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ABSTRACT
We examine the prospect of using the observed abundance of weak gravitational lenses to
constrain the equation-of-state parameter w = p/ρ of dark energy. Dark energy modifies the
distance–redshift relation, the amplitude of the matter power spectrum, and the rate of structure
growth. As a result, it affects the efficiency with which dark-matter concentrations produce
detectable weak-lensing signals. Here we solve the spherical-collapse model with dark energy,
clarifying some ambiguities found in the literature. We also provide fitting formulae for the
non-linear overdensity at virialization and the linear-theory overdensity at collapse. We then
compute the variation in the predicted weak-lens abundance with w. We find that the predicted
redshift distribution and number count of weak lenses are highly degenerate in w and the
present matter density �0. If we fix �0 the number count of weak lenses for w = −2/3 is a
factor of ∼2 smaller than for the � cold dark matter (CDM) model w = −1. However, if we
allow �0 to vary with w such that the amplitude of the matter power spectrum as measured
by the Cosmic Background Explorer (COBE) matches that obtained from the X-ray cluster
abundance, the decrease in the predicted lens abundance is less than 25 per cent for −1 � w <

−0.4. We show that a more promising method for constraining dark energy – one that is
largely unaffected by the �0–w degeneracy as well as uncertainties in observational noise –
is to compare the relative abundance of virialized X-ray lensing clusters with the abundance
of non-virialized, X-ray underluminous, lensing haloes. For aperture sizes of ∼15 arcmin, the
predicted ratio of the non-virialized to virialized lenses is greater than 40 per cent and varies
by ∼20 per cent between w = −1 and −0.6. Overall, we find that, if all other weak-lensing
parameters are fixed, a survey must cover at least ∼40 deg2 in order for the weak-lens number
count to differentiate a �CDM cosmology from a dark-energy model with w = −0.9 at the 3σ

level. If, on the other hand, we take into account uncertainties in the lensing parameters, then
the non-virialized lens fraction provides the most robust constraint on w, requiring ∼50 deg2

of sky coverage in order to differentiate a �CDM model from a w = −0.6 model to 3σ .
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1 I N T RO D U C T I O N

Observations of distant Type Ia supernovae (SNIa) indicate that the
Universe is undergoing a phase of accelerated expansion (Perlmutter
et al. 1999; Riess et al. 1998). Combined with the flat geometry
favoured by cosmic microwave background (CMB) measurements
(Miller et al. 1999; de Bernardis et al. 2002; Halverson et al. 2002;
Sievers et al. 2002; Lee et al. 2001) and the evidence for a low
matter density with �0 ∼ 0.3 (Peacock 2001; Percival et al. 2001),
this suggests that the bulk of the total energy density of the Universe
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is in the form of some exotic dark energy with a negative equation
of state. One of the primary objectives of cosmology today is to
uncover the origin and nature of this dark energy.

A possible candidate for dark energy is a cosmological constant
�, with an equation of state w = p /ρ (where p is the pressure and
ρ is the energy density of dark energy) strictly equal to −1. Another
possibility, and one that may find favour from a particle physics
point of view, is a dynamical scalar field, termed quintessence, Q.
Unlike the cosmological constant, the Q-component is both time-
dependent and spatially inhomogeneous with an equation of state
w > −1 that is likely to be redshift-dependent. The determination of
the value of w and how it changes with time is the key to constraining
the nature of dark energy.
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While the accelerating expansion implies only that w < −1/3,
combinations of CMB data, SNIa data, and large-scale structure
data suggest that w is most likely in the range −1 � w < −0.6
(Wang et al. 2000; Huterer & Turner 2001; Bean & Melchiorri
2002; Baccigalupi et al. 2002). Although the combination of these
different data sets has provided some constraint on w, how w should
vary with redshift is largely unknown. Particle physics offers several
possible functional forms for the potential V(Q) of the quintessence
field and hence possible scenarios for the time history of w. None
the less, determining the redshift evolution of w observationally
is likely to be very challenging (Barger & Marfatia 2001; Maor,
Brustein & Steinhardt 2001; Weller & Albrecht 2001).

However, it appears that strengthening the measured constraint on
w and perhaps excluding the cosmological constant as the source of
dark energy are attainable goals within the near future. Because the
dark-energy dynamics influences both the evolution of the back-
ground cosmology and the growth of structure, it directly affects
many observables. Its modification of the angular-diameter distance,
the luminosity distance, and the amplitude of the matter power spec-
trum are the primary sources of dark-energy constraint in measure-
ments of CMB anisotropies, SNIa, and local cluster abundances,
respectively.

In this paper, we consider another possible means of constraining
w: the measurement of weak gravitational-lens abundances. Weak
lensing – the weak distortion of background-galaxy images due to
the deep gravitational potential of an intervening overdensity – pro-
vides a powerful technique for mapping the distribution of matter in
the Universe; see reviews by Bartelmann & Schneider (2001) and
Mellier (1999). Here we study the impact of dark energy on the
predicted redshift distribution and sky density of weak lenses. Dark
energy affects the abundance of weak lenses not only by modifying
the distance–redshift relation and the matter power spectrum but also
by altering the rate of structure growth. In particular, the larger w is,
the faster and earlier objects collapse. An interesting consequences
of this is that if we separate weak lenses into the two observational
classes – those that have collapsed and reached virial equilibrium
and are therefore X-ray luminous and those that are non-virialized
and hence X-ray underluminous (Weinberg & Kamionkowski 2002;
hereafter WK02) – the abundance of one class evolves slightly dif-
ferently from the other. Therefore, the relative fraction of these two
types of lenses varies with w. This observable is especially promis-
ing as compared to measurements of absolute abundances because it
is less sensitive to uncertainties in both the cosmological parameters
and the noise in the lensing map.

This paper is organized as follows. In Section 2 we briefly sum-
marize the weak-lensing signal-to-noise estimator and discuss how
we determine the mass-dependent and redshift-dependent minimum
overdensity required to produce a detectable weak-lensing signal.
Section 3 is devoted to the spherical-collapse model in quintessence
cosmologies. We provide fitting formulae for the non-linear over-
density at virialization and the linear-theory density at collapse,
and we describe our approach to normalizing the matter power
spectrum. In Section 4 we show the resulting effect dark energy
has on the weak-lens abundances, and in Section 5 we present our
conclusions.

