable subset with respect to the common
Local-Horizontal, Local-Vertical (LVLH) frame.

In this paper, we solve the swarm localization problem by proposing a local
algorithm called the Decentralized Pose Estimation (DPE) algorithm. Using the
DPE, each spacecraft estimates the states of only a local subset of the swarm.
Neighbor spacecraft cooperate to improve the pose estimates by sharing their
measurements. The DPE uses the result of nonlinear observability analysis to
determine the local observable subset of spacecraft given the ad hoc relative
sensing and communication graphs for each spacecraft. Then it jointly localizes
the spacecraft in the local observable subset by fusing the measurements that
are collected over the communication network. The DPE offers advantage over
the standard pose estimation without communication by improving the estima-
tion accuracy and by increasing the number of observable spacecraft. For our
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specific implementation, we represent the attitude of spacecraft with quaternion
while the Extended Kalman Filter (EKF) estimates the error attitude state in
minimal coordinate at each time step. As part of the DPE, we also present
the Swarm Reference Frame Estimation (SRFE) algorithm, which allows each
spacecraft to co-estimate the common LVLH frame of the swarm in a decen-
tralized manner. The SRFE applies the decentralized consensus filter (Kamal
et al., 2013; Bandyopadhyay and Chung, 2018) to estimate the reference space-
craft that may be visible to only a subset of the spacecraft. The DPE combined
with the SRFE provides a fully decentralized navigation solution that can be
used in swarm motion planning.

The DPE algorithm was verified in simulations and real-time robotic ex-
periments. The DPE performance was compared against that of an Individual
EKF, wherein each spacecraft uses only its measurements to estimate only those
spacecraft it directly measures, and a Centralized EKF, which has access to all
the information in the swarm. The robotic experiment was conducted on Cal-
tech’s robotic spacecraft dynamics simulators, the Multi-Spacecraft Testbed for
Autonomy Research (M-STAR) (Nakka et al., 2018; Foust et al., 2018). The rel-
ative poses of spacecraft were estimated using vision on-board each spacecraft.
We validated the DPE estimate against the ground truth obtained from a mo-
tion capture system. In summary, this paper presents a scalable, decentralized
algorithm for swarm localization that is appropriate for on-board implementa-
tion.

1.1. Related Work

The literature review is divided into the following parts: the multi-agent
localization problem for a team of robotic systems, some domain-specific large-
scale estimation in other applications, estimation of the common reference frame
for a swarm, and experimental validation of vision-based relative pose estimation
algorithms.

The research in multi-agent localization, a problem of estimating poses of
multiple robots in a group, has advanced over the years in the robotics com-
munity as interest in multi-agent coordination (Yan et al., 2013) has increased.
While there already exists a variety of multi-agent localization algorithms in
the literature, they predicate on assumptions specific to the respective applica-
tion. Some research assumes that the team of agents rendezvous infrequently
and that the robots exchange information upon close encounters, such as Multi-
agent Simultaneous Localization and Mapping (Fox et al., 2000; Carlone et al.,
2010; Zhou and Roumeliotis, 2006; Aragues et al., 2011). In contrast, other
research on multi-agent localization assumes that the team of robots maintains
communication links over a possibly time-varying network (Martinelli et al.,
2005; Franchi et al., 2013; Roumeliotis and Bekey, 2002). Some prior work
explicitly considers joint pose estimation over a network of relative measure-
ments (Martinelli et al., 2005; Marelli and Fu, 2015; Kekatos and Giannakis,
2012; Blackmore and Hadaegh, 2009; Bezouska and Barnhart, 2019). However,
this work assumes all-to-all communication, so it is not scalable for swarm ap-
plications. In another perspective, multi-agent localization can be seen as a
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distributed estimation problem where the states to be estimated are the poses
of the agents themselves. For a small-scale estimation problem, decentralized
consensus filters have been shown to be highly effective (Kamal et al., 2013;
Bandyopadhyay and Chung, 2018). However, these algorithms require all of the
nodes to have the same set of states. Since swarm localization is a large-scale
estimation problem, these algorithms also do not scale well with the number of
robots in the formation.

Large-scale estimation can be made tractable by limiting each node to esti-
mate only some subset of the swarm. In the context of networked power systems,
this problem has been studied for recursive estimation of static states (Kekatos
and Giannakis, 2012; Marelli and Fu, 2015). Another proposed decentralized
local algorithm addressed dynamical systems with an L-banded network struc-
ture (Khan and Moura, 2008), such as dynamics governed by partial differential
equations. While this approach yields a near-optimal result for the specific
problem, the problem assumes that each agent has a predetermined ordering of
the graph nodes. This is not valid for swarm localization problems where the
network topology is ad hoc. A scalable swarm localization algorithm requires
a new approach in which local estimation accommodates ad hoc networks in
terms of communication and relative sensing.

A separate but critical sub-component for swarm localization is the estima-
tion of a common reference frame for the swarm. Motion planning algorithms
typically require a local reference frame with respect to which the swarm poses
are defined. Some multi-agent robotics literature discusses the estimation of
a common reference frame (Nagavalli et al., 2014; Franceschelli and Gasparri,
2013; López-Limón et al., 2014). For formation flying spacecraft applications,
the goal of the common reference frame estimation is to obtain knowledge of the
absolute orbital state. The estimated state vector is small, so the decentralized
consensus filter (Kamal et al., 2013; Bandyopadhyay and Chung, 2018) can be
applied to solve this problem.

Some previous literature on vision-based relative pose estimation involves the
implementation of the proposed algorithm on hardware. While there are few
in-flight experiments for vision-based relative navigation (Fourie et al., 2014),
most of the vision-based pose estimation algorithms were validated through
simulations (Capuano et al., 2020) or on the ground using high-fidelity testbeds.
For example, some research work studies the pose estimation for a cooperative
single target (Romano et al., 2007; Tweddle and Saenz-Otero, 2015; Zhang et al.,
2014) or an uncooperative one (De Jongh et al., 2020). However, there has not
been an experimental validation on a vision-based pose estimation for spacecraft
swarms.

1.2. Contributions

In this paper, we present a novel, decentralized swarm localization algorithm
called the Decentralized Pose Estimation (DPE) algorithm. The main contri-
butions of this paper are as follows. First, the DPE estimates the states of only
a local subset of spacecraft, so the algorithm complexity on each spacecraft
does not grow with the swarm size. Based on the ad hoc relative sensing and
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communication graphs, the DPE uses the observability criteria to determine
the set of observable spacecraft. Second, we provide a strategy for estimat-
ing the common reference frame using a distributed consensus filter wherein
we apply the decentralized consensus filter for common LVLH frame estima-
tion for spacecraft swarms. We validated the algorithm in numerical simulation
and experiments. To the authors’ knowledge, the experimental validation of a
cooperative pose estimation algorithm using a swarm of spacecraft simulators
equipped with electro-optical sensors is also novel.

This paper extends our previous work (Matsuka et al., 2019) in the following
ways:
• we modified the DPE such that the estimated states are poses with respect

to a common LVLH frame and the new measurement model includes ab-
solute pose measurements available from the spacecraft’s communication
neighbors,

• we formulated the DPE for full six degrees-of-freedom, rather than the
planar dynamics considered in (Matsuka et al., 2019),

• we developed the SRFE algorithm to estimate a common LVLH frame
using the decentralized consensus filter,

• we provided more thorough numerical analyses illustrating the advantages
of the DPE,

• we experimentally validated the algorithm in time-varying relative sensing
and communication networks.

The outline of the remainder of the paper is as follows. We first define nota-
tions and review the relative orbital dynamics in Section 2. Next, we describe
the DPE algorithm in detail in Section 3 and the SRFE algorithm in Section 4.
Then we describe the numerical simulations in Section 5 and the robotic exper-
iment results in Section 6. The conclusion is presented in Section 7.

