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S1 Derivations for non-bursty promoter models1205

In this section we detail the calculation of mean mRNA levels, fold-changes in expression,1206

and Fano factors for both thermodynamic and kinetic promoter models in Figure 1. These1207

are the results that were quoted but not derived in Sections 2 and 3 of the main text. In1208

each of these models, the natural mathematicization of their cartoons is either an equilibrium1209

model based on statistical mechanics, or a chemical master equation. These derivations will1210

go through the specifics of the models in Figure 1. We point the readers to some other1211

excellent reviews on the general frameworks [1]–[3].1212

S1.1 Thermodynamic models of gene regulation1213

The first class of models we will explore are the so-called thermodynamic models of gene reg-1214

ulation [4]. The premise for these models is that we imagine the steps leading to transcription1215

–binding and unbinding of transcription factors and of RNAP– to occur in a timescale much1216

faster than the downstream processes –open complex formation and RNAP escape [5]. What1217

this allows us to do is to assume that the steps leading to transcription can be modeled as1218

being in quasi-equilibrium. This is enormously advantageous since we can use the theoretical1219

tools of equilibrium statistical mechanics to model such process.1220

This means that we can enlist the possible microstates in which we can find the promoter1221

in order to calculate their probabilities based on quantities such as molecular counts and1222

interaction energies. We then assume that the gene expression level is proportional to the1223

probability of finding the promoter in the transcriptionally active microstate. As mentioned1224

in the main text, these models can only deal with the mean gene expression level. This is1225

because the probability space we consider is that of the state of the repressor, rather than1226

both the state of the repressor and the mRNA counts. Let’s now work through models 11227

and 2 from Figure 1(B).1228

S1.1.1 The Two-State Equilibrium Model1229

In this simplest model, depicted as (1) in Figure 1(B), the promoter is idealized as existing1230

in one of two states, either repressor bound or repressor unbound. The rate of transcription1231
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is assumed to be proportional to the fraction of time spent in the repressor unbound state.1232

From the relative statistical weights listed in Figure 1, the probability pU of being in the1233

unbound state is1234

pU =

✓
1 +

R

NNS

e
���"R

◆�1

. (S1)

The mean rate of transcription is then given by rpU , as assumed by Eq. 1. The mean number1235

of mRNA is set by the balance of average mRNA transcription and degradation rates, so it1236

follows that the mean mRNA level is given by1237

hmi =
r

�

✓
1 +

R

NNS

e
���"R

◆�1

, (S2)

where r is the transcription rate from the repressor unbound state, � is the mRNA degra-1238

dation rate, R is repressor copy number, NNS is the number of nonspecific binding sites1239

in the genome where repressors spend most of their time when not bound to the operator,1240

� ⌘ 1/kBT , and �"R is the binding energy of a repressor to its operator site.1241

Fold-change The fold-change is found as the ratio of mean mRNA with and without1242

repressor as introduced in Eq. 2. Invoking that definition results in1243

fold-change =

✓
1 +

R

NNS

e
���"R

◆�1

, (S3)

which matches the form of the master curve in Figure 1(D) with ⇢ = 1 and �FR = ��"r �1244

log(R/NNS).1245

In fact it was noted in [6] that this two-state model can be viewed as the coarse-graining of1246

any equilibrium promoter model in which no transcriptionally active states have transcription1247

factor bound, or put di↵erently, when there is no overlap between transcription factor bound1248

states and transcriptionally active states. We will see this explicitly in the 3-state equilibrium1249

model below, but perhaps surprising is that an analogous result carries over even to the1250

kinetic models we consider later.1251

S1.1.2 The Three-State Equilibrium Model1252

Compared to the previous model, here we fine-grain the repressor unbound state into two1253

separate states: empty, and RNAP bound as shown in (2) in Figure 1(B). This picture was1254

used in [7] as we use it here, and in [8] and [6] it was generalized to incorporate small-molecule1255

inducers that bind the repressor. The e↵ect of this generalization is, roughly speaking, simply1256

to rescale R from the total number of repressors to a smaller e↵ective number of available1257

repressors which are unbound by inducers. We point out that the same generalization can be1258

incorporated quite easily into any of our models in Figure 1 by simply rescaling the repressor1259

copy number R in the equilibrium models, or equivalently k
+
R
in the kinetic models.1260

The mean mRNA copy number, as derived in Appendix S1 from a similar enumeration of1261

states and weights as the previous model, is1262

hmi =
r

�

P

NNS

e
���"P

1 + R

NNS

e���"R + P

NNS

e���"P
, (S4)
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where the new variables are �"P , the di↵erence in RNAP binding energy to its specific1263

site (the promoter) relative to an average nonspecific background site, and the RNAP copy1264

number, P .1265

Fold-change The fold-change again follows immediately as

fold-change =
P

NNS

e
���"P

1 + R

NNS

e���"R + P

NNS

e���"P

1 + P

NNS

e
���"P

P

NNS

e���"P
(S5)