Finally, we note that a similar analysis has recently been per-
formed by Bartelmann, Perrotta & Baccigalupi (2002, hereafter
BPB), although not for the case of non-virialized lenses. Although
we agree with their general conclusion that the weak-lens abun-
dance is a potentially sensitive probe of dark energy, our results
differ from their results in important details. We discuss these dif-
ferences in Section 4.2.

2 M I N I M U M OV E R D E N S I T Y N E E D E D TO
P RO D U C E D E T E C TA B L E L E N S I N G S I G NA L

In order to compute the abundance of weak gravitational lenses for
dark-energy cosmologies we must first determine the necessary con-
ditions for a halo of a given density profile and redshift to produce
a detectable weak-lensing signal. Of course, the more overdense a
halo is relative to the background density, the more it coherently
distorts the nearby background galaxies and hence the stronger its
lensing signal. The detectability of this signal is hampered, however,
by noise in the weak-lensing map, primary of which is the intrinsic
ellipticity distribution of the background galaxies. The goal is there-
fore to determine the minimum overdensity a halo must have such
that it produces a sufficiently large signal relative to the noise so
as to be detectable. A convenient method for computing this min-
imum overdensity is provided by the aperture-mass technique of
Schneider (1996).

We consider a lens at redshift zd of surface mass density �(ϑ)
within an angular radius ϑ . For a source at redshift zs the conver-
gence κ is given by

κ(ϑ) = �(ϑ)

�crit
, �crit = c2

4πG

Ds

Dd Dds
, (1)

where Dd, Ds and Dds are the angular-diameter distances between
the lens and the observer, the source galaxy and the observer, and the
lens and the source, respectively. Following Schneider (1996), we
define a spatially-filtered mass inside a circular aperture of angular
radius θ ,

Map(θ ) ≡
∫

d2ϑκ(ϑ)U (|ϑ|), (2)

where U (ϑ) is a continuous weight function that vanishes for ϑ >

θ . If U (ϑ) is a compensated filter function,∫ θ

0

dθϑU (ϑ) = 0, (3)

then Map can be expressed in terms of the tangential component of
the observable shear, γ t,

Map(θ ) =
∫

d2ϑγt(ϑ)Q(|ϑ |), (4)

where the function Q is related to U by

Q(ϑ) = 2

ϑ2

∫ ϑ

0

dϑ ′ϑ ′U (ϑ ′) − U (ϑ). (5)

In this paper we use the l = 1 radial filter function from the family
given in Schneider et al. (1998),

U (ϑ) = 9

πθ2
(1 − x2)

(
1

3
− x2

)
,

Q(ϑ) = 6

πθ2
x2(1 − x2), (6)

where x = ϑ/θ . Then, taking the expectation value over galaxy
positions and taking into account the redshift distribution of source
galaxies gives

Map(θ ) = 〈Z〉
∫

d2ϑ〈γt〉(ϑ)Q(|ϑ |), (7)

where 〈γ t〉 (ϑ) is the mean tangential shear on a circle of angular
radius ϑ . The function 〈Z〉, given by

〈Z〉 =
∫

dzs pz(zs)Z (zs; zd), (8)
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where pz(zs) is the redshift distribution of source galaxies and (Seitz
& Schneider 1997)

Z (zs; zd) ≡ limzs→∞ �crit(zd; zs)

�crit(zd; zs)
= �crit∞ (zd)

�crit(zd; zs)
(9)

allows a source with a known redshift distribution to be collapsed
on to a single redshift zs satisfying Z (zs) = 〈Z〉 (Seitz & Schneider
1997; Bartelmann & Schneider 2001). The source–redshift distri-
bution is taken to be

pz(zs) = βz2
s

�(3/β)z3
0

exp
[−(zs/z0)β

]
, (10)

with β = 1.5 and mean redshift 〈zs〉 ≈ 1.5 z0 = 1.2 (cf. Smail
et al. 1995; Brainerd, Blandford & Smail 1996; Cohen et al. 2000).
Finally, assuming that the ellipticities of different images are un-
correlated it can be shown (cf. Kruse & Schneider 1999) that the
dispersion σ M (θ ) of Map is

σ 2
M (θ ) = πσ 2

ε

n

∫ θ

0

dϑϑ Q2(ϑ), (11)

where n is the number density of galaxy images and σ ε is the dis-
persion in the galaxies’ intrinsic ellipticity. In this paper we assume
n = 30 arcmin−2 and σ ε = 0.2. The signal-to-noise ratio S within
an aperture radius θ is then given by

S = Map

σM
= 2〈Z〉√πn

σε

∫ θ

0
dϑϑ〈γt〉(ϑ)Q(ϑ)√∫ θ

0
dϑϑ Q2(ϑ)

. (12)

The tangential shear at ϑ , 〈γ t〉 (ϑ), depends on the amplitude
and shape of the lensing halo’s density profile. Bartelmann (1995)
has shown that 〈γt〉(ϑ) = κ̄(ϑ) − 〈κ〉(ϑ), where 〈κ〉 (ϑ) is the
dimensionless mean surface mass density on a circle of radius ϑ

and κ̄(ϑ) is the dimensionless mean surface mass density within
a circle of radius ϑ . In this paper we describe the mass density
of lensing haloes with the universal density profile introduced by
Navarro, Frenk & White (NFW; 1996, 1997). Thus, for an NFW
halo at a given redshift with a given mass and mean overdensity
relative to the background (� ≡ 〈ρpert〉/ρb), we can solve for the
parameters of the profile (i.e. the scale radius and the scale density)
and obtain an estimate of 〈γ t〉 (ϑ).

Because the details of how we solve for the NFW-profile parame-
ters are given in the appendix of WK02 we do not repeat them here.
Briefly describing the key points, we assume a collapse process
analogous to that used by Dalcanton, Spergel & Summers (1997),
in which the mass profile before collapse is a uniform sphere. We
also assume that, as the overdensity collapses and approaches virial-
ization, the mass distribution evolves into an NFW profile. Based on
conservation of energy and mass we then obtain a halo concentration
expressed in terms of the ratio between the turnaround radius and
the scale radius. The benefit of such a procedure is that it enables us
to solve for the NFW-profile parameters for both virialized and non-
virialized systems, despite the fact that the concentration parameters
quoted in the literature are for virialized systems only. We have com-
pared the virialized halo concentration parameters inferred using this
procedure with those obtained from numerical simulations and we
have found that the two are roughly consistent with each other. For
example, in our approach a 1014-M� object at z = 0 has an NFW
halo concentration c (defined as the ratio of the radius enclosing an
overdensity of 200 to the scale radius) of 8.74 if � = 200 and 6.53
if � = 100, while numerical simulations typically yield values of
c ∼ 7 for virialized haloes.