2. Preliminaries

Let Gs = (V, Es) denote a directed graph that describes the relative sensing
graph, with V = {1, . . . , N} the set of spacecraft and Es the set of edges. An
edge (i, j) is in Es when the i-th spacecraft measures the relative pose of the
j-th spacecraft. Similarly, let Gc = (V, Ec) denote the communication graph, an
undirected graph for the communication topology. We say (i, j) ∈ Ec if there is
a communication link between the i-th and the j-th spacecraft. Note that the
measurement graph and the communication graph may be different in general.
The out-neighbors of a node i in a graph G are defined as Ni = {j ∈ V | (i, j) ∈
E(G)} and we use subscripts s and c to distinguish the neighbors for relative
sensing and communication graphs respectively. The neighborhood of node i
is defined as N̄i = Ni ∪ {i}. The degree of a node in a graph is defined as

di =
∑N
j=1Aij where A is the adjacency matrix of the graph and the maximum

degree ∆ of a graph is defined as ∆ = max (di).
A column concatenation of vectors x1, . . . ,xn is written as x = [x1; . . . ; xn]

or x = ‖i=1,...,nxi, where the bar over the variable denotes an augmented vari-
able defined as a concatenation of variables. The position and velocity of an
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object a in frame b are denoted pa,b,va,b. The attitude and angular rate of the
frame a with respect to the frame b are denoted qa,b and ωa,b. The function
R(·) maps a quaternion onto a rotation matrix such that xb = R(qa,b)xa where
xa,xb are vectors expressed in frame a and b respectively. We use ˆ above
variables to denote the expectation.

The relative states of formation flying spacecraft are defined using a local-
vertical, local-horizontal (LVLH) frame that is attached to the common reference
spacecraft as shown in Figure 1. The LVLH frame, denoted by subscript L, is
defined as follows: the x direction, R, is along the orbit position vector to
the spacecraft; the z direction, N , is along the angular momentum vector of the
spacecraft’s orbit; and the y direction, T , completes the right-handed coordinate
system. The origin of the LVLH frame coincides with the center of gravity of
the reference spacecraft.

2.1. Relative Orbital Dynamics

This section reviews the equation of motion for the relative orbital dynamics.
For the rest of the paper, we assume that each spacecraft is in a near-circular
orbit, there are no perturbations and that all the spacecraft are in proximity
such that the relative orbital dynamics can be linearized to the Hill-Clohessy-
Wiltshire (HCW) equations (Schaub and Junkins, 2005). There exist some
dynamics models that include eccentricity or other perturbation effects (Ya-
manaka and Ankersen, 2002; Morgan et al., 2012; Sullivan et al., 2017); however,
we choose the HCW model dynamics to illustrate more clearly the decentral-
ized aspects of the algorithm. Suppose pi,L,vi,L are the position and velocity
vectors of the i-th spacecraft with respect to an LVLH frame that is commonly
known among all the spacecraft in the swarm. The dynamics of translational
states using the HCW equations are described by[

ṗi,L
v̇i,L

]
= At

[
pi,L
vi,L

]
+ Btwt (1)

where state matrix At and actuation matrix Bt are given by

At =

[
03×3 I3

Avp Avv

]
, Bt =

[
03×3

I3

]

Avp =

 3n2 0 0
0 0 0
0 0 −n2

 , Avv =

 0 2n 0
−2n 0 0

0 0 0

 (2)

where n is the mean anomaly of the reference spacecraft orbit and wt ∼
N (03×1,Wt) is assumed to be a zero mean Gaussian process noise.

2.2. Attitude Dynamics

For specific implementation of the DPE, we choose quaternions to represent
the attitude components of the spacecraft state (Markley and Crassidis, 2014).
A quaternion is defined as q = [qv; qs] where qv ∈ R3 and qs ∈ R are the vector
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and scalar components of the quaternion, respectively. A unit quaternion q ∈ S3

satisfies the constraint q>q = 1. Quaternion multiplication is denoted with the
group operator ⊗ and is defined as

q′ ⊗ q =

[
q′sqv + qsq

′
v − q′v × qv

q′sqs − q′v · qv

]
. (3)

The inverse of a quaternion is defined as

q−1 =
1

||q||

[
−qv
qs

]
. (4)

A small attitude perturbation δq ∈ S3 can be represented in a minimal co-
ordinate a ∈ R3 where the mapping from a ∈ R3 to δq is defined as follows

δq(a) =
1

2

[
a√

4− a>a

]
. (5)

Suppose qi,I and qref
i,I for the i-th spacecraft denote true and reference attitude,

respectively. Then attitude error ai,I and angular rate error δωi,I are defined
such that

δq(ai,I) =qi,I ⊗ (qref
i,I )−1, (6)

δωi,I =ωi,I − ωref
i,I . (7)

The kinematic differential equation for the attitude quaternion for the i-th
spacecraft body frame can be expressed in two equivalent forms

q̇i,I =
1

2
Ω(ωi,I)qi,I =

1

2
Θ(qi,I)ωi,I (8)

where Ω(ω) and Θ(q) are matrices defined as

Ω(ω) =

[
−ω× ω
−ω> 0

]
, Θ(q) =

[
qsI3 + q×v
−q>v

]
. (9)

where the superscript × denotes a skew symmetric matrix. The attitude rate
of the i-th spacecraft is propagated with the following

ω̇i,I = −J−1ωi,I
×Jωi,I + J−1wa (10)

where J is the inertia tensor of the spacecraft in the body frame and wa ∼
N (03×1,Wa) is the attitude process noise modeled as a torque perturbation
with zero-mean white Gaussian noise.

2.3. Review of Error State Estimation

Because the standard EKF does not strictly enforce the manifold constraint
for quaternion, we estimate the error state estimation for the attitude compo-
nents. This is similar to the conventional attitude estimation techniques such as
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the Multiplicative EKF (MEKF) (Markley, 2003). The main idea is to estimate
attitude error in a minimal coordinate at each step while using a quaternion
to provide a nonsingular attitude representation overall. The filtering involves
three steps: time update, measurement update, and reset. This section reviews
the time update of the error state and its covariance, as well as the reset step.

The state variables of the i-th spacecraft xi are defined as

xi = [pi,L; vi,L; qi,I ; ωi,I ] (11)

where pi,L and vi,L are relative positions and velocities of the i-th spacecraft
with respect to the swarm reference LVLH frame. Attitude parameters qi,I and
ωi,I are the quaternion and the angular rate of the i-th spacecraft with respect
to the Earth-Centered Inertial (ECI) frame, respectively. Precisely speaking,
translational states and rotational states are expressed with respect to different
frames (i.e. the LVLH and the ECI frames). This is a convenient choice made
to simplify the relative orbital and attitude dynamics models.

The attitude parameters are decomposed into some reference and error qi,I =
δq(ai,I) ⊗ qref

i,I and ωi,I = ωref
i,I + δωi,I , as defined in Eqs. (6) and (7). Non-

singular representation of xi is denoted by the reference state vector

xref
i = [pi,L; vi,L; qref

i,I ; ωref
i,I ]. (12)

At each filtering time step, the actual state to be estimated is the minimal
coordinate representation of state with respect to qref

i,I and ωref
i,I defined as

xmin
i = [pi,L; vi,L; ai,I ; δωi,I ]. (13)

We refer to this as the minimal state vector of the i-th spacecraft, denoted by
the superscript min. At each step, qref

i,I and ωref
i,I are selected such that the prior

estimate of ai,I and δωi,I are identically zero.
The state vector xi resides on a manifold M = R6 × S3 × R3 and we can

extend the notion of group operator to states in M as follows. Suppose x′,x ∈
M. Then the group operator � is defined as

x′ � x =


p′ + p
v′ + v
q′ ⊗ q
ω′ + ω

 . (14)

Suppose the error state between two states is defined as ∆x = x′ � x−1 ∈ M,
whose components are denoted by ∆x = [∆p; ∆v; ∆q; ∆ω]. This error
state can be parameterized by a minimal state error ∆χ ∈ R12 defined as

∆χ = [∆p; ∆v; a(∆q); ∆ω]. (15)

Finally two states x,x′ and ∆χ are related by

x′ = ∆x(∆χ) � x (16)
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where ∆x(·) : R12 →M is the map from ∆χ to ∆x. The DPE applies Eq. (16)
at each reset step to apply the correction ∆χ, expressed in minimal coordinate,
to a prior reference state vector to finally obtain the posterior state vector for
each spacecraft.