=

 
1 +

R

NNS

e
���"R

1 + P

NNS

e���"P

!�1

(S6)

= (1 + exp(��FR � log ⇢))�1
, (S7)

with �FR = ��"R� log(R/NNS) and ⇢ = 1+ P

NNS

e���"P as shown in Figure 1(B). Thus far,1266

we see that the two thermodynamic models, despite making di↵erent coarse-graining com-1267

mitments, result in the same functional form for the fold-change in mean gene expression. We1268

now explore how kinetic models fare when faced with computing the same observable.1269

Before jumping into the derivations of the general computation of the mean mRNA level1270

and the Fano factor we will work through the derivation of an example master equation. In1271

particular we will focus on model 1 from Figure 1(C). The general steps are applicable to all1272

other chemical master equations in this work.1273

S1.2 Derivation of chemical master equation1274

(A)

(B)
mRNA countmRNA countpromoter statepromoter state

0 1 2 ∞...

0 1 2 ∞...

Figure S1. Two-state promoter chemical master equation. (A) Schematic of the two
state promoter simple repression model. Rates k+

R
and k�

R
are the association and dissociation

rates of the transcriptional repressor, respectively, r is the transcription initiation rate, and � is
the mRNA degradation rate. (B) Schematic depiction of the mRNA count state transitions. The
model in (A) only allows for jumps in mRNA of size 1. The production of mRNA can only occur
when the promoter is in the transcriptionally active state.
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The chemical master equation describes the continuous time evolution of a continuous or1275

discrete probability distribution function. In our specific case we want to describe the time1276

evolution of the discrete mRNA distribution. What this means is that we want to compute1277

the probability of having m mRNA molecules at time t+�t, where �t is a su�ciently small1278

time interval such that only one of the possible reactions take place during that time interval.1279

For the example that we will work out here in detail we chose the two-state stochastic simple1280

repression model schematized in Figure S1(A). To derive the master equation we will focus1281

more on the representation shown in Figure S1(B), where the transitions between di↵erent1282

mRNA counts and promoter states is more explicitly depicted. Given that the DNA promoter1283

can exist in one of two states– transcriptionally active state, and with repressor bound– we1284

will keep track not only of the mRNA count, but on which state the promoter is. For this we1285

will keep track of two probability distributions: The probability of having m mRNAs at time1286

t when the promoter is in the transcriptionally active state A, pA(m, t), and the equivalent1287

probability but when the promoter is in the repressor bound state R, pR(m, t).1288

Since mRNA production can only take place in the transcriptionally active state we will1289

focus on this function for our derivation. The repressor bound state will have an equivalent1290

equation without terms involving the production of mRNAs. We begin by listing the possible1291

state transitions that can occur for a particular mRNA count with the promoter in the1292

active state. For state changes in a small time window �t that “jump into” state m in the1293

transcriptionally active state we have1294

• Produce an mRNA, jumping from m� 1 to m.1295

• Degrade an mRNA, jumping from m+ 1 to m.1296

• Transition from the repressor bound state R with m mRNAs to the active state A with1297

m mRNAs.1298

Likewise, for state transitions that “jump out” of state m in the transcriptionally inactive1299

state we have1300

• Produce an mRNA, jumping from m to m+ 1.1301

• Degrade an mRNA, jumping from m to m� 1.1302

• Transition from the active state A with m mRNAs to the repressor bound state R with1303

m mRNAs.1304

The mRNA production does not depend on the current number of mRNAs, therefore these1305

state transitions occur with probability r�t. The same is true for the promoter state tran-1306

sitions; each occurs with probability k
±
R
�t. As for the mRNA degradation events, these1307

transitions depend on the current number of mRNA molecules since the more molecules of1308

mRNA there are, the more will decay during a given time interval. Each molecule has a1309

constant probability ��t of being degraded, so the total probability for an mRNA degrada-1310

tion event to occur is computed by multiplying this probability by the current number of1311

mRNAs.1312

To see these terms in action let us compute the probability of having m mRNA at time1313
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t+�t in the transcriptionally active state. This takes the form1314

pA(m, t+�t) = pA(m, t)

+

m�1!mz }| {
(r�t)pA(m� 1, t)�

m!m+1z }| {
(r�t)pA(m, t)

+

m+1!mz }| {
(m+ 1)(��t)pA(m+ 1, t)�

m!m�1z }| {
m(��t)pA(m, t)