Note too that, although N-body simulation fits to profiles have
so far only been for virialized haloes, because most of the dark
lenses are well past turnaround (� � 100) and because the Spherical
Top Hat Collapse (STHC) model likely breaks down at some point
before virialization, assuming an NFW profile for dark lenses is a fair
approximation. Furthermore, as virialization occurs from inside out,
the central regions of a dark lens, where most of the weak-lensing
signal comes from, are likely to be near virialization and thus well
described by the NFW form. Lastly, although we only consider
the NFW profile in this paper, in WK02 we computed virialized
and dark lens abundances assuming various types of other profiles
including a uniform density sphere, the Hernquist profile (Hernquist
1990), and the isothermal sphere profile. Although the total number
count of weak lenses does change for these different profiles, the
normalized redshift distributions and the number count ratios of dark
lenses to virialized lenses are largely unaffected. In this paper, we are
chiefly concerned with the possibility of constraining the equation
of state of dark energy via these differential, rather than cumulative,
abundances. Assuming that the weak lenses have an NFW profile is
therefore not crucial to the arguments or conclusions made herein.

With the density profile known we can determine, using equa-
tion (12), the expected value of S. The minimum mean overdensity,
�min, needed to produce a detectable lens is then given by that over-
density for which S > Smin. In this paper we assume Smin = 5 and
θ = 5′, unless stated otherwise.

3 S P H E R I C A L C O L L A P S E I N DA R K - E N E R G Y
C O S M O L O G I E S

According to the spherical model of gravitational collapse, a density
perturbation with a non-linear overdensity � corresponds to a par-
ticular position along the linear-theory evolutionary cycle. Thus the
minimum non-linear overdensity �min described above corresponds
to a minimum linear-theory overdensity δmin; if an object of mass M
at redshift z has a linear-theory overdensity δ > δmin = δmin(M , z),
then it is sufficiently overdense to produce a detectable weak-lensing
signal. By determining δmin from the computed �min we can apply
the theory of Press & Schechter (1974) to calculate the number of
haloes per unit mass and redshift with δ > δmin and hence S > Smin.
We can then find the redshift distribution and sky density of weak
lenses and how these observables vary with w. We show that for
a broad range of dark-energy cosmologies a substantial fraction of
detectable weak gravitational lenses have δmin < δc ≈ 1.69, where
δc is the critical density threshold for collapse. Those objects with
δ < δc are commonly thought to be density perturbations that have
not yet reached virialization and are therefore expected to have ob-
servational properties that are very different from typical virialized
lensing clusters.

In this section, we present the approach used to map the minimum
non-linear overdensity �min to a minimum linear-theory overdensity
δmin for quintessence models (QCDM). We describe the dynamical
equations of gravitational collapse in QCDM and give fitting for-
mulae for the non-linear overdensity at virialization, �vir(z), and the
critical density δc. We then discuss how we calculate the abundances
of weak gravitational lenses, both those with δ < δc and those with
δ > δc. Below we assume a flat cosmology with a Hubble parameter
h = 0.65, a spectral index ns = 1, a baryon density �bh2 = 0.02,
and �0 = 0.3, unless stated otherwise.

3.1 Dynamics

In quintessence, the dark energy is a dynamical, time-dependent
component, Q, with an equation of state parametrized by w ≡
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pQ/ρQ , the pressure divided by the energy density. The evolution of
the energy density with the cosmological scale factor goes as ρQ ∝
a−3(1+w), so that for w = −1 the standard cosmological-constant
model, �CDM, is recovered. Current observational evidence cannot
yet rule out w in the range −1 � w � − 0.5.

In order to relate a non-linear overdensity to a linear-theory over-
density in QCDM we must first solve for the evolution of the over-
density radius, R, with time. For a spherical overdensity patch with
uniform matter density ρpert = 3M/4uπ R3 the evolution is de-
scribed by the momentum component of the Einstein equations
(Wang & Steinhardt 1998; hereafter WS98):

R̈

R
= −4πG

3
[ρpert + (1 + 3w)ρQ]. (13)

As WS98 pointed out, for w �= −1 the space curvature kpert inside
the overdensity patch is time-dependent. Physically, this is because
the evolution of the energy density in the Q-component is evolving
independently of the change in radius of the overdensity patch. As a
result, we cannot assume that within the collapsing overdensity the
rate of change of the internal energy in the Q-component, uQ, equals
the rate of work done by the Q-component. This is because dρQ/dt
is non-zero unless the Q-component is the cosmological constant,

duQ

dt
= d

dt
(ρQ V ) �= −pQ

dV

dt
, (14)

where V ∝ R3 is the volume of the overdensity patch. Therefore,
equation (13) cannot be cast in the form of a first-order differential
equation as is often done when going from an acceleration equation
to a Friedman-like energy equation. Assuming a constant kpert, as
was done in the first version preprint of L� okas & Hoffman (2001),
yields significantly different solutions for the evolution of the radius,
R(t), and hence for �vir(z) and δc.

If we combine equation (13) with the Friedman equation for the
background,(

ȧ

a

)2

= 8πG

3
(ρb + ρQ), (15)

and impose the boundary conditions dR/da|a=ata = 0 and R|a=0 =
0, where ata is the scale factor at turnaround, then for a spherical
density perturbation with a given � and redshift z, the unique tem-
poral evolution of the overdensity, from linearity to non-linearity,
can be solved (cf. Appendix A in WS98). We then have a one-to-
one map from �(z) to δ(z), as shown in Fig. 1 for the cases w =
−1, −2/3 and −1/3. The map has a mild w dependence, with a
given δ corresponding to a slightly larger � as w increases. This is
a consequence of the earlier formation of structure in QCDM mod-
els relative to �CDM models; overdensities collapse faster and are
therefore more concentrated for w > −1. This point is well illus-
trated in Fig. 2 where we show the growth of a spherical perturbation
for the same quintessence models. As expected, the larger w is, the
earlier structures reach turnaround and collapse.

It can be shown that in the limit δ → δc the spherical-collapse
model predicts that the radius, R, of the overdensity goes to zero and
hence � → ∞. Of course, well before reaching the singular solution
an actual overdensity will virialize, thereby halting its collapse. To
account for this fact we invoke a simple smoothing scheme in which
the radius of the matter perturbation is constant with time upon
reaching the virialized overdensity (see Fig. 2). We refer the reader
to WK02 for details of the smoothing method.