Next, we derive the equation of motion for attitude error states, which is
necessary for computing the covariance time update. Taking the time derivative
of the error quaternion given by Eq. (6) and substituting Eq. (8), one can obtain

2 ˙δq(ai,I) =

[
ωi,I

0

]
⊗ δq(ai,I)− δq(ai,I)⊗

[
ωref
i,I

0

]
. (17)

Substituting this into Eq. (5) leads to the equation of motion for attitude error

ȧi,I =
(

2 ˙δq(ai,I)
)

1:3
=

1

2

(
(4− a>i,Iai,I)

1
2 δωi,I − (2ωref

i,I + δωi,I)× ai,I

)
.

(18)
Similarly, the equation of motion for angular rate error can be derived from
Eqs. (7) and (10)

˙δωi,I = −J−1
(
δω×i,IJ(ωref

i,I + δωi,I) + ωref
i,I

×
Jδωi,I

)
+ J−1wa. (19)

Eqs. (18) and (19) together represent the attitude error dynamics. The Jacobian
of error attitude dynamics in Eqs. (18) and (19) with respect to error attitude
variables is given by

∂ȧi,I
∂ai,I

∣∣∣∣
ai,I ,δωi,I=0

=

(
−δω>i,Iai,I

2(4− a>i,Iai,I)
1
2

− ωref
i,I

× − 1

2
δω×i,I

)∣∣∣∣
ai,I ,δωi,I=0

= −ωref
i,I

×

(20)

∂ȧi,I
∂δωi,I

∣∣∣∣
ai,I=0

=

(
1

2
(4− a>i,Iai,I)

1
2 I3 + a×i,I

) ∣∣∣∣
ai,I=0

= I3 (21)

∂ ˙δωi,I
∂ai,I

= 03×3 (22)

∂ ˙δωi,I
∂δωi,I

∣∣∣∣
δωi,I=0

= −J−1
(
δω×i,IJ− (J(ωref

i,I + δωi,I))
× + ωref

i,I

×
J
) ∣∣∣∣

δωi,I=0

= J−1
(

(Jωref
i,I )× − ωref

i,I

×
J
)

(23)

Finally, covariance can be computed by solving the differential Lyapunov equa-
tion

Ṗ = AP + PA> + BWB> (24)

where A is Jacobian of propagation of states.

A =

[
At 06×6

06×6 Aa

]
, B =

[
Bt 06×3

06×3 Ba

]
, W =

[
Wt 03×3

03×3 Wa

]
(25)
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where At and Bt are given by HCW equations in Eq. (2) and Aa and Ba are
given by

Aa =

[
−ωref

i,I

×
I3

03×3 J−1
(

(Jωref
i,I )× − ωref

i,I

×
J
) ] , Ba =

[
03×3

J−1

]
(26)

Because the translational and rotational dynamics are decoupled, the state ma-
trix preserves a block diagonal structure.

3. Decentralized Pose Estimation (DPE) Algorithm

In this section, we delineate the DPE algorithm. The DPE estimates the
poses of a local observable subset of spacecraft in a swarm, given the relative
sensing and communication network topologies. First, each spacecraft measures
the poses of itself and its neighbors. Each spacecraft then communicates its
measurements and the associated measurement noise covariances to its commu-
nication neighbors j ∈ N c

i . Based on the available communication and relative
sensing networks at the given time, the augmented state vector is modified to
add newly detected spacecraft and subtract the spacecraft that became unob-
servable. Finally, each spacecraft jointly estimates the poses of the local space-
craft. This algorithm is summarized in Algorithm 1 and the following sections
explain the steps in detail. A copy of the same algorithm is implemented on
each spacecraft. First, we introduce the following definition to clearly define the
set of spacecraft to be estimated by the i-th spacecraft.

Definition 1. The local observable set Vi ∈ V for the i-th spacecraft is defined
as the union of the sensing neighborhood over the communication neighborhood.
That is

Vi :=
⋃
j∈N̄ c

i

N̄ s
j . (27)

This is the set of agents detected by the i-th spacecraft either via communi-
cation or via relative sensing in one communication step. The goal of the DPE
is for each spacecraft i ∈ V to estimate the state for each detected spacecraft
j ∈ Vi. Suppose the cardinality of the local observable set is Ni = card(Vi).
We define the reference augmented state vector xref

i ∈ MNi and the minimal
state augmented vector xmin

i ∈ R12Ni for the i-th spacecraft as the column
concatenation of all states for j ∈ Vi. That is

xref
i = ‖j∈Vixref

j , xmin
i := ‖j∈Vixmin

j (28)

where xref
j and xmin

j correspond to the full and minimal state for the j-th space-
craft as defined in Eq. (11) and 13.
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3.1. Absolute and Relative Measurement Models

Each spacecraft i ∈ V is assumed to have an absolute pose measurement yi
with respect to the Earth-Centered Inertial (ECI) frame.

yi = ha(xi,pL,I ,qL,I) +ψa
i =

[
R(qL,I)pi,L + pL,I

qi,I

]
+ψa

i (29)

where ψa
i denotes measurement noise. pL,I and qL,I describe the LVLH to ECI

transformation and are treated as fixed parameters known from the SRFE algo-
rithm. This measurement is available from GPS and a star tracker. We denote
the position and the attitude components of this observation as yi = [pobs

i,I ; qobs
i,I ].

Since the attitude measurement is given as a quaternion, it is convenient to
transform the observation to a pseudo-measurement form (Markley, 2003)

ỹi =

[
R(qL,I)(p

obs
i,I − pL,I)

2
(
qobs
i,I ⊗ (qi,I)

−1
)

1:3

]
. (30)

Then this measurement can be modeled as

ỹi = h̃a(xmin
i ) + ψ̃

a

i =

[
pi,L
ai,I

]
+ ψ̃

a

i (31)

where ψ̃
a

i ∼ N (06×, Ψ̃i) is the absolute pseudo-measurement noise vector.
In addition to its absolute measurement, each spacecraft may have relative

measurements, possibly multiple at a given time. In this paper, each relative
measurement is assumed to be a pose measurement provided by a monocular
camera (Garrido-Jurado et al., 2014). The availability of relative measurements
depends on the physical constraints of the given sensors such as range, field-
of-view (FOV), and lighting. This information is captured by the edges in
the relative sensing graph Gs. The relative measurement is assumed to give
the relative pose of the observed spacecraft with respect to the observer. Let
yj,i = [pobs

j,i ; qobs
j,i ] denote the pose of the j-th spacecraft relative to the i-th

spacecraft. The relative attitude can be written in terms of reference and error
attitude as follows

qj,i = qj,I ⊗ (qi,I)
−1

= δq(aj,I)⊗ qref
j,i ⊗ δq(−ai,I)

(32)

where qref
j,i = qref

j,I ⊗
(
qref
i,I

)−1
. In the same way as absolute measurement, it is

more convenient to transform the relative measurement to a minimal parame-
terization. We define the relative pseudo measurement by

ỹj,i =

[
pobs
j,i

aobs
j,i

]
(33)

where aobs
j,i = 2

(
qobs
j,i ⊗

(
qref
j,i

)−1
)

1:3
. Therefore, the minimal relative pose mea-

surement of the j-th spacecraft with respect to the i-th spacecraft is given by

ỹj,i = h̃r
(
xmin
i ,xmin

j ,xref
i

)
+ ψ̃

r

j,i. (34)
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where ψ̃
r

j,i is relative pseudo-measurement noise and the measurement model is
given by

h̃r
(
xmin
i ,xmin

j ,xref
i

)
=

[
R(δq(ai,I))R(qref

i,I )R(qL,I)
>(pj,L − pi,L)

2
(
δq(aj,I)⊗ qref

j,I ⊗ δq(−ai,I)⊗
(
qref
j,I

)−1
)

1:3

]
.

