CaltechAUTHORS
  A Caltech Library Service

The human red nucleus and lateral cerebellum in supporting roles for sensory information processing

Liu, Yijun and Pu, Yonglin and Gao, Jia-Hong and Parsons, Lawrence M. and Xiong, Jinhu and Liotti, Mario and Bower, James M. and Fox, Peter T. (2000) The human red nucleus and lateral cerebellum in supporting roles for sensory information processing. Human Brain Mapping, 10 (4). pp. 147-159. ISSN 1065-9471. PMCID PMC6872052. https://resolver.caltech.edu/CaltechAUTHORS:20200615-085157732

[img] PDF - Published Version
See Usage Policy.

506Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200615-085157732

Abstract

A functional MRI study compared activation in the red nucleus to that in the lateral cerebellar dentate nucleus during passive and active tactile discrimination tasks. The study pursued recent neuroimaging results suggesting that the cerebellum may be more associated with sensory processing than with the control of movement for its own sake. Because the red nucleus interacts closely with the cerebellum, the possibility was examined that activity in red nucleus might also be driven by the requirement for tactile sensory processing with the fingers rather than by finger movement alone. The red and dentate nuclei were about 300% more active (a combination of activation areas and intensities) during passive (non‐motor) tactile stimulation when discrimination was required than when it was not. Thus, the red nucleus was activated by purely sensory stimuli even in the absence of the opportunity to coordinate finger movements or to use the sensory cues to guide movement. The red and dentate nuclei were about 70% more active during active tactile tasks when discrimination was required than when it was not (i.e., for simple finger movements alone). Thus, the red nucleus was most active when the fingers were being used for tactile sensory discrimination. In both the passive and active tactile tasks, the observed activation had a contralateralized pattern, with stronger activation in the left red nucleus and right dentate nucleus. Significant covariation was observed between activity in the red nucleus and the contralateral dentate during the discrimination tasks and no significant correlation between the red nucleus and the contralateral dentate activity was detected during the two non‐discrimination tasks. The observed interregional covariance and contralateralized activation patterns suggest strong functional connectivity during tactile discrimination tasks. Overall, the pattern of findings suggests that the activity in the red nucleus, as in the lateral cerebellum, is more driven by the requirements for sensory processing than by motor coordination per se.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1002/1097-0193(200008)10:4<147::aid-hbm10>3.0.co;2-uDOIArticle
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872052PubMed CentralArticle
Additional Information:© 2000 Wiley-Liss, Inc. Received for publication 15 June 1999; accepted 12 May 2000.
Issue or Number:4
PubMed Central ID:PMC6872052
Record Number:CaltechAUTHORS:20200615-085157732
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20200615-085157732
Official Citation:Liu, Y., Pu, Y., Gao, J.‐H., Parsons, L.M., Xiong, J., Liotti, M., Bower, J.M. and Fox, P.T. (2000), The human red nucleus and lateral cerebellum in supporting roles for sensory information processing . Hum. Brain Mapp., 10: 147-159. doi:10.1002/1097-0193(200008)10:4<147::AID-HBM10>3.0.CO;2-U
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:103907
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:15 Jun 2020 16:09
Last Modified:15 Jun 2020 16:09

Repository Staff Only: item control page