+

R!Az }| {
(k�

R
�t)pR(m, t)�

A!Rz }| {
(k+

R
�t)pA(m, t),

(S8)

where the overbrace indicates the corresponding state transitions. Notice that the second to1315

last term on the right-hand side is multiplied by pR(m, t) since the transition from state R1316

to state A depends on the probability of being in state R to begin with. It is through this1317

term that the dynamics of the two probability distribution functions (pR(m, t) and pA(m, t))1318

are coupled. An equivalent equation can be written for the probability of having m mRNA1319

at time t+�t while in the repressor bound state, the only di↵erence being that the mRNA1320

production rates are removed, and the sign for the promoter state transitions are inverted.1321

This is1322

pR(m, t+�t) = pR(m, t)

+

m+1!mz }| {
(m+ 1)(��t)pR(m+ 1, t)�

m!m�1z }| {
m(��t)pR(m, t)

�

R!Az }| {
(k�

R
�t)pR(m, t)+

A!Rz }| {
(k+

R
�t)pA(m, t) .

(S9)

All we have to do now are simple algebraic steps in order to simplify the equations. Let1323

us focus on the transcriptionally active state A. First we will send the term pA(m, t) to1324

the right-hand side, and then we will divide both sides of the equation by �t. This results1325

in1326

pA(m, t+�t)� pA(m, t)

�t
= rpA(m� 1, t)� rpA(m, t)

+ (m+ 1)�pA(m+ 1, t)�m�pA(m, t)

+ k
�
R
pR(m, t)� k

+
R
pA(m, t).

(S10)

Upon taking the limit when �t ! 0 we can transform the left-hand side into a derivative,1327

obtaining the chemical master equation1328

dpA(m, t)

dt
= rpA(m� 1, t)� rpA(m, t)

+ (m+ 1)�pA(m+ 1, t)�m�pA(m, t)

+ k
�
R
pR(m, t)� k

+
R
pA(m, t).

(S11)

Doing equivalent manipulations for the repressor bound state gives an ODE of the form1329

dpR(m, t)

dt
= (m+ 1)�pR(m+ 1, t)�m�pR(m, t)

� k
�
R
pR(m, t) + k

+
R
pA(m, t).

(S12)
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In the next section we will write these coupled ODEs in a more compact form using matrix1330

notation.1331

S1.3 Matrix form of the multi-state chemical master equation1332

Having derived an example chemical master equation we now focus on writing a general1333

matrix form for the kinetic models 1-4 shown in Figure 1(C) in the main text. In each of1334

these four models, the natural mathematicization of their cartoons is as a chemical master1335

equation. For model 1 we have the master equation1336

d

dt
pR(m, t) =�

R!Uz }| {
k
�
R
pR(m, t)+

U!Rz }| {
k
+
R
pU(m, t)+

m+1!mz }| {
(m+ 1)�pR(m+ 1, t)�

m!m�1z }| {
�mpR(m, t)

d

dt
pU(m, t) =

R!Uz }| {
k
�
R
pR(m, t)�

U!Rz }| {
k
+
R
pU(m, t)+

m�1!mz }| {
rpU(m� 1, t)�

m!m+1z }| {
rpU(m, t)

+

m+1!mz }| {
(m+ 1)�pU(m+ 1, t)�

m!m�1z }| {
�mpU(m, t) .

(S13)

Here pR(m, t) and pU(m, t) are the probabilities of finding the system with m mRNA1337

molecules at time t either in the repressor bound or unbound states, respectively. r is1338

the probability per unit time that a transcript will be initiated when the repressor is un-1339

bound, and � is the probability per unit time for a given mRNA to be degraded. k�
R
is the1340

probability per unit time that a bound repressor will unbind, while k
+
R

is the probability1341

per unit time that an unbound operator will become bound by a repressor. Assuming mass1342

action kinetics, k+
R
is proportional to repressor copy number R.1343

Next consider the cartoon for kinetic model 2 in Figure 1(C). Now we must track probabilities1344

pR, pP , and pE for the repressor bound, empty, and polymerase bound states, respectively.1345

By analogy to Eq. S13, the master equation for model 2 can be written1346

d

dt
pR(m, t) =�

R!Uz }| {
k
�
R
pR(m, t)+

U!Rz }| {
k
+
R
pE(m, t)+

m+1!mz }| {
(m+ 1)�pR(m+ 1, t)�

m!m�1z }| {
�mpR(m, t)

d

dt
pE(m, t) =

R!Uz }| {
k
�
R
pR(m, t)�

U!Rz }| {
k
+
R
pE(m, t)+

m+1!mz }| {
(m+ 1)�pE(m+ 1, t)�

m!m�1z }| {
�mpE(m, t) .

+

A!Uz }| {
k
�
P
pP (m, t)�

U!Az }| {
k
+
P
pE(m, t)+

m�1!m, A!Uz }| {
rpP (m� 1, t)

d

dt
pP (m, t) = �

A!Uz }| {
k
�
P
pP (m, t)+

U!Az }| {
k
+
P
pE(m, t)+

m+1!mz }| {
(m+ 1)�pP (m+ 1, t)�

m!m�1z }| {
�mpP (m, t) .