(35)
From this, the Jacobian of relative pseudo-measurement with respect to each
minimal state variable can be computed as follows

∂h̃r

∂pi,L
=

[
−R(qref

i,I )R(qL,I)
>

03×3

]
(36)

∂h̃r

∂pj,L
=

[
R(qref

i,I )R(qL,I)
>

03×3

]
(37)

∂h̃r

∂ai,I
=

[ [
R(qref

i,I )R(qL,I)
>(pj,L − pi,L)

]×
−R(qref

j,i )

]
(38)

∂h̃r

∂aj,I
=

[
03×3

I3

]
(39)

3.2. Communication and Augmented Sensing

At every communication step, each spacecraft broadcasts its sensing infor-
mation including both the absolute and the relative measurements. Absolute
sensing information is defined asMa

i = (yi,Ψi, i). For each edge in the relative
sensing graph Gs, the relative sensing information is defined as (yj,i,Ψj,i, (i, j)).
Then, we define the set Mr

i to be the set of relative sensing information for all
of the direct measurements the i-th spacecraft makes:

Mr
i = {(yj,i,Ψj,i, (i, j))| j ∈ N s

i } (40)

where N s
i denotes the neighbors of the i-th spacecraft in the relative sensing

graph Gs. At each communication time step, each spacecraft broadcasts Ma
i

and Mr
i to its communication neighbors.

Each spacecraft also collects the information broadcast by its neighbors. The
set of all of the relative sensing edges collected by the i-th spacecraft is

Ēs
i := {(j, k) ∈ Es | j ∈ N̄ c

i }. (41)

The augmented relative observation, measurement model, and noise are defined
as

yr
i := ‖(j,k)∈Ēsi ỹk,j , h

r

i(x
min
i ,xref

i ) := ‖(j,k)∈Ēsi h̃
r(xmin

j ,xmin
k ,xref

j )

ψ
r

i := ‖(j,k)∈Ēsi ψ̃
r

k,j

(42)

which are column concatenations over all of the relative sensing edges available
to the i-th spacecraft. Similarly, each spacecraft collects all of the absolute
measurements

ya
i := ‖j∈N̄ c

i
ỹj , h

a

i (x
min
i ) := ‖j∈N̄ c

i
h̃a(xmin

j ), ψ
a

i := ‖j∈N̄ c
i
ψ̃

a

j (43)
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The total augmented measurement is the collection of all of the relative and
absolute measurements. That is, yi = [ya

i ; y
r
i], hi = [h

a

i ; h
r

i], and ψi = [ψ
a

i ;ψ
r

i],
such that the augmented measurement equation becomes

yi = hi(x
min
i ,xref

i ) +ψi. (44)

The corresponding Jacobian linearized around the estimates ˆ̄xmin
i and ˆ̄xref

i be-
comes

Hi =
∂hi(x

min
i , ˆ̄xref

i )

∂xmin
i

∣∣∣∣
xmin
i =ˆ̄xmin

i

. (45)

Since all of the measurement models depend only on one or two spacecraft states
at a time, each row of Hi will be sparse.

For each spacecraft i ∈ V, we have the propagation models for the full and
the minimal state vectors

ẋref
i = f(xref

i ) (46)

ẋmin
i = fmin(xmin

i ,xref
i ) (47)

where the reference state model is given by collecting Eqs. (2), (8), and (10) and
the minimal propagation model is given by Eqs. (2), (18), and (19). Recall the
augmented state for the i-th spacecraft is xref

i . Then, the augmented dynamical
system for all spacecraft j ∈ Vi is given by

ẋ
ref

i = f i(x
ref
i ) := ‖j∈Vif(xref

j ) (48)

ẋ
min

i = f
min

i (xmin
i ,xref

i ) := ‖j∈Vifmin(xmin
j ,xref

j ). (49)

Integrating Eq. (48) propagates the previous prior estimate x̂
ref+

i (t− 1) to the

current posterior estimate x̂
ref−
i (t), where the superscript − and + denotes prior

and posterior, respectively. Eq. (49), instead, is used to define the augmented
Jacobian

Ai =
∂f

min

i (xmin
i , ˆ̄xref

i )

∂xmin
i

∥∥∥∥
xmin
i =ˆ̄xmin

i

. (50)

Since the propagation of each state is decoupled, Eq. (50) is a block diagonal
where the diagonal block corresponding to j ∈ Vi is given by A(xref

j ) from
Eq. (26). Using these equations, the augmented posterior covariance from the
previous step can be updated to the current prior covariance using

Ṗi = AiPi + PiA
>
i + BiWiB

>
i . (51)

While the augmented state matrix Ai and the process noise covariance term

BiWiB
>
i are block diagonal, Eq. (51) has to be solved simultaneously because

Pi is not diagonal.
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At the measurement update of the DPE, the Kalman gain, the posterior co-
variance, and the state correction terms are computed similarly to the standard
EKF:

Ki = P
−
i H
>
i

(
HiP

−
i H
>
i + Ψi

)−1

(52)

P
+

i =
(
I−KiHi

)
P
−
i (53)

∆χ̄i = Ki(yi − hi(x
min
i ,xref

i )) (54)

Because the correction term ∆χ̄i is expressed in the minimal coordinate R12Ni ,
we apply the reset step to the augmented reference state to recover the posterior
estimate of the state

xref
i

+
= ∆x̄i(∆χ̄i) � xref

i

−
. (55)

The definition of the group operator � and the mapping between the tangent
space are extended to those for the augmented vector by simply applying the
operations for each of j ∈ Vi.

For the purposes of this paper, we implemented the DPE algorithm with
specific definitions for the state, measurement, and dynamics models. However,
the strategy of defining the augmented state vector and measurements in this
paper can be extended to different scenarios.

3.3. Adding and Subtracting Nodes to Set Vi
The local observable set Vi from Eq. (27) may vary at each time step, based

on the relative sensing and communication graphs Gs and Gc at the given time.
The DPE modifies the augmented state vector xref

i and its associated covariance
Pi if the set Vi has changed over time.

A new spacecraft j is added to Vi at time t if a measurement of the new
spacecraft becomes available at the new time step. A new measurement becomes
available to an agent either when (i) the agent itself or one of its communication
neighbors detects a new spacecraft or (ii) the measurement becomes available
through the addition of a new communication link. The DPE waits for two
consecutive pose measurements, such that the velocities of the new spacecraft
are computed by numerical differentiation of the two pose measurements.

The DPE adds the new spacecraft states for j ∈ Vi to x̂i by adding a
new state xref

j directly computed from the positions and velocities. A block
column and a block row are added to the covariance matrix when initializing
the state. Assuming that xref

j is independent of x̂i at the previous time state,
the augmented covariance matrix is created by adding a new set of rows and
columns with a prescribed specified initial uncertainty. The off-diagonals are
zeros since xref

j and x̂i are independent.
The observer spacecraft may also stop estimating a spacecraft if a previously

estimated spacecraft becomes unobservable. Depending on the application, the
dynamics of the unobservable states may be propagated by the dynamics model
without the measurement updates for a fixed maximum number of rounds. If
a new measurement becomes available for the spacecraft before the maximum
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number of rounds, the measurement update is applied and the count is reset.
The spacecraft state and associated covariance blocks are deleted if the count
exceeds the specified maximum number.

The DPE algorithms explained in the above sections can be summarized in
Algorithm 1.

Algorithm 1: DPE Algorithm

Result: Estimate x̂
ref+

i (t) and P
+

i (t)

1 Initialize x̂
ref+

i (0) and P
+

i (0)
2 while true do

3 x̂
ref+

i (t− 1), P
+

i (t− 1) = Reassign(x̂
ref+

i (t), P
+

i (t))
4 Get measurements Ma

i , Mr
i

5 for j ∈ N c
i do

6 Exchange measurements (Ma
i , Mr

i) and (Ma
j , Mr

j)

7 end
8 Collect measurements: M̄a

i =
⋃
j∈N̄ c

i
Ma

j , M̄r
i =

⋃
j∈N̄ c

i
Mr

j

9 Update (x̂
ref+

i (t− 1), P
+

i (t− 1)) according to Vi
10 x̂

ref−
i (t), P

−
i (t) = Time Update(x̂

ref+

i (t− 1), P
+

i (t− 1))

11 ∆χ̄i, P
+

i (t) = Measurement Update(x̂
−
i , P

−
i , M̄a

i , M̄r
i)

12 x̂
ref+

i (t) = Reset(∆χ̄i, x̂
ref−
i )

13 end

3.4. Nonlinear Observability

Assuming that the swarm has limited sensing and limited communication, it
is important to determine which subset of spacecraft in the swarm is observable.
The observer system for the i-th spacecraft in terms of xi is constructed from
Eqs. (44) and (48). As usual, the following observability analysis assumes the
deterministic nonlinear observer system.{

ẋi = f i(xi)

yi = hi(xi)
(56)

We analyze Eq. (56) to determine its nonlinear observability. First, we define
the terminology to make the discussion more concrete.