As described in WS98, the value of �vir(z) for quintessence mod-
els, needed here in order to implement the smoothing scheme, can
be obtained via the virial theorem, energy conservation, and solving
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w = -1
w = -2/3
w = -1/3

Figure 1. The non-linear overdensity as a function of the linear-theory
overdensity for three constant-w models. The full solution of the spherical-
collapse model predicts collapse to an infinite overdensity as δ → δc ∼ 1.69.
According to the smoothing scheme, however, once a mass concentration
reaches the virialization overdensity �vir(z), its radius remains constant so
that the overdensity increases in proportion to the decrease in the background
density. Shown are the smoothing-scheme solutions for mass concentrations
that reach the virialization overdensity at z = 0.
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Figure 2. The radial evolution of a density perturbation that is collapsing
today according to the spherical-collapse model. The ordinate gives the
radius, r, in units of the turnaround radius, r ta, and the abscissa gives the
time, t, in units of the overdensity collapse-time for the �CDM model. As
w increases, perturbations reach turnaround and collapse earlier, although
growth is suppressed earlier as well. The collapse to a singularity predicted
by the solution of the spherical-collapse model is avoided by the smoothing
scheme (thick curves) which yields a constant radius once the virialized
overdensity is reached.

equations (13) and (15) for the overdensity at turnaround. In Fig. 3
we show the resulting numerical solution to �vir(z). We find that
an accurate fitting function to �vir(z) for −1 � w � −0.3, mod-
elled after the approximation given in Kitayama & Suto (1996) for
a �CDM cosmology, is
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Figure 3. The non-linear overdensity at virialization as a function of red-
shift for three constant-w models. As w increases �vir increases because
overdensities collapse earlier, when the mean gas temperature was higher.
For all models �vir asymptotes to the Einstein–de Sitter value of 178 at high
redshift.

�vir(z) = 18π2[1 + a�b(z)], (16)

where

a = 0.399 − 1.309(|w|0.426 − 1),

b = 0.941 − 0.205(|w|0.938 − 1), (17)

and �(z) = 1/�m(z) − 1 = (1/�0 − 1)(1 + z)3w . As structures
start to form earlier the larger w is, the mean gas temperature in
collapsing objects is higher in larger-w models. As a result, a greater
overdensity is required in order for such objects to become bound
and virialized, explaining why �vir rises with increasing w. Note,
however, that for �(z) < �vir(z) the map from non-linear to linear
overdensity has a weak dependence on not only w but on �0 and
redshift as well. The critical threshold for collapse today δc(z = 0) =
δc(z) D(0, �0, w)/D(z, �0, w), where D(z, �0, w) is the linear
growth factor (see WS98), also has a weak dependence on �0 and
w, as shown in Fig. 4. For 0.1 � �0 � 1 and −1 � w � −0.3, we
find that an accurate fitting function to δc(z), also modelled after
the approximation given in Kitayama & Suto (1996) for a �CDM
cosmology, is

δc(z) = 3(12π)2/3

20 [1 + α log10 �m(z)],

α = 0.353w4 + 1.044w3 + 1.128w2 + 0.555w + 0.131.
(18)

Incorrectly assuming that kpert is constant, however, yields a δc(z =
0) with a much stronger dependence on these parameters, with in-
ferred values for �0 = 0.3 of δc(z = 0) ∼ 1.5 and ∼1.0 for w =
−2/3 and w = −1/3, respectively (L� okas & Hoffman 2001).

3.2 Abundances

Because we are interested in computing the abundances of both
virialized weak lenses and non-virialized weak lenses, we con-
sider two ranges of overdensity in our lens-abundance calculations:
(1) δmin < δ < δc, the non-virialized lenses; (2) δ > δc � δmin,

1.55
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1.65
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δ c 

0 0.2 0.4 0.6 0.8 1

Ω0

w = -1
w = -2/3
w = -1/3

Figure 4. The linear-theory critical threshold for collapse, δc, at z = 0 as
a function of �0 for three constant-w models. δc does not vary significantly
over a wide range in w or �0.

the virialized lenses. As we have shown in WK02, the mass dis-
tribution of both the dark and virialized lenses peaks near ∼1014

M�, although the virialized lenses’ mass threshold of ∼1013 M�
is several times smaller than that of the dark lenses (see WK02,
figure 7). Although both types of lenses correspond to overdensities
in a similar mass range, the virialized lenses are typically virial-
ized clusters that form at rare (e.g. > 3σ ) high-density peaks of a
Gaussian primordial distribution, while the non-virialized lenses
correspond to proto-clusters (e.g. 2σ–3σ peaks) – mass overdensi-
ties that have not yet undergone gravitational collapse and virialized,
but which have begun to break away from the cosmological expan-
sion. These proto-clusters should contain galaxies and perhaps a few
groups that later merge to form the cluster (cf. White, van Waerbeke
& Mackey 2002). The time-scale for collapse of cluster-mass objects
is large, and the overdensities can be very large even before they have
virialized. It should therefore not be too surprising that proto-clusters
produce a weak-lensing signal that resembles that from virialized
clusters.