�

m!m+1, A!Uz }| {
rpP (m, t) .

(S14)

k
+
P
and k

�
P
are defined in close analogy to k+

R
and k

�
R
, except for RNAP binding and unbinding1347

instead of repressor. Similarly pP (m, t) is defined for the active (RNAP-bound) state exactly1348

as are pR(m, t) and pE(m, t) for the repressor bound and unbound states, respectively. The1349

41



new subtlety Eq. S14 introduces compared to Eq. S13 is that when mRNAs are produced,1350

the promoter state also changes. This is encoded by the terms involving r, the last term in1351

each of the equations for pE and pP . The former accounts for arrivals in the unbound state1352

and the latter accounts for departures from the RNAP-bound state.1353

To condense and clarify the unwieldy notation of Eq. S14, it can be rewritten in matrix form.1354

We define the column vector ~p(m, t) as1355

~p(m, t) =

0

@
pR(m, t)
pE(m, t)
pP (m, t)

1

A (S15)

to gather, for a givenm, the probabilities of finding the system in the three possible promoter1356

states. Then all the transition rates may be condensed into matrices which multiply this1357

vector. The first matrix is1358

K =

0

@
�k

�
R

k
+
R

0
k
�
R
�k

+
R
� k

+
P

k
�
P

0 k
+
P

�k
�
P

1

A , (S16)

which tracks all promoter state changes in Eq. S14 that are not accompanied by a change1359

in the mRNA copy number. The two terms accounting for transcription, the only transition1360

that increases mRNA copy number, must be handled by two separate matrices given by1361

RA =

0

@
0 0 0
0 0 r

0 0 0

1

A , RD =

0

@
0 0 0
0 0 0
0 0 r

1

A . (S17)

RA accounts for transitions arriving in a given state while RD tracks departing transitions.1362

With these definitions, we can condense Eq. S14 into the single equation1363

d

dt
~p(m, t) = (K�RD � �mI) ~p(m, t) +RA~p(m� 1, t) + �(m+ 1)I~p(m+ 1, t), (S18)

Straightforward albeit tedious algebra verifies that Eqs. S14 and S18 are in fact equiva-1364

lent.1365

Although we derived Eq. S18 for the particular case of kinetic model 2 in Figure 1, in fact1366

the chemical master equations for all of the kinetic models in Figure 1 except for model 5 can1367

be cast in this form. (We treat model 5 separately in Appendix S2.) Model 3 introduces no1368

new subtleties beyond model 2 and Eq. S18 applies equally well to it, simply with di↵erent1369

matrices of dimension four instead of three. Models 1 and 4 are both Eq. S18 except that1370

RD = RA ⌘ R, since in these two models transcription initiation events do not change1371

promoter state.1372

Recalling that our goal in this section is to derive expressions for mean mRNA and Fano1373

factor for kinetic models 1 through four in Figure 1, and since all four of these models1374

are described by Eq. S18, we can save substantial e↵ort by deriving general formulas for1375

mean mRNA and Fano factor from Eq. S18 once and for all. Then for each model we can1376
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simply plug in the appropriate matrices for K, RD, and RA and carry out the remaining1377

algebra.1378

For our purposes it will su�ce to derive the first and second moments of the mRNA distri-1379

bution from this master equation, similar to the treatment in [9], but we refer the interested1380

reader to [10] for an analogous treatment demonstrating an analytical solution for arbitrary1381

moments.1382

S1.4 General forms for mean mRNA and Fano factor1383

Our task now is to derive expressions for the first two moments of the steady-state mRNA1384

distribution from Eq. S18. Our treatment of this is analogous to that given in Refs. [9]1385

and [10]. We first obtain the steady-state limit of Eq. S18 in which the time derivative1386

vanishes, giving1387

0 = (K�RD � �mI) ~p(m) +RA~p(m� 1) + �(m+ 1)I~p(m+ 1), (S19)

From this, we want to compute1388

hmi =
X

S

1X

m=0

mpS(m) (S20)

and1389

hm
2
i =

X

S

1X

m=0

m
2
pS(m) (S21)

which define the average values of m and m
2 at steady state, where the averaging is over1390

all possible mRNA copy numbers and promoter states S. For example, for model 1 in1391

Figure 1(C), the sum on S would cover repressor bound and unbound states (R and U1392

respectively), for model 2, the sum would cover repressor bound, polymerase bound, and1393

empty states (R, P , and E), and so on for the other models.1394

Along the way it will be convenient to define the following conditional moments as1395

h~mi =
1X

m=0

m~p(m), (S22)

and1396

h~m
2
i =

1X

m=0

m
2
~p(m). (S23)