Definition 2. Suppose i, j ∈ V. We say agent j is observable to agent i if
j ∈ Vi and xj, a subset of state vector xi, is observable to i.

Definition 3. We say a set of agents Si ⊆ V is an observable set with respect
to agent i if agent j is observable to agent i for all j ∈ Si

Recall that xi = ‖j∈Vixj where Vi ⊆ V. Any agent j 6∈ Vi is not observable
to agent i because it is not a part of the local dynamical system. Therefore
j ∈ Vi is a necessary condition for agent j to be observable to agent i. Using
this definition, we have the following proposition.
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Proposition 1. Suppose j ∈ N̄ c
i and k ∈ N̄ s

j for some i ∈ V. Then agents j
and k are observable to agent i.

Proof. We have that j, k ∈ Vi by Definition 1, so xj and xk are both parts of
the state xi estimated by i-th agent in the nonlinear system Eq. (56). Now
we consider the part of Eq. (56) pertaining to agents j and k. We define w =
[xj ; xk]. {

ẇ = fp(w)

z = hp(w)
(57)

where fp(w) = [f(xj); f(xk)] and hp(w) = [ha(xj); h
r(xj ,xk)]. The measure-

ment model can be written as

hp(w) =


R(qL,I)

>pj,L + pL,I
qj,I

R(qj,I)R(qL,I)
>(pk,L − pj,L)

qk,I ⊗ (qj,I)
−1

 (58)

where qL,I and pL,I are known fixed parameters. The zeroth- and first-order
Lie derivatives of hp are given by

L0hp(w) = hp(w) (59)

L1
fphp(w) = ∇whp(w) · fp(w) (60)

Based on the Lie derivatives above, the observability matrix is defined as follows

O =
{
∇wLlfphp(w) | l ∈ N

}
(61)

The observability rank condition (Hermann and Krener, 1977) states that if the
observability matrix O is full column rank, the nonlinear system Eq. (57) is
locally weakly observable. One can compute the gradient of the zeroth-order
Lie derivative to get

∇wL0hp(w) = ∇whp(w)

=


R(qL,I)

> 03×3 03×4 03×3 03×3 03×3 03×4 03×3

04×3 04×3 I4 04×3 04×3 04×3 04×4 04×3

−R(qi,I)R(qL,I)
> 03×3 Φ1 03×3 R(qi,I)R(qL,I)

> 03×3 03×4 03×3

04×3 04×3 Φ2 04×3 04×3 04×3 Φ3 04×3


(62)

where Φ1(pj,L,pk,L,qj,I) and Φ2(qk,I) are some functions that are generally
non-zero and Φ3 = Φ3(qj,I) is given by

Φ3(q) =

[
qsI3 + q×v −qv

q>v qs

]
(63)

16



The gradient of the first-order Lie derivative is

∇wL1
fphp

=


03×3 R(qL,I)

> 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 ∗ 1
2Θ(qj,I) 03×3 03×3 03×3 03×3

∗ ∗ ∗ ∗ ∗ R(qj,I)R(qL,I)
T 03×3 03×3

03×3 03×3 ∗ ∗ 03×3 03×3 ∗ 1
2Φ3(qj,I)Θ(qk,I)


(64)

where an asterisk denotes some non-zero block element of matched dimensions.
Because the nonlinear system Eq. (57) is infinitely smooth, O has an infinite
number of rows in general. However, it is sufficient to show that a finite number
of rows are linearly independent to determine local weak observability. With
this in mind, we consider only the rows corresponding to the zeroth and first
Lie derivatives.

O =

[
∇wL0hp

∇wL1
fphp

]
(65)

After applying block row elimination, O reduces to

R(qL,I)
> 03×3 03×4 03×3 03×3 03×3 03×4 03×3

04×3 04×3 I4 04×3 04×3 04×3 04×4 04×3

03×3 03×3 03×4 03×3 R(qj,I)R(qL,I)
> 03×3 03×4 03×3

04×3 04×3 04×4 04×3 04×3 04×3 Φ3(qj,I) 04×3

03×3 R(qL,I)
> 03×4 03×3 03×3 03×3 03×4 03×3

04×3 04×3 04×4
1
2Θ(qj,I) 04×3 04×3 04×4 04×3

03×3 03×3 03×4 03×3 03×3 R(qj,I)R(qL,I)
> 03×4 03×3

04×3 04×3 04×4 04×3 04×3 04×3 04×4
1
2Φ3(qj,I)Θ(qk,I)


(66)

Given ||q|| = 1, R(q), Φ3(q), and Θ(q) have full column rank. Therefore O
has full column rank for arbitrary j ∈ N̄ c

i and k ∈ N̄ s
j . The observability rank

condition (Hermann and Krener, 1977) tells that the nonlinear system from
Eq. (57) is locally weakly observable.

Finally, we arrive at the following theorem.

Theorem 1. Suppose the detected set of agents Vi ⊆ V for agent i is defined
as in Eq. (27). Then Vi is the largest observable set in V.

Proof. Suppose j ∈ N̄ c
i . Proposition 1 implies that N̄ s

j is an observable set with

respect to the agent i. Moreover since Vi is defined as the union of all N̄ s
j over

∀j ∈ N̄ c
i , Vi is also an observable set with respect to agent i. Recall that j ∈ Vi

is a necessary condition for agent j to be observable to agent i because it has
no information on l ∈ V \ Vi. Therefore, we conclude that j ∈ Vi is a necessary
and sufficient condition for agent j to be observable to agent i.

Theorem 1 states that all the detected sets of spacecraft Vi are observable
in this problem formulation. Moreover, no other spacecraft j ∈ V \ Vi is ob-
servable to the i-th spacecraft, given the measurement models and the one-hop
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communication limitation assumed in this problem. In other words, the DPE
algorithm estimates the states for all the agents in the largest local observable
subset j ∈ Vi.

4. Consensus Estimation of Swarm Reference Frame

This section details the Swarm Reference Frame Estimation (SRFE) algo-
rithm. Sophisticated motion planning algorithms typically require a common
local reference (e.g. LVLH frame); however, finding such a reference frame is
a non-trivial estimation task. All of the spacecraft in the swarm must have an
estimate, and the swarm must reach a consensus on the common local reference
frame. We apply an information consensus filter (Kamal et al., 2013; Bandy-
opadhyay and Chung, 2018), which is a decentralized algorithm where a sensor
network co-estimates a state vector using the consensus algorithm (Olfati-Saber
and Murray, 2004).

In development of the SRFE algorithm, we make the following assumptions:
• the communication graph G = (V, Ec) is undirected and connected at each

time step
• the subset of agents in the swarm has the measurements of the absolute

pose of the reference spacecraft
• the degree of the communication graph is upper bounded by a finite bound
dmax. That is Card(N c

i ) < dmax for all i ∈ V for some dmax < +∞.
The assumption that the communication graph is undirected may be relaxed

so long as the graph is balanced (Olfati-Saber and Murray, 2004; Bandyopad-
hyay and Chung, 2018). To estimate the common LVLH frame, the state that
needs to be estimated is the absolute position and velocity of a reference space-
craft in the ECI frame. Denote ξ to be the reference spacecraft translational
state where ξ = [pL,I ; vL,I ] and pL,I and vL,I are the position and velocity
of the reference spacecraft in the ECI. Suppose a subset of spacecraft W ⊆ V
measures the absolute pose of the reference spacecraft. These absolute pose
measurements may be obtained by combining GPS and relative pose measure-
ments, which are assumed to be available for the DPE. Then, the discrete-time
dynamics for the whole swarm are given by the following set of equations.

