CaltechAUTHORS
  A Caltech Library Service

Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones from Juno/JIRAM

Moriconi, M. L. and Migliorini, A. and Altieri, F. and Adriani, A. and Mura, A. and Orton, G. and Lunine, J. I. and Grassi, D. and Atreya, S. K. and Ingersoll, A. P. and Dinelli, B. M. and Bolton, S. J. and Levin, S. and Tosi, F. and Noschese, R. and Plainaki, C. and Cicchetti, A. and Sindoni, G. and Olivieri, A. (2020) Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones from Juno/JIRAM. Journal of Geophysical Research. Planets, 125 (7). Art. No. e2019JE006096. ISSN 2169-9097. https://resolver.caltech.edu/CaltechAUTHORS:20200612-160255543

[img] PDF - Published Version
See Usage Policy.

13MB
[img] PDF (Table T1) - Supplemental Material
See Usage Policy.

143kB
[img] PDF (Figures S2 and S3) - Supplemental Material
See Usage Policy.

233kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200612-160255543

Abstract

We present a power spectral analysis of two narrow annular regions near Jupiter's South Pole derived from data acquired by the Jovian Infrared Auroral Mapper instrument onboard NASA's Juno mission. In particular, our analysis focuses on the data set acquired by the Jovian Infrared Auroral Mapper M‐band imager (hereafter IMG‐M) that probes Jupiter's thermal emission in a spectral window centered at 4.8 μm. We analyze the power spectral densities of circular paths outside and inside of cyclones on images acquired during six Juno perijoves. The typical spatial resolution is around 55 km pixel ⁻¹. We limited our analysis to six acquisitions of the South Pole from February 2017 to May 2018. The power spectral densities both outside and inside the circumpolar ring seem to follow two different power laws. The wave numbers follow average power laws of −0.9 ± 0.2 (inside) and −1.2 ± 0.2 (outside) and of −3.2 ± 0.3 (inside) and −3.4 ± 0.2 (outside), respectively, beneath and above the transition in slope located at ~2 × 10 ⁻³ km ⁻¹ wave number. This kind of spectral behavior is typical of two‐dimensional turbulence. We interpret the 500 km length scale, corresponding to the transition in slope, as the Rossby deformation radius. It is compatible with the dimensions of a subset of eddy features visible in the regions analyzed, suggesting that a baroclinic instability may exist. If so, it means that the quasi‐geostrophic approximation is valid in this context.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1029/2019je006096DOIArticle
https://doi.org/10.17632/4f3mrkcxvb.5DOIData
https://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/JUNO/jiram.htmlRelated ItemJIRAM data
ORCID:
AuthorORCID
Moriconi, M. L.0000-0003-2609-2620
Migliorini, A.0000-0001-7386-9215
Altieri, F.0000-0002-6338-8300
Adriani, A.0000-0003-4998-8008
Mura, A.0000-0002-4552-4292
Orton, G.0000-0001-7871-2823
Lunine, J. I.0000-0003-2279-4131
Grassi, D.0000-0003-1653-3066
Atreya, S. K.0000-0002-1972-1815
Ingersoll, A. P.0000-0002-2035-9198
Dinelli, B. M.0000-0002-1218-0008
Bolton, S. J.0000-0002-9115-0789
Levin, S.0000-0003-2242-5459
Tosi, F.0000-0003-4002-2434
Noschese, R.0000-0003-0502-0337
Plainaki, C.0000-0003-1483-5052
Cicchetti, A.0000-0002-9588-6531
Sindoni, G.0000-0002-3348-7930
Additional Information:© 2020 American Geophysical Union. Received 21 JUN 2019; Accepted 3 JUN 2020; Accepted article online 10 JUN 2020. We thank F. Bignami from Institute of Marine Sciences (CNR‐Italy), A. Provenzale from Institute of Geosciences and Earth Resources (CNR‐Italy), J. von Hardenberg from Institute of Atmospheric Sciences and Climate (CNR‐Italy), and A. Bracco from the Georgia Institute of Technology (USA) for their comments and helpful discussions. This work was supported by the Italian Space Agency through ASI‐INAF contracts I/010/10/0 and 2014‐050‐R.0. Part of this research was also supported by the National Aeronautics and Space Administration, a portion of which funding was provided to the Jet Propulsion Laboratory, California Institute of Technology. Original JIRAM data used for this work are available at the NASA Planetary Data System website (https://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/JUNO/jiram.html). Maps in Figures 1 and 4 were produced by using the commercial software ENVI (https://www.harrisgeospatial.com/Software-Technology). The data sets generated during the current study are available by using DOI: 10.17632/4f3mrkcxvb.5 link.
Group:Astronomy Department
Funders:
Funding AgencyGrant Number
Agenzia Spaziale Italiana (ASI)I/010/10/0
Agenzia Spaziale Italiana (ASI)2014-050-R.0
Istituto Nazionale di Astrofisica (INAF)UNSPECIFIED
NASA/JPL/CaltechUNSPECIFIED
Subject Keywords:Jupiter; Planetary atmospheres; Polar regions; Turbulence; Fourier analysis
Issue or Number:7
Record Number:CaltechAUTHORS:20200612-160255543
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20200612-160255543
Official Citation:Moriconi, M. L., Migliorini, A., Altieri, F., Adriani, A., Mura, A., Orton, G., et al. (2020). Turbulence power spectra in regions surrounding Jupiter's south polar cyclones from Juno/JIRAM. Journal of Geophysical Research: Planets, 125, e2019JE006096. https:// doi.org/10.1029/2019JE006096
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:103904
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:15 Jun 2020 15:02
Last Modified:02 Mar 2021 21:19

Repository Staff Only: item control page