These objects are vectors of the same size as ~p(m), and each component can be thought of as1397

the expected value of the mRNA copy number, or copy number squared, conditional on the1398

promoter being in a certain state. For example, for model 1 in Figure 1 which has repressor1399

bound and unbound states labeled R and U , h~m2
i would be1400

h~m
2
i =

✓P1
m=0 m

2
pR(m)P1

m=0 m
2
pU(m)

◆
. (S24)
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Analogously to h~mi and h~m2
i, it is convenient to define the vector1401

h~m
0
i =

1X

m=0

~p(m), (S25)

whose elements are simply the probabilities of finding the system in each of the possible1402

promoter states. It will be convenient to denote by ~1† a row vector of the same length as ~p1403

whose elements are all 1, such that, for instance, ~1† · h~m0
i = 1, ~1† · h~mi = hmi, etc.1404

S1.4.1 Promoter state probabilities h~m
0
i1405

To begin, we will find the promoter state probabilities h~m0
i from Eq. S19 by summing over1406

all mRNA copy numbers m, producing1407

0 =
1X

m=0

[(K�RD � �mI) ~p(m) +RA~p(m� 1) + �(m+ 1)I~p(m+ 1)] (S26)

Using the definitions of h~m0
i and h~mi, and noting the matrices K, RD, and RA are all1408

independent of m and can be moved outside the sum, this simplifies to1409

0 = (K�RD)h~m
0
i � �h~mi+RA

1X

m=0

~p(m� 1) + �

1X

m=0

(m+ 1)~p(m+ 1). (S27)

The last two terms can be handled by reindexing the summations, transforming them to1410

match the definitions of h~m0
i and h~mi. For the first, noting ~p(�1) = 0 since negative1411

numbers of mRNA are nonsensical, we have1412

1X

m=0

~p(m� 1) =
1X

m=�1

~p(m) =
1X

m=0

~p(m) = h~m0
i. (S28)

Similarly for the second,1413

1X

m=0

(m+ 1)~p(m+ 1) =
1X

m=1

m~p(m) =
1X

m=0

m~p(m) = h~mi, (S29)

which holds since in extending the lower limit from m = 1 to m = 0, the extra term we1414

added to the sum is zero. Substituting these back in Eq. S27, we have1415

0 = (K�RD)h~m
0
i � �h~mi+RAh~m

0
i+ �h~mi, (S30)

or simply1416

0 = (K�RD +RA)h~m
0
i. (S31)

So given matrices K, RD, and RA describing a promoter, finding h~m0
i simply amounts to1417

solving this set of linear equations, subject to the normalization constraint ~1† · h~m0
i = 1.1418

It will turn out to be the case that, if the matrix K � RD + RA is n dimensional, it will1419

always have only n�1 linearly independent equations. Including the normalization condition1420
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provides the n-th linearly independent equation, ensuring a unique solution. So when using1421

this equation to solve for h~m0
i, we may always drop one row of the matrix equation at1422

our convenience and supplement the system with the normalization condition instead. The1423

reader may find it illuminating to skip ahead and see Eq. S31 in use with concrete examples,1424

e.g., Eq. S59 and what follows it, before continuing on through the general formulas for1425

moments.1426

S1.4.2 First moments h~mi and hmi1427

By analogy to the above procedure for finding h~m0
i, we may find h~mi by first multiplying1428

Eq. S19 by m and then summing over m. Carrying out this procedure we have1429

0 =
1X

m=0

m [(K�RD � �mI) ~p(m) +RA~p(m� 1) + �(m+ 1)I~p(m+ 1)] , (S32)

and now identifying h~mi and h~m2
i gives1430

0 = (K�RD)h~mi � �h~m
2
i+RA

1X

m=0

m~p(m� 1) + �

1X

m=0

m(m+ 1)~p(m+ 1). (S33)

The summations in the last two terms can be reindexed just as we did for h~m0
i, freely adding1431

or removing terms from the sum which are zero. For the first term we find1432

1X

m=0

m~p(m� 1) =
1X

m=�1

(m+ 1)~p(m) =
1X

m=0

(m+ 1)~p(m) = h~mi+ h~m0
i, (S34)

and similarly for the second,1433

1X

m=0

m(m+ 1)~p(m+ 1) =
1X

m=1

(m� 1)m~p(m) =
1X

m=0

(m� 1)m~p(m) = h~m2
i � h~mi. (S35)

Substituting back in Eq. S33 then produces1434

0 = (K�RD)h~mi � �h~m
2
i+RA(h~mi+ h~m

0
i) + �(h~m2

i � h~mi), (S36)

or after simplifying1435

0 = (K�RD +RA � �)h~mi+RAh~m
0
i. (S37)