ξ(t+ 1) =fs(ξ(t)) + ws, t = 1, 2, . . . ξ(0) = ξ0 (67)

ηi(t) =Hsξ +ψsi , i ∈ W, (68)

where Hs = [I3 03×3] is the absolute measurement model for measurement
ηi. Propagation is modeled by a nonlinear function fs. The process and mea-
surement noises are denoted as ws ∼ N (06×1,W

s) and ψsi ∼ N (03×1,Ψ
s)

respectively and they are assumed to be independent. We define the estimate
of ξ by ξ̂i for a spacecraft i ∈ V. The objective of the SRFE is to estimate ξ̂i in
an optimal fashion for all the spacecraft. To this end, we apply the information
consensus filter (Kamal et al., 2013) to the distributed dynamical system given
by Eqs. (67) and (68).
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The SRFE first computes the proposal information vector u0
i and the pro-

posal information matrix U0
i , according to Eqs. (71) and (72). N denotes the

size of the swarm N = Card(V). This is computed on each spacecraft i ∈ V
from the prior estimate ξ̂

−
i and the information matrix J−i . Next, the swarm

communicates the consensus proposals to its neighbors and iteratively applies
consensus K times. For each iteration k, the SRFE uses the consensus to
compute a posterior information vector and information matrix according to
Eqs. (73) and (74) respectively. The consensus coefficient ε must satisfy a stable
upper bound ε < 1/d where d(Gc) is the maximum degree of the communication
graph. By the assumption that the communication graph has a finite degree,
we have d(Gc) < dmax. Then, we choose ε such that ε < 1/dmax to guarantee
convergence. The posteriori information state and information matrix are com-
puted according to Eqs. (75) and (76). The algorithm is modified such that it
uses nonlinear dynamics for time propagation of state. The Jacobian of fs(ξ)

around ξ̂i is defined to be Fi = ∂fs(ξ)
∂ξ

∣∣∣
ξ=ξ̂i

and this is used for the covariance

time propagation. The SRFE algorithm is summarized in Algorithm 2.
The SRFE has multiple properties that make it advantageous for the com-

mon LVLH estimation. First, the information consensus filter asymptotically
approaches the optimal centralized estimate as K → ∞, assuming the dynam-
ical system is linear (Kamal et al., 2013). The optimal centralized estimate
refers to the Kalman filter solution given that the centralized nodes have access
to all the measurements Eq. (68), where fs in Eq. (67) is linear. In practice, it
is known that the information consensus filter achieves near-optimal value even
if K is small (Kamal et al., 2013). The algorithm is strictly local and decentral-
ized, such that the spacecraft only requires local information exchange. Each
of the agents has an estimate of the reference trajectory even if some of the
spacecraft do not make a direct measurement. Also, this approach is agnostic
to whether the reference spacecraft or target is cooperative or uncooperative, so
long as some of the spacecraft in the swarm can measure the absolute position of
the reference in the ECI frame. In addition, the LVLH estimation has a unique
requirement that the reference trajectory obeys the orbital dynamics. This is
because the relative orbital dynamics such as HCW assume that the reference
trajectory follows the modeled dynamics. The SRFE algorithm estimates the
orbital states of an actual orbiting body; therefore, an unbiased estimate of ξ
will also satisfy the orbital dynamics.

5. Validation of DPE and SRFE by Numerical Simulations

In the following three subsections, we discuss how the performance of the
DPE and the SRFE was verified. Using a satellite inspection mission scenario
as an example, we first illustrate the estimator convergence. Second, we quan-
titatively compare the computational time and the estimation error for an in-
creasing number of spacecraft in the swarm. Finally, the DPE was implemented
in a robotic experiment using Caltech’s robotic spacecraft simulators called the
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Algorithm 2: SRFE Algorithm

Result: Estimate ξ̂
+

i and J+
i for each i ∈ V

1 Input: ξ̂i(0) = ξ̂i0, Ji(0) = Ji0
2 while true do
3 Propagate dynamics

ξ̂
−
i (t) = fs(ξ̂

+

i (t− 1)) (69)

J−i (t) =
(
Fi(J

+
i (t− 1))−1F>i + Ws

)−1
(70)

4 Get measurements ηi
5 Compute consensus proposal vector u0

i and matrix U0
i

u0
i =

1

N
J−i (t)ξ̂

−
i + Hs>Ψsηi (71)

U0
i =

1

N
J−i (t) + Hs>ΨsHs (72)

Perform consensus on u0
i and U0

i

6 for k = 1 to K do
7 Communicate uki and Uk

i to all neighbors j ∈ N c
i

8 Update:

uki = uk−1
i + ε

∑
j∈N c

i

(uk−1
j − uk−1

i ) (73)

Uk
i = Uk−1

i + ε
∑
j∈N c

i

(Uk−1
j −Uk−1

i ) (74)

9 end
10 Compute a posteriori state and information matrix

ξ̂
+

i (t) = (UK
i )−1uKi (75)

J+
i (t) = NUK

i (76)

11 end

Multi-spacecraft Testbed for Autonomy Research (M-STAR). The experiment
considers time-varying relative sensing and communication graphs.

5.1. Numerical Simulation Example

This section verifies the performance of the DPE algorithm in a 6DOF nu-
merical simulation example. We consider an example mission scenario in a
circular, Low Earth Orbit (LEO) where three spacecraft cooperatively inspect
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one target spacecraft, such as a defunct satellite. The target is uncoopera-
tive in the sense that it does not communicate any information with the other
spacecraft in the swarm. The three inspector spacecraft are placed in periodic,
thrust-free relative spacecraft trajectories referred to as Passive Relative Orbits
(PROs) (Scharf et al., 2003) such that the centers of the PROs coincide with
the target. Each spacecraft has an elliptical relative orbit with radii of 10× 20
meters. All the spacecraft are initialized in the same orbital plane. The ground
truth dynamics of each spacecraft were modeled using (nonlinear) Keplerian
dynamics with no perturbations. The DPE uses the linearized HCW dynamics
as the propagation model for the relative dynamics and the SRFE integrates
the Keplerian dynamics to propagate the target state. For the attitude motion,
the spacecraft follow a constant slew rate matching the negative of the mean
motion, such that the attitude makes one rotation with one orbit. The absolute
sensing uncertainties are selected to be 5 meters in position and 1 degree in atti-
tude. The relative measurement uncertainties are 0.1 meters in position and 0.1
degrees in attitude. The simulation is run for one orbit. We assume that each
spacecraft has the relative measurements of the target and the other spacecraft,
and that all of the inspecting spacecraft communicate with each other. The
sensing and communication graphs are fixed in this simulation example; the
dynamic graphs are considered in the robotic experiment. The relative sensing
and communication graphs are shown in Figure 2.
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Figure 2: DPE and Individual EKF pose estimates and relative sensing and communication
graphs

The inspector spacecraft first uses the SRFE to estimate the target spacecraft
orbit state in the ECI frame. Since the target is uncooperative, the team of
inspector spacecraft uses the SRFE to collectively estimate the target trajectory,
which is then used to define the LVLH frame. Each inspector spacecraft uses
its absolute measurement and the relative measurement of the target to create
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a pseudo-measurement of the target absolute position. The maximum degree of
the communication graph is d = 2, so the consensus coefficient is selected to be
ε = 0.49. Each spacecraft uses the target estimate from the SRFE to define the
LVLH frame. Next, the DPE estimates the formation pose with respect to the
common LVLH frame. The absolute pose measurements are transformed from
the ECI frame to the LVLH frame.

As a point of comparison, we also implement the Individual EKF where
each spacecraft estimates poses only using its own absolute and relative mea-
surements. For the estimation parameters such as measurement and process
noise, the same parameters were used for the Individual EKF as those of the
DPE. This represents the case where there is no communication between the
spacecraft.

Figure 2 shows the formation pose estimate obtained in the DPE after one
orbit. The triangles represent the poses of the spacecraft in the swarm: black
for ground truth, blue for the DPE estimate, and yellow for the Individual EKF
estimate. The corresponding error ellipse represents the 99.7 percent confidence
of the respective position estimates. Figure 2 shows that the position error
covariance for the DPE is much smaller than that of the Individual EKF. The
local relative sensing graph of the DPE can be viewed as a pose graph. In this
example, the DPE can estimate the states for all of the spacecraft in the swarm
even though there are only two direct relative measurements available to each
spacecraft.