Although the lensing signals may be similar, the two lens types are
expected to have different observational features. In particular, as the
X-ray luminosity is a very rapidly varying function of the virialized
mass, the summed X-ray emission from a non-virialized lens should
be much smaller than that from a fully virialized lensing cluster of
the same mass. In referring to these proto-clusters as ‘dark’, we
thus mean that they should be X-ray underluminous. Although the
mass-to-light ratio of these clusters should be comparable to that for
ordinary clusters, because (1) high-redshift clusters may be difficult
to pick out in galaxy surveys and (2) proto-clusters will typically
have a sky density a few times smaller than ordinary clusters, it
would also not be surprising if these dark lenses had no readily
apparent corresponding galaxy overdensity. Observational evidence
of such dark lenses has been reported in detections by Erben et al.
(2000), Umetsu & Futamase (2000), Miralles et al. (2002), Dahle
et al. (2002) and Koopmans et al. (2000), the latter involving a
detection through strong, rather than weak, lensing. A more detailed
discussion of the features that may distinguish dark and virialized
weak lenses is given in WK02.
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As the weak-lensing signal reveals only the projected mass dis-
tribution, line-of-sight projection effects can lead to false halo de-
tections. Using mock observations of numerical simulations White
et al. (2002) have shown that the presence of large-scale structure
results in projection effects that significantly limit the efficiency
of a weak-lensing survey. Similarly, Hoekstra (2003) has shown
that the combined effect of large-scale structure and the intrinsic
ellipiticities of background galaxies can lead to 20–40 per cent er-
rors in the determination of the mass of a lensing halo. Such effects
will obviously hamper efforts to constrain cosmological parame-
ters from cumulative number counts of weak lenses. However, it
is important to note that, because the mass distributions of both
dark lenses and virialized lenses are similar, false halo detections
are not expected to affect the dark lenses any more than they do
the virialized lenses. In fact, because the dark lenses have a larger
mass threshold, a weak-lensing survey might be more efficient at
detecting dark lenses than virialized lenses. Complementary obser-
vations in the optical and X-ray (and perhaps strong lensing and
the Sunyaev–Zel’dovich effect) will clearly help to minimize the
number of false detections. Although virialized lenses might bene-
fit more from such follow-up observations, dark lenses will likely
benefit as well, as they are expected to have a slight overdensity
of galaxies as compared to the field and also perhaps emit a weak
X-ray signal. Therefore, even though systematic uncertainties such
as false halo detections might render the absolute number count of
dark or virialized lenses impractical as a means of constraining cos-
mological parameters, the relative number count of dark to virialized
lenses remains a viable option because both lens types are, for the
most part, equally affected by such systematics. Of course, these
conclusions are based on the simplifying assumptions inherent in
the STHC model. It would therefore be very interesting to compare
the analytical weak-lensing results obtained in this paper with nu-
merical simulation predictions, in which non-virialized haloes are
considered in addition to the oft-considered virialized haloes. This
would provide an independent means of quantifying the complete-
ness of future weak-lensing halo searches for both virialized and
dark lenses. However, that comparison is beyond the scope of this
paper.

Turning now to the details of the calculational method, in order
to compute the abundances of virialized and dark lenses we need
to know the probability that an object of a given mass at a given
redshift is in one of the above-mentioned ranges in overdensity. If
we assume Gaussian statistics for the initial linear-theory density
field, then the probability that an object’s overdensity is in the range
δ1 < δ < δ2 is

P(δ1 < δ < δ2) = erf

(
ν2√

2

)
− erf

(
ν1√

2

)
, (19)

where ‘erf’ is the error function, ν = δ/σ , and σ = σ (M , z) is the
rms density fluctuation of an object of mass M at redshift z. From the
Press–Schechter theory, we have that the comoving number density
of virialized objects (those with δ > δc) of mass M = 4πR3ρ0/3 in
the interval d M that are at redshift z in a universe with comoving
background density ρ0 is

dn

dM
(M, z) =

√
2

π

ρ0

M2

δc(z)

σ (M, z)

∣∣∣∣d ln σ (M, z)

d ln M

∣∣∣∣exp

[
− δc(z)2

2σ 2(M, z)

]
.

(20)

We can therefore compute the abundance of objects in the overden-
sity range δ1 < δ < δ2 by convolving the above mass function of
virialized objects with P(δ1 < δ < δ2) /P( δ > δc). Specifically, the

fraction of objects that can lens relative to those that are virialized
is, for dark lenses,

fdark(M, z) =
{ P(δmin < δ < δc)

P(δ > δc)
, δmin < δc;

0, otherwise,
(21)

and for virialized lenses,

fvir(M, z) =
{ P(δ > δmin)

P(δ > δc)
, δmin > δc;

1, otherwise.
(22)

As noted in WK02, the lower the mass of the object, the larger the
minimum overdensity needed to produce a detectable weak-lensing
signal. For low enough masses, the minimum overdensity becomes
so large that both f dark and f vir approach zero, thereby imposing
an effective weak-lensing mass threshold. It is worth noting that
we have also considered the mass function suggested by Sheth &
Tormen (1999), a variant of the Press–Schechter mass function that
more accurately reproduces the mass functions found in numerical
simulations. However, as the resulting lens abundances are essen-
tially the same for both mass functions and because it is useful
to compare our results with previous theoretical investigations of
weak-lens abundances which often used the Press–Schechter mass
function (e.g. Kruse & Schneider 1999), we only show results for
the Press–Schechter mass function.

To summarize, given f and equation (20) we can compute the
total comoving number density of weak lenses of a particular type.
Multiplying by the comoving volume element dV c/dz d� (w) then
gives the differential number count of lensing objects per steradian,
per unit redshift interval:

dN

dz d�
= dVc

dz d�

∫ ∞

0

f (M)
dn

dM
(M) dM. (23)

By integrating over redshift we can then compute the number of
dark and virialized lenses we expect to see per unit area of sky for
a given QCDM model.

3.3 Normalizing the power spectrum

In equation (23) the volume term and the two terms within the
integrand are all functions of w. While the predicted abundance of
weak lenses will therefore vary with w, the degree to which it will
vary depends on the shape and normalization of the power spectrum
of density fluctuations. In particular, to compute the abundance of
weak lenses we need to know σ (M , z).

For the shape of the power spectrum we use the fitting formu-
lae given in Ma et al. (1999) for QCDM models with the transfer
function and shape parameter for �CDM models given by Bardeen
et al. (1986) and Hu & Sugiyama (1996, equations D-28 and E-12),
respectively. As the Q-component does not cluster on scales less
than ∼100 Mpc (Caldwell, Dave & Steinhardt 1998), at the weak-
lensing scales the shape of the spectrum does not differ significantly
from the well-studied �CDM shape.

The normalization of the power spectrum, often expressed in
terms of σ 8, the rms fluctuation today at a scale of 8 h−1 Mpc, is
not as well constrained as its shape and will in general be a function
of w. There are two different methods commonly used to obtain
the normalization: to fix it by the observed X-ray cluster abundance
or to fix it by the CMB large-scale anisotropies observed by the
Cosmic Background Explorer (COBE) satellite. Both approaches
have comparable uncertainties; the cluster abundance constraint on
σ 8 has a 20 per cent uncertainty at the 2σ level (WS98) while the
COBE constraint has a 7 per cent uncertainty at the 1σ level (Bunn
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Figure 5. The dependence of σ 8 on w as obtained using three different
approaches: fixing �0 = 0.3 and normalizing to the observed X-ray cluster
abundance (dashed line); fixing �0 = 0.3 and normalizing to COBE (dot-
ted line); and allowing �0 to vary with w such that the cluster abundance
constraint matches the COBE constraint (solid line).