So like h~m0
i, h~mi is also found by simply solving a set of linear equations after first solving1436

for h~m0
i from Eq. S31.1437

Next we can find the mean mRNA copy number hmi from h~mi according to1438

hmi = ~1† · h~mi, (S38)

where ~1† is a row vector whose elements are all 1. Eq. S38 holds since the ith element of the1439

column vector h~mi is the mean mRNA value conditional on the system occupying the i
th

1440

promoter state, so the dot product with ~1† amounts to simply summing the elements of h~mi.1441
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Rather than solving Eq. S37 for h~mi and then computing ~1† · h~mi, we may take a shortcut1442

by multiplying Eq. S37 by ~1† first. The key observation that makes this useful is that1443

~1† · (K�RD +RA) = 0. (S39)

Intuitively, this equality holds because each column of this matrix represents transitions to1444

and from a given promoter state. In any given column, the diagonal encodes all departing1445

transitions and o↵-diagonals encode all arriving transitions. Conservation of probability1446

means that each column sums to zero, and summing columns is exactly the operation that1447

multiplying by ~1† carries out.1448

Proceeding then in multiplying Eq. S37 by ~1† produces1449

0 = ��~1† · h~mi+~1† ·RAh~m
0
i, (S40)

or simply1450

hmi =
1

�

~1† ·RAh~m
0
i. (S41)

We note that the in equilibrium models of transcription such as in Figure 1, it is usually1451

assumed that the mean mRNA level is given by the ratio of initiation rate r to degradation1452

rate � multiplied by the probability of finding the system in the RNAP-bound state. Reas-1453

suringly, we have recovered exactly this result from the master equation picture: the product1454

~1† ·RAh~m
0
i picks out the probability of the active promoter state from h~m0

i and multiplies1455

it by the initiation rate r.1456

S1.4.3 Second moment hm
2
i and Fano factor ⌫1457

Continuing the pattern of the zeroth and first moments, we now find h~m2
i by multiplying1458

Eq. S19 by m
2 and then summing over m, which explicitly is1459

0 =
1X

m=0

m
2 [(K�RD � �mI) ~p(m) +RA~p(m� 1) + �(m+ 1)I~p(m+ 1)] . (S42)

Identifying the moments h~m2
i and h~m3

i in the first term simplifies this to1460

0 = (K�RD)h~m
2
i � �h~m

3
i+RA

1X

m=0

m
2
~p(m� 1) + �

1X

m=0

m
2(m+ 1)~p(m+ 1). (S43)

Reindexing the sums of the last two terms proceeds just as it did for the zeroth and first1461

moments. Explicitly, we have1462

1X

m=0

m
2
~p(m� 1) =

1X

m=�1

(m+ 1)2~p(m) =
1X

m=0

(m+ 1)2~p(m) = h~m2
i+ 2h~mi+ h~m0

i, (S44)

for the first sum and1463

1X

m=0

m
2(m+ 1)~p(m+ 1) =

1X

m=1

(m� 1)2m~p(m) =
1X

m=0

(m� 1)2m~p(m) = h~m3
i � 2h~m2

i+ h~mi

(S45)
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for the second. Substituting the results of the sums back in Eq. S43 gives1464

0 = (K�RD)h~m
2
i � �h~m

3
i+RA(h~m

2
i+ 2h~mi+ h~m0

i) + �(h~m3
i � 2h~m2

i+ h~mi), (S46)

and after grouping like powers of m we have1465

0 = (K�RD +RA � 2�)h~m2
i+ (2RA + �)h~mi+RAh~m

0
i. (S47)

As we found when computing hmi from h~mi, we can spare ourselves some algebra by multi-1466

plying Eq. S47 by ~1†, which then reduces to1467

0 = �2�hm2
i+~1† · (2RA + �)h~mi+~1† ·RAh~m

0
i, (S48)

and noting from Eq. S41 that ~1† ·RAh~m
0
i = �hmi, we have the tidy result1468

hm
2
i = hmi+

1

�

~1† ·RAh~mi. (S49)

Finally we have all the preliminary results needed to write a general expression for the Fano1469

factor ⌫. The Fano factor is defined as the ratio of variance to mean, which can be written1470

as1471

⌫ =
hm

2
i � hmi

2

hmi
=
hmi+ 1

�
~1† ·RAh~mi � hmi

2

hmi
(S50)

and simplified to1472

⌫ = 1� hmi+
~1† ·RAh~mi

�hmi
. (S51)