In order to compare the Individual EKF and the DPE, the error metric
was defined as the Euclidean norm of the position estimation error: ||p̂i,L −
pi,L||. Figure 3(a) shows the time history of the position estimation error for
an inspector spacecraft estimated by another inspector spacecraft. The position
error for the DPE is smaller compared to that of the Individual EKF at a steady
state. Figure 3(a) also shows that the estimate converges quickly.

Figure 3(b) shows the performance of the SRFE algorithm for each of the
three inspector spacecraft. The figure plots the error metric ||p̂L,I−pL,I || which
is the norm of the position estimation error of the reference spacecraft with
respect to the inertial frame. The figure shows that the SRFE estimates quickly
converge to the true trajectory for all the spacecraft. The high correlation
between the three estimate errors is due to the fact that the three estimates
converge to a commonly agreed estimate.

5.2. Scalability Analysis

We verify the scalability of the DPE in numerical simulations for an increas-
ing number of spacecraft in the swarm. The swarm sizes considered are 5, 100,
150, 200, 250, and 300 spacecraft. For each simulation, we study the estima-
tion accuracy and the computational time of the DPE on each spacecraft. The
performance of the DPE is compared against two other filters: the Centralized
EKF, which has access to all of the measurements by all of the spacecraft, and
the Individual EKF, where each individual spacecraft estimates the states only
using its own measurements. The same parameters as those of the DPE were
used for the Individual EKF and the Centralized EKF, except for the assumption
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Figure 3: Example estimation errors for the DPE and the SRFE algorithms

on the communication. This scalability analysis does not include the computa-
tional time of obtaining the measurements. Because the scalability of the SRFE
algorithm is established in prior work (Kamal et al., 2013; Bandyopadhyay and
Chung, 2018), we assume the absolute reference state of the SRFE is given for
this section only.

Given the relative positions, the relative velocities are selected such that
all of the spacecraft have a concentric PRO. The relative measurements are
obtained as described by Eq. (34). The simulation is run for 3,000 sec, which is
approximately half of an orbit.

The relative positions of spacecraft are initialized randomly. We specify a
minimum separation distance between spacecraft. The spatial density of the
swarm is kept constant for a varying number of spacecraft. The graph edges
between spacecraft are created if the Euclidean distance between each pair of
spacecraft is below the detection threshold. The relative sensing and commu-
nication networks are given by the same graph. We enforce a maximum degree
on each agent by pruning edges off the nodes with too many edges. A limited
degree physically corresponds to each spacecraft having a restricted number of
communication links. With this assumption, the DPE has a bounded number
of elements in the augmented state vector regardless of the total number of
spacecraft in the swarm. Moreover, we ensure that the communication graph
is fully connected in all of the scenarios considered. Figures 4(a) through 4(c)
show the example graphs for 5, 100 and 300 spacecraft.

The performance of the DPE is compared against the Centralized and In-
dividual EKFs. The Centralized EKF is a global observer who has access to
all of the measurements available in the swarm. While the Centralized EKF is
prohibitive for large formations in terms of communication and computation,
it quantifies an achievable estimator performance should there be a global esti-
mator. The performance of the DPE, the Centralized EKF, and the Individual
EKF are compared in Figures 5(a) and 5(c). Figure 5(a) shows the position
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Figure 4: Spacecraft swarm with (a) 5, (b) 100, (c) 300 spacecraft in a common LVLH frame

estimation error standard deviation for different numbers of spacecraft in the
swarm. The position estimation error, computed once the steady state has been
achieved, is the time-averaged and swarm-averaged absolute position estimate
standard deviation. The figure shows that the position estimation error has
improved compared to the Individual EKF case. The estimation error of the
Centralized EKF is better than that of the DPE, as expected. Because the
DPE is a local algorithm, increasing the swarm size does not improve the esti-
mation performance. While the Centralized EKF estimation error improves as
the swarm size increase, it has diminishing returns. The incremental information
gain due to an additional spacecraft is diluted by uncertainties accumulated over
the relative sensing graph hops. The DPE estimate strikes a balance by captur-
ing most of the local information in the swarm while controlling the complexity
of the on-board algorithm.

Figure 5(b) shows the computation time required by each spacecraft for the
DPE, the Centralized EKF, and the Individual EKF. For the DPE and the
Individual EKF, the computation time is averaged over all of the spacecraft in
the swarm. The results show that the computation time for the DPE remains
constant as the number of spacecraft in the swarm increases. This is expected
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as the DPE is a local algorithm and the graphs have a fixed degree so the size
of the state to be estimated is bounded. Figure 5(c) compares the number
of spacecraft estimated by each estimation algorithm. For the DPE, this is
the number of spacecraft included in the local relative sensing graph. For the
Individual EKF, this is the size of the relative sensing neighborhood. The
bars represent the minimum and maximum number among all of the spacecraft
in the swarm. Note that the DPE has a significantly larger (but bounded)
number of spacecraft observed by each spacecraft. On average, the number of
estimated spacecraft increases by more than a factor of two. The maximum
number of spacecraft observed is high for the DPE. This occurs at the part of
the swarm where many spacecraft are close to each other. In this example, we
restricted the communication and relative sensing graphs to have a maximum
degree of dmax = 6. This ensures that the number of nodes in the local relative
sensing graph is bounded. This is also empirically confirmed by the fact that
the maximum size of the local sensing graph does not grow as the overall swarm
size increases. Note that this maximum size of the local sensing graph can
be reduced by choosing a smaller upper bound for the maximum degree of
the graph. Also, the simulation did not include the time required to obtain
the pose measurements. While the computational complexity for vision-based
pose extraction likely has a larger constant than the DPE algorithm, it is also
constant with respect to the swarm size.

6. Experimental Validation Using Spacecraft Simulators

The DPE algorithm was implemented on-board Caltech’s robotic spacecraft
simulators, the M-STAR. In the experiment, each spacecraft obtained relative
pose measurements using a monocular camera and a computer vision algorithm.
This experiment tested the real-time performance of the DPE with time-varying
graphs, where the relative sensing graph changed depending on which space-
craft were in the camera’s field-of-view (FOV). Because the experiment was
constrained to planar motions, the DPE algorithm formulation was modified
from the 6-DOF to its 3-DOF analog. With the 3-DOF formulation, the state
for the i-th spacecraft is selected to be xi = [pi,L; vi,L; θi,L;ωi,L] where pi,L and
vi,L denote 2D position and velocity vectors with respect to the LVLH frame
and θi,L and ωi,L denote the 1D attitude and rotation rate of the spacecraft.
The time-varying communication graph was simulated by masking part of the
available communication packages.

6.1. Experimental Setup

Each spacecraft simulator used air-bearing and on-board air-based thrusters
to simulate frictionless dynamics similar to those in space. We used the 3-DOF
configuration where the simulators translate and rotate only in a planar motion.
Each spacecraft was equipped with a Jetson TX2 computer, a monocular camera
with a high FOV lens, and the ArUco visual markers (Garrido-Jurado et al.,
2014) on each side as seen in Figure 6. Example images of the detected markers
are shown in Figure 7.
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Figure 5: Performance comparison between Individual EKF, Centralized EKF, and DPE

Each spacecraft simulator used a thruster-based controller to follow a pre-
scribed HCW trajectory using the ground truth pose from the motion capture
system. We implemented the same formation as the numerical simulation case,
where three inspector spacecraft (labeled 1 through 3) orbited around an un-
cooperative target spacecraft (labeled 4). The attitude dynamics again assume
that the spacecraft rotate at the rate of the negative of the mean motion. The
resulting trajectories were such that each spacecraft measured at least two space-
craft persistently throughout the trajectory. The time of each orbit was scaled
to 262 sec, short enough so that the experiment would be completed without
depleting compressed-air for the thrusters used to follow the trajectory.