& White 1997). To obtain an estimate of how σ 8 varies with w so
that we may, in turn, determine how dN/dz d� varies with w for
dark and virialized lenses, we consider three possible approaches.
The first two involve fixing the cosmological parameters (e.g. �0,
h, �b, ns) and using either the cluster-abundance constrained σ 8(w)
or the COBE constrained σ 8(w). For the former we use the fit given
in WS98 and for the latter the fit given by Ma et al. (1999); see
Fig. 5. The third approach is to allow the cosmological parameters
to be free parameters and then jointly match the cluster-abundance
constraint with the COBE constraint so that each gives the same
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Figure 6. The region in the �0–w plane where the X-ray cluster abundance
constraint of σ 8, at 95 per cent confidence, overlaps the COBE constraint
of σ 8. The grey-scale gives the corresponding σ 8 values and the solid line
shows where the central values match.

σ 8(w). As measurements of σ 8 are most degenerate with �0, we
let �0 be the parameter that varies. In Fig. 6 we show the region
in the �0–w plane where the X-ray cluster-abundance constraint,
at the 95 per cent confidence level, overlaps the COBE constraint.
The solid curve shows where the central values match, with the
resulting range in �0 (0.3 � �0 � 0.4 for −1 < w < −0.4) within
observational uncertainties (Wang et al. 2000). The corresponding
σ 8(w) curve is shown in Fig. 5. As we will show, the predicted
weak-lens abundances and how they vary with w strongly depend
on which σ 8(w) normalization approach is chosen.

4 R E S U LT S

We are interested in determining whether the number count and
redshift distribution of both dark and virialized weak lenses have
the potential to constrain w. Another possibly useful observable for
this purpose is the number count of dark lenses relative to virialized
lenses. As dark lenses are at an earlier stage of their dynamical
evolution as compared to virialized lenses, those cosmologies that
favour a faster growth of structure (i.e. QCDM models with larger
w) will, for a given σ 8, have fewer dark lenses and more virialized
lenses. The ratio of the two is therefore expected to vary with w.
A priori, this latter observable seems particularly promising. As
discussed in WK02, the ratio of dark to virialized lenses is not very
sensitive to observational noise in the weak-lensing maps because
observational noise equally affects the detectability of both types of
lenses. In contrast, uncertainties in observational noise will make it
difficult to constrain w by simply comparing predicted weak-lens
number counts with observed weak-lens number counts.

Before presenting how the above observables are modified by dark
energy we first discuss how each of the factors that determine the
observed abundance is affected by changes in w. Doing so provides
both physical insight into the results and illustrates the calculational
procedure discussed in the previous sections.

4.1 Preliminaries

As noted above, the predicted abundance of weak lenses will vary
with w on account of three factors: the comoving volume element,
the Press–Schechter comoving number density of virialized objects,
and the value of f dark/vir (equations 21 and 22). The degree to which
each varies depends on the chosen σ 8(w) normalization. As Fig. 7
shows, dV c/dz d� decreases monotonically with increasing w for
both fixed �0 and �0 = �0(w) as given by jointly normalizing
σ 8 to COBE and the cluster abundance. However, because the joint
normalization yields a larger �0 with w and a less significant decline
in σ 8 for w > −1 as compared to the COBE normalization with
�0 fixed, the former approach predicts a nearly constant virialized
object number density with increasing w while the latter predicts a
significant decrease in the number density.

A similar trend is seen in the functions f vir and f dark, as Fig. 8
demonstrates. Here we plot the fraction of objects that have not
yet reached turnaround (0 < � < �ta) and the fraction of objects
that are between turnaround and virialization (�ta < � < �vir)
relative to those objects that are virialized (� > �vir). The figure
illustrates several key elements of structure formation according
to the spherical-collapse model for dark-energy cosmologies. First,
the fraction, χ , of objects in both of these lower-overdensity ranges
increases with mass in accordance with the hierarchical growth of
structure. The fraction also increases with redshift as objects are
collapsing and evolving toward virialization. It is also interesting
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to note that objects with �ta < � < �vir evolve more rapidly as
compared to objects with 0 < � < �ta. This is demonstrated by the
fact that at z = 1 the fraction of both types of objects is nearly the
same, although by z = 0 there are more objects that have not reached
turnaround. Furthermore, the larger w is, the greater the difference

between the rates of evolution. These effects are a consequence of
the suppression of structure growth in cosmologies with dark energy;
namely, growth slows down earlier for larger w and those objects
that are less overdense at a given redshift have greater difficulty
overcoming the repulsive effects of dark energy and collapsing.
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Finally, the plots show how strongly the fraction depends on the
chosen σ 8 normalization, with a significant variation with w for the
COBE normalization and a fairly small variation for the cluster-
abundance normalization. This, in turn, means that the degree to
which the functions f vir and f dark vary with w is highly dependent
on the assumed normalization approach.

4.2 Weak-lens abundances

In Fig. 9 we show the predicted redshift distribution of virialized
lenses and dark lenses for three constant w models. For the COBE
normalized σ 8 with fixed �0 the distributions show a fairly strong
sensitivity to w. As w increases from −1 to −1/3 the peak of
the distributions shifts towards lower redshift. Although we might
expect the trend to be in the opposite direction given that struc-
tures form faster for larger w models, the effect is counteracted
by the decrease in σ 8 with increasing w. That the decrease in σ 8

so overwhelms any tendency for structure to form faster for w >

−1 is not surprising given the weak w dependence in the �–δ

map (Fig. 1) and in the function δc(z) (Fig. 4). Note, however, that
the shift in the distributions with w becomes much less significant
if a joint COBE–cluster abundance normalization is assumed. Fi-
nally, given that dark lenses are likely progenitors of virialized clus-
ters, it is not surprising that both normalization approaches predict
that the dark lenses have a larger mean redshift than the virialized
lenses.