Note a subtle notational trap here: hmi = 1
�
~1† · RAh~m

0
i rather than the by-eye similar1473

but wrong expression hmi 6= 1
�
~1† · RAh~mi, so the last term in Eq. S51 is in general quite1474

nontrivial. For a generic promoter, Eq. S51 may be greater than, less than, or equal to one,1475

as asserted in Section 3. We have not found the general form Eq. S51 terribly intuitive and1476

instead defer discussion to specific examples.1477

S1.4.4 Summary of general results1478

For ease of reference, we collect and reprint here the key results derived in this section that1479

are used in the main text and subsequent subsections. Mean mRNA copy number and Fano1480

factor are given by Eqs. S41 and S51, which are1481

hmi =
1

�

~1† ·RAh~m
0
i (S52)

and1482

⌫ = 1� hmi+
~1† ·RAh~mi

�hmi
, (S53)

respectively. To compute these two quantities, we need the expressions for h~m0
i and h~mi1483

given by solving Eqs. S31 and S37, respectively, which are1484

(K�RD +RA)h~m
0
i = 0 (S54)
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and1485

(K�RD +RA � �I)h~mi = �RAh~m
0
i. (S55)

Some comments are in order before we consider particular models. First, note that to obtain1486

h~mi and ⌫, we need not bother solving for all components of the vectors h~m0
i and h~mi, but1487

only the components which are multiplied by nonzero elements of RA. The only component1488

of h~m0
i that ever survives is the transcriptionally active state, and for the models we consider1489

here, there is only ever one such state. This will save us some amount of algebra below.1490

Also note that we are computing Fano factors to verify the results of Section 3, concerning1491

the constitutive promoter models in Figure 2 which are analogs of the simple repression1492

models in Figure 1. We can translate the matrices from the simple repression models to1493

the constitutive case by simply substituting all occurrences of repressor rates by zero and1494

removing the row and column corresponding to the repressor bound state. The results for1495

hmi computed in the repressed case can be easily translated to the constitutive case, rather1496

than recalculating from scratch, by taking the limit k+
R
! 0, since this amounts to sending1497

repressor copy number to zero.1498

Finally, we point out that it would be possible to compute h~m0
i more simply using the1499

diagram methods from King and Altman [11] (also independently discovered by Hill [12]).1500

But to our knowledge this method cannot be applied to compute h~mi or ⌫, so since we would1501

need to resort to solving the matrix equations anyways for h~mi, we choose not to introduce1502

the extra conceptual burden of the diagram methods simply for computing h~m0
i.1503

S1.5 Kinetic Model One - Poisson Promoter1504

This first model (model 1 in Figure 1) is the one that we used in the previous section to1505

motivate the derivation of the chemical master equation. Eq. S13 shows the two coupled1506

master equations, but for completeness we reprint it again as1507

d

dt
pR(m, t) =�

R!Uz }| {
k
�
R
pR(m, t)+

U!Rz }| {
k
+
R
pU(m, t)+

m+1!mz }| {
(m+ 1)�pR(m+ 1, t)�

m!m�1z }| {
�mpR(m, t)

d

dt
pU(m, t) =

R!Uz }| {
k
�
R
pR(m, t)�

U!Rz }| {
k
+
R
pU(m, t)+

m�1!mz }| {
rpU(m� 1, t)�

m!m+1z }| {
rpU(m, t)

+

m+1!mz }| {
(m+ 1)�pU(m+ 1, t)�

m!m�1z }| {
�mpU(m, t) .

(S56)

This is a direct transcription of the states and rates in Figure 1. This may be converted to1508

the matrix form of the master equation shown in Eq. S18 with matrices1509

~p(m) =

✓
pR(m)
pU(m)

◆
, K =

✓
�k

�
R

k
+
R

k
�
R
�k

+
R

◆
, R =

✓
0 0
0 r

◆
, (S57)

where RA and RD are equal, so we drop the subscript and denote both simply by R. Since1510

our interest is only in steady-state we dropped the time dependence as well.1511
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S1.5.1 Mean mRNA1512

To compute the mean mRNA we need h~m0
i. Label its components as pR and pU , the1513

probabilities of finding the system in either promoter state, and note that only pU survives1514

multiplication by R, since1515

Rh~m
0
i =

✓
0 0
0 r

◆✓
pR

pU

◆
=

✓
0

rpU

◆
, (S58)

so we need not bother finding pR. Then we have1516

(K�RD +RA)h~m
0
i =

✓
�k

�
R

k
+
R

k
�
R
�k

+
R

◆✓
pR

pU

◆
= 0. (S59)

As mentioned earlier in Section S1.4.1, the two rows are linearly dependent, so taking only1517

the first row and using normalization to set pR = 1� pU gives1518

�k
�
R
(1� pU) + k

+
R
pU = 0, (S60)

which is easily solved to find1519

pU =
k
�
R

k
�
R
+ k

+
R

. (S61)

Substituting this into Eq. S58, and the result of that into Eq. S52, we have1520

hmi =
r

�

k
�
R

k
�
R
+ k

+
R

. (S62)