The images from the monocular camera were processed on-board each space-
craft using a standard computer vision algorithm (Garrido-Jurado et al., 2014)
to detect the ArUco markers and estimate their full pose. While the ArUco-
based algorithm does not address some of the relative pose estimation challenges
that result from using electro-optical sensors in a space environment (Opromolla
et al., 2017), there exist various other vision-based relative pose estimation al-
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Figure 6: M-STAR with the ArUco markers on the flat epoxy floor

Figure 7: Detected markers as seen from the cameras on-board the spacecraft simulators

gorithms (Kelsey et al., 2006; Capuano et al., 2020; Cassinis et al., 2019) imple-
menting application-specific solution strategies. Because the contribution of the
DPE is the decentralized architecture for abstract communication and sensing
networks, the DPE can be used in conjunction with most vision-based algo-
rithms available. For this reason, we simplified the experiments by using the
ArUco markers and focus on the DPE aspects. The absolute pose measurement
[pi,L; θi,L] is given from a motion capture system. The motion capture system
is typically used to provide the ground truth position of the spacecraft to a
sub-millimeter level accuracy; therefore, additional noise was artificially added
to make the absolute measurement more realistic. The noise was modeled as
zero-mean Gaussian with 0.2 meters standard deviation in translation and 2
degrees standard deviation in rotation.

The on-board computers sent and received information over a wireless net-
work to simulate the inter-spacecraft communication. In order to test the DPE’s
performance under a time-varying communication graph, some shared informa-
tion was artificially masked to simulate time-varying inter-satellite communica-
tion links. Specifically, we prescribed the edges of the undirected communication
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Table 1: Parameters specified in the DPE

Parameters Values

Process noise std dev
Translation 0.03 m, 0.01 m/sec
Attitude 0.2 deg, 0.05 deg/sec

Absolute measurement std dev
Translation 0.2 m
Attitude 2 deg

Relative measurement std dev
Translation 0.1 m
Attitude 10 deg

Initial uncertainty std dev
Translation 2 m, 0.03 m/sec
Attitude 15 deg, 2 deg/sec

Control interval 1 sec

graph to be

Ec =


∅, if t < 20 sec

{(1, 2), (1, 3)}, if 20 sec ≤ t < 50 sec

{(1, 2), (1, 3), (2, 3)}, if 50 sec ≤ t
(77)

The measurement graph was also allowed to vary between time steps, depending
on whether a neighbor spacecraft was visible in the FOV or not.

Table 1 includes information about the parameters used by the DPE in the
experiment. The relative measurement covariance is scaled with the squared
Euclidean distance between spacecraft centers to model a larger uncertainty for
relative measurement at a large separation distance.

6.2. Software Architecture

The Robot Operating System (ROS) was used for interfacing with the sen-
sors and communicating measurements across robots. A block diagram of the
software architecture can be seen in Figure 8. After obtaining the pose of the
ArUco markers in the FOV using computer vision, each marker pose was trans-
formed into the corresponding spacecraft body frame. This frame transforma-
tion was estimated by an extrinsic calibration procedure described in Section 6.3.
The relative and absolute measurements and their covariances were then com-
municated to the prescribed neighbors over the wireless network. When the
set of observable agents changed due to time-varying measurement or commu-
nication graphs, the method described in Section 3.3 was used to modify the
augmented states and covariances.
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Figure 8: DPE software architecture

6.3. Camera Calibration

We performed camera intrinsic and extrinsic calibrations for each pairing of
a monocular camera and a spacecraft simulator. For the intrinsic calibration, a
pinhole camera model with 6 radial distortion coefficients, 2 tangential distortion
coefficients, and 4 thin prism distortion coefficients was used to model the high
FOV lens camera. A checkerboard pattern was used as a visual target while the
motion capture system collected the camera and the target poses.

Extrinsic calibration was performed to determine the relative pose between
the camera frame and the spacecraft body frame. The camera was rigidly at-
tached to the spacecraft body. The camera frame was defined such that its
origin coincided with the camera optical center. To perform this calibration, we
first used a monocular camera and a computer vision algorithm to extract the
relative pose of the ArUco targets. Sufficient pose measurements were collected
while the ArUco target was moved around the workspace. At each time step,
the relative pose between the spacecraft and the ArUco target was also ob-
tained using the motion capture system. We solved a least-square optimization
to retrieve the camera to spacecraft body calibration.

For each relative sensing edge, the relative pose measurement error was com-
puted as detected pose minus the ground truth from the motion capture system.
After camera calibration, the standard deviation of relative measurement error
was 3.0 cm along the line of sight, 2.3 cm in the in-plane perpendicular direction,
and 2.9 deg for attitude.

Table 1 includes information about the parameters used by the DPE in the
experiment. The relative measurement covariance is scaled with the squared
Euclidean distance between spacecraft centers to model a larger uncertainty for
relative measurement at a large separation distance.
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6.4. Experimental Results

The three inspector spacecraft, shown in Figure 6, ran the DPE algorithm
in synchronized rounds once every 1 sec, of which the ArUco detection took
approximately 0.1 sec. Measurement collection and communication were al-
lotted a 0.3 sec period. After the measurement was collected, the DPE step
took approximately 10−3 sec. Figure 9 shows the varying sensing and commu-
nication network used by Spacecraft 2 for estimation in the experiments. The
orange edges correspond to the relative sensing graph, while the green edges
correspond to the communication graph. Initially, there is no communication
between any of the spacecraft, and Spacecraft 2 only has access to the measure-
ments it collects: relative measurements obtained using ArUco pose estimation
and a measurement of its own absolute pose. At the time t = 20 sec, Spacecraft
2 begins to communicate with Spacecraft 1. This allows Spacecraft 2 to have
additional relative and absolute measurements. At the time t = 50 sec, Space-
craft 2 starts communicating with Spacecraft 3, adding more measurements to
its graph. Figure 10 shows the estimation error as a function of time during
the experiment. A 2-σ uncertainty envelope is plotted around the error, using
the estimated covariance matrix. The dashed vertical lines indicate that new
communication links are introduced at t = 20 sec and t = 50 sec. For every
additional communication link, the covariance size decreases, confirming that
added relative and absolute measurements provided by communication reduce
uncertainty.

Figure 10 also shows that even when the communication graph remains un-
changed, the measurement graph also changes due to some spacecraft entering
and exiting the camera FOV. Time-varying relative sensing topologies are repre-
sentative of realistic sensing constraints for a spacecraft swarm. For instance, at
t = 37 sec an edge is lost and then regained at t = 40 sec. Figure 10 shows that
there is a temporary increase in the uncertainty during this period, followed by
a decrease when the measurement is restored. This observation supports that
additional relative measurements generally help the DPE reduce the estimate
uncertainty. There are some other events where relative sensing edges are added
and lost (after the second communication link is established at t = 50 sec), but
the covariance did not change noticeably. This is likely explained by the added
measurements available to Spacecraft 2 after the communication links to both
Spacecraft 1 and 3 are established. These extra measurements provide more
observation paths from Spacecraft 1 to Spacecraft 4, adding redundancy so that
the loss of a single measurement is not as impactful. These redundant measure-
ments from communication are another advantage of cooperative estimation
using the DPE.
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Figure 9: The relative sensing and communication edges as seen by the observer (Spacecraft
2) at different times during the experiment

7. Conclusion

We present the Decentralized Pose Estimation (DPE) algorithm that solves
the swarm localization problem for formation flying spacecraft. The DPE con-
siders ad hoc relative sensing and communication networks to determine a set
of observable spacecraft and shares these spacecraft’s measurements to jointly
estimate their poses with respect to the LVLH frame at each time step. As a
part of the DPE, the Swarm Reference Frame Estimation (SRFE) algorithm
applies the information consensus filter to estimate the common LVLH frame in
a decentralized fashion. The DPE is a local, decentralized algorithm that has
a constant complexity with respect to the swarm size. Numerical simulations
verify that the estimation errors of the DPE are improved compared to those
for no cooperation cases and that the computation time remains constant as the
swarm size increases. An experimental result using the air-bearing spacecraft
simulators demonstrates good DPE performance using vision-based relative pose
measurements with ad hoc networks.
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