To determine how well the weak-lens redshift distributions can
constrain w we generated mock redshift data and determined (using
the Kolmogorov–Smirnov test) the probability of differentiating two
different constant-w models as a function of the number of lenses
detected. We found that to differentiate a �CDM model from both
w =−0.6 and w =−0.9 models at the 3σ level required, on average,
approximately 200 weak lenses and 2000 weak lenses, respectively.
As we show below, this corresponds to a survey coverage of ∼15
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Figure 10. The total number of virialized lenses (dashed curves) and non-
virialized lenses (solid curves) per deg2 as a function of w. Thin lines cor-
respond to the COBE normalized σ 8 with �0 = 0.3 and thick lines to the
joint COBE–cluster abundance normalized σ 8 with �0 = �0(w). While the
number count drops by a factor of 2 between w = −1 and w = −2/3 for
the COBE-only normalization, the drop is much less significant for the joint
normalization.

and ∼150 deg2. Note, however, that for sufficiently wide surveys
systematic uncertainties such as mass-redshift selection effects and
lens density profiles might dominate the errors.

By integrating over the redshift distribution we obtain the total
number of virialized and dark lenses expected per deg2 on the sky.
As Fig. 10 shows, the COBE normalization with �0 = 0.3 shows a
significant decline in the number count as w increases. By w =−2/3
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the number count of both virialized and dark lenses has dropped by
a factor of 2 from the �CDM value. The joint normalization, in
which we allow �0 to vary with w, predicts a much more mild de-
pendence on w with the number count dropping by only ∼20 per
cent from w = −1 to −2/3 for both lens types. Therefore, while the
COBE-only normalization approach predicts that the sky coverage
needed to distinguish the �CDM model from a w = −0.6 model to
3σ is only ∼2 deg2, the joint approach requires ∼15 deg2. Similarly,
to distinguish the �CDM model from w = −0.9 requires ∼40 and
∼100 deg2, respectively. The systematic uncertainties affecting ab-
solute sky density measurements, such as noise in the lensing maps
and uncertainties in the lens density profiles, are expected to add
further complications. This suggests that it will be very difficult to
constrain w using just the number count of either virialized or dark
lenses without, at the very least, a tighter constraint on �0.

We also note that our results do not agree with the results found
by BPB. They found that from w = −1 to w ≈ −0.6, the number
of virialized weak lenses per deg2 increases by nearly a factor of 2.
The increase is roughly linear up to the maximum after which the
number count declines steeply. In obtaining these results, however,
they use the formulae for �vir and δc given in L� okas & Hoffman
(2001), who assume that the space curvature within a collapsing
overdensity patch is time-independent. As we have shown in sec-
tion 3.1, this assumption is invalid for w �= −1 and leads to incorrect
values for �vir and δc. To confirm that this is the source of our differ-
ences, we recomputed the number count of weak lenses as a func-
tion of w using the algorithm described in BPB (which differs from
ours because we are interested in separating lenses into virialized
and non-virialized types). When we assume the incorrect values of
L� okas & Hoffman (2001) for �vir and δc we recover the results
found by BPB; however, when we assume the values for �vir and δc

predicted by solving the spherical-collapse equations of Section 3.1,
we obtain results very similar to those described in the preceding
paragraphs.

4.3 Fraction of lenses that are dark

As mentioned above, the number-count ratio of dark to virialized
lenses is an observable that is much less sensitive to observational
noise than is the redshift distribution and number count of weak
lenses. Unfortunately, for aperture sizes θ (defined in Section 2)
less than 10 arcmin in radius the ratio is fairly constant over a broad
range in w, as we show in Fig. 11. The ratio varies more strongly
if the aperture size is increased to 15 arcmin. In particular, for θ =
15 arcmin there is a ∼20 per cent difference between the �CDM
model and w = −0.6, so that differentiating the two models to
a 3σ significance requires the detection of ∼600 virialized lenses
or equivalently a sky coverage of ∼50 deg2. Although using the
non-virialized lens fraction requires large survey coverage for mod-
est constraints on w, its principal advantage (in addition to being
relatively insensitive to observational noise) is that it is not very
sensitive to the chosen method of normalization; for any aperture
size, both the joint normalization and the COBE normalization with
fixed �0 yield similar dependences on w. Therefore, unlike the case
for weak-lens sky-density or redshift distribution predictions, uncer-
tainties in σ 8 and �0 do not strongly affect the predicted ratio of dark
to virialized lenses. Incidentally, although aperture sizes greater than
∼15 arcmin yield ratios with even stronger w dependences, noise
contributions from large-scale structure become significant at such
large angular distances from the lens centre (Hoekstra 2003). It is
therefore not practical to make measurements at radii well beyond
15 arcmin.
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Figure 11. The fraction of lenses that are dark as a function of w for aperture
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As an aside, while the ratio of dark to virialized lenses does not
have a particularly strong w dependence, it does have a strong θ

dependence; only ∼5 per cent of lenses are dark when θ = 3 ar-
cmin but ∼50 per cent when θ = 15 arcmin. In Fig. 12 we plot
the number of virialized and dark lenses as a function of θ for the
�CDM model. As θ increases from 3 to 15 arcmin the sky den-
sity of dark lenses increases from 0 to 5 per deg2 while the sky
density of virialized lenses peaks at θ = 5 arcmin and gradually
declines for larger aperture sizes. Fig. 13 explains this trend. For an
overdensity of mass M = 5 × 1014 M� we plot, as a function of
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redshift, θvir, the projected angular size of the virialization radius,
and θmax, the projected angular size of the maximum radius that pro-
duces a detectable lens [i.e. θmax = Rmax(z)/Dd(z) where R3

max =
3M/4π �min(z)]. For θmax > θ vir an overdensity can be non-
virialized and still produce a detectable lensing signal (i.e. a dark
lens). However, as θ defines the maximum observable angular scale,
for sufficiently small θ there is no range in redshift such that θ >θmax

> θvir, in which case non-virialized overdensities cannot produce a
detectable lens. In general, we find that the minimum aperture size
needed to detect dark lenses is ∼3 arcmin. For larger θ , the area
below θmax and above θvir has a substantial relative increase while
the area below θ vir has just a mild relative increase. After taking
into account the fact that the aperture mass Map(θ ) decreases with
increased θ , this translates to an increase in the sky density of dark
lenses and a decrease in the sky density of virialized lenses for θ >

5 arcmin. The fraction of lenses that are dark therefore increases
with aperture size.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have examined the possibility of using the measured abundance
of weak gravitational lenses to constrain a principal property of
dark energy, its equation-of-state parameter w. Because dark energy
modifies both the background cosmology of the Universe and the
growth of structure, it will necessarily have an effect on the efficiency
of weak lensing. The goal of this paper was to determine the nature
and strength of the effect.

The change in the background cosmology with w influences the
predicted weak-lens abundance in essentially three ways. First, the
size of comoving volume elements shrinks with increasing w. Sec-
ondly, the distance–redshift relation is modified, thereby shifting
the location of the lensing-kernel maximum (i.e. where the com-
bination of angular diameter distances Dds Dd/Ds peaks). Thirdly,
as the evolution of the background matter density is modified by

dark energy, the density of a given halo relative to the background
density changes with w. This, in turn, affects the strength of a halo’s
lensing signal; the larger the overdensity, the stronger the signal.
While the volume term is explicitly factored into the expression for
the weak-lens sky density (equation 22), the latter two effects are
incorporated into the signal-to-noise estimator for which we use the
aperture-mass technique introduced by Schneider (1996).

The change in the growth of structure with w is more subtle. The
dark energy modifies both the rate of structure growth and the am-
plitude of the matter power spectrum. To determine the former we
solved the spherical-collapse model with dark energy included. Al-
though growth occurs more rapidly as w increases, the overall effect
on the �–δ map, needed to relate the minimum overdensity required
to produce a detectable lens, �min, to a corresponding linear-theory
overdensity δmin, is fairly small. Similarly, the linear-theory over-
density at collapse δc does not vary much with w. The effect on �vir

is more significant, however. As w increases, structures require sub-
stantially greater overdensities in order to reach virial equilibrium
because they collapse sooner, when the Universe was younger and
hotter.

To determine how the power-spectrum amplitude, σ 8, varies with
w we considered three possible approaches. One was to normalize
to the X-ray cluster abundance, as was done in WS98. Another was
to normalize to the COBE measurements of CMB anisotropies on
large angular scales. These two approaches predict similar values of
σ 8 for the �CDM model. However, if all cosmological parameters
are held fixed as w varies, the values of σ 8 are no longer in ac-
cordance. This is because the cluster abundance approach accounts
for the earlier-forming, and hence hotter, galaxy clusters in models
with w > −1. The COBE normalization, on the other hand, ac-
counts for the increase in the integrated Sachs–Wolfe (ISW) effect
as w increases (cf. BPB). Given these differing influences, the two
approaches are not expected to yield the same σ 8 when all the cos-
mological parameters are held fixed to those of the �CDM model
while w is varied. This suggests a third approach to normalizing the
power spectrum; namely, let the parameters vary with w such that
the cluster abundance normalization matches the COBE normaliza-
tion. In practice we accomplished this by letting just �0 vary with w,
as it is the parameter most degenerate with σ 8. The resulting range
in �0 for −1 < w � − 0.4 was found to be 0.3 < �0 < 0.4 and hence
within observational uncertainties. Although all three normalization
approaches predict that σ 8 decreases with w, the difference in the
magnitude of the decrease between the approaches is significant.
As a result, each predicts substantially different variations in the
weak-lens abundance with w.

Having determined all the dark-energy effects, we computed the
redshift distribution and sky density of weak lenses as a function of
w. As in WK02, we distinguished between two classes of lenses:
those that have collapsed and virialized and those that have not.
This distinction is based on the expectation that the virialized lenses,
being in a relaxed state, are X-ray and/or optically luminous. The
non-virialized lenses, being at an earlier stage in the overdensity
evolutionary cycle, are expected to be X-ray underluminous because
the observed X-ray luminosity function has a steep dependence on
the total virialized mass within a halo. Furthermore, although the
typical mass of both lens types is ∼few × 1014 M�, the sky density
of galaxies within the non-virialized lenses is expected to be smaller
than in the virialized lenses because they have not yet collapsed and
hence have larger radii (see WK02 for more details).

We have found that the variation in the redshift distribution and
the sky density of both lens types with w depends strongly on the
power-spectrum-normalization approach. If �0 is fixed and σ 8 is
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normalized to the COBE measurements, there is a significant varia-
tion in the abundances with w. In particular, the sky density of both
virialized lenses and non-virialized lenses drops by a factor of 2
from w = −1 to w = −2/3. This decline, a result of the significant
decrease in σ 8 with w, occurs despite the faster formation of struc-
ture for w > − 1. If, on the other hand, �0 is allowed to vary with w

such that the COBE normalization matches the cluster-abundance
normalization, the redshift distributions and sky density change very
little with w; between w = −1 and w = −2/3 the sky density of both
lens types varies by just ∼20 per cent. This insubstantial variation is
the result of an increase in �0 with w and a less significant drop in
σ 8 with w as compared to the COBE normalization with �0 fixed.
Obtaining a strong constraint on w from the sky density or redshift
distribution of weak lenses therefore appears to be contingent on
improved measurements of �0 from independent observations.

Perhaps more promising is the possibility of utilizing the observed
ratio of dark lenses to virialized lenses. Unlike measurements of the
absolute sky density of weak lenses, the ratio is not very sensitive
to the amount of observational noise in the weak-lensing maps as
the abundances of both dark lenses and virialized lenses are equally
affected by noise. Similarly, the ratio does not vary significantly over
a wide range in cosmological parameters so that uncertainties due to
the �0 − w degeneracy are minimized. We found that for aperture
sizes of ∼15 arcmin the ratio varies by about 20 per cent, dropping
from 0.5 to 0.4, between the �CDM model and w = −0.6. We have
also shown that the ratio of dark to virialized lenses increases with
aperture size, in effect because larger apertures enable the detection
of the more extended radii of the non-virialized lenses.

Weak lensing has already been shown to be a powerful probe of
the matter distribution in the Universe (see, for example, Bartelmann
& Schneider 2001). It also has the potential to help constrain the
amount and nature of dark energy. Huterer (2002) has shown that,
given reasonable prior information on other cosmological param-
eters, the weak-lensing convergence power spectrum can impose
constraints on dark energy comparable to those of upcoming SNIa
and number-count surveys of galaxies and galaxy clusters. Con-
straining dark energy from absolute measurements of weak-lens
abundances will likely prove difficult, however. The variation in the
weak-lens sky density with w is sufficiently small that modest uncer-
tainties in �0 (and observational noise) can mask the effect of dark
energy. More auspicious is the possibility of utilizing the relative
abundance of dark lenses to virialized lenses to constrain w. Future
weak-lensing projects such as the Visible and Infrared Survey Tele-
scope for Astronomy (VISTA), the Supernova/Acceleration Probe
(SNAP) mission, and the Large-aperture Synoptic Survey Telescope
(LSST) – see Tyson et al. (2002) for a discussion of its great promise
as a probe of dark energy – are expected to provide the wide-field
surveys needed for this technique to be viable.
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