S1.5.2 Fold-change1521

The fold-change for this model is easily computed since the unregulated promoter has a1522

mean mRNA hmi = r/�, resulting in a fold-change of the form1523

fold-change =
k
�
R

k
�
R
+ k

+
R

. (S63)

This can be rewritten as a Fermi function of the form1524

fold-change =
1

1 + exp[log(k+
R
/k

�
R
)]
, (S64)

giving ⇢ = 1 as indicated in Figure 1.1525

S1.5.3 Fano factor1526

To verify that the Fano factor for model 1 in Figure 2(A) is in fact 1 as claimed in the1527

main text, note that in this limit pU = 1 and hmi = r/�. All elements of K are zero, and1528

RA �RD = 0, so Eq. S55 reduces to1529

��h~mi = �r, (S65)

or, in other words, since there is only one promoter state, h~mi = hmi. Then it follows1530

that1531

⌫ = 1�
r

�
+

rhmi

�hmi
= 1 (S66)

as claimed.1532
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S1.6 Kinetic Model Two - RNAP Bound and Unbound States1533

with RNAP escape1534

Our second kinetic model depicted in Figure 1(C) mirrors the second equilibrium model of1535

Figure 1(B) by fine-graining the repressor unbound state of kinetic model 1, resolving it into1536

an empty promoter state and an RNAP-bound state. Note in this picture, in contrast with1537

model 4, transcription initiation is accompanied by a promoter state change, in keeping with1538

the interpretation as RNAP-bound and empty states: if an RNAP successfully escapes the1539

promoter and proceeds to elongation of a transcript, clearly it is no longer bound at the pro-1540

moter. Therefore another RNAP must bind before another transcript can be initiated.1541

The master equation governing this model is analogous to Eq. S56 for model 1 above. The1542

main subtlety arises since transcription initiation accompanies a promoter state change. The1543

full master equation for model 2 in Figure 1 is then of the form1544

d

dt
pR(m, t) =�

R!Uz }| {
k
�
R
pR(m, t)+

U!Rz }| {
k
+
R
pE(m, t)+

m+1!mz }| {
(m+ 1)�pR(m+ 1, t)�

m!m�1z }| {
�mpR(m, t)

d

dt
pE(m, t) =

R!Uz }| {
k
�
R
pR(m, t)�

U!Rz }| {
k
+
R
pE(m, t)+

m+1!mz }| {
(m+ 1)�pE(m+ 1, t)�

m!m�1z }| {
�mpE(m, t)

+

A!Uz }| {
k
�
P
pP (m, t)�

U!Az }| {
k
+
P
pE(m, t)+

m�1!m, A!Uz }| {
rpP (m� 1, t),

d

dt
pP (m, t) = �

A!Uz }| {
k
�
P
pP (m, t)+

U!Az }| {
k
+
P
pE(m, t)+

m+1!mz }| {
(m+ 1)�pP (m+ 1, t)�

m!m�1z }| {
�mpP (m, t)

�

m!m+1, A!Uz }| {
rpP (m, t) .

(S67)

To write down this in matrix notation one needs to be careful on how we define the matrices1545

involving a transcriptional event. The o↵-diagonal and diagonal elements of K correspond1546

to transitions arriving at or departing from, respectively, the promoter state of interest. If1547

transcription initiation is accompanied by promoter state changes, we must have separate1548

matrices for arriving and departing transcription events since the arriving and departing1549

transitions have di↵erent initial copy numbers of mRNA, unlike for K where they are the1550

same. The master equation for this model is1551

d

dt
~p(m, t) = (K�RD � �mI) ~p(m, t) +RA~p(m� 1, t) + �(m+ 1)I~p(m+ 1, t), (S68)

with the state vector and promoter transition matrix defined as1552

~p(m) =

0

@
pR(m)
pE(m)
pP (m)

1

A , K =

0

@
�k

�
R

k
+
R

0
k
�
R
�k

+
R
� k

+
P

k
�
P

0 k
+
P

�k
�
P

1

A , (S69)

and the initiation matrices given by1553

RA =

0

@
0 0 0
0 0 r

0 0 0

1

A , RD =

0

@
0 0 0
0 0 0
0 0 r

1

A . (S70)
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The elements of ~p(m) encode the probabilities of having m mRNA present along with the1554

promoter having repressor bound (R), being empty (E), or having RNAP bound (P ), re-1555

spectively. RA describes probability flux arriving at the state ~p(m) from a state with one1556

fewer mRNA, namely ~p(m� 1), and RD describes probability flux departing from the state1557

~p(m) for a state with one more mRNA, namely ~p(m + 1). K is closely analogous to model1558

1.1559

S1.6.1 Mean mRNA1560

As for model 1, we must first find RAh~m
0
i. Denote its components as pR, pE, pP , the1561

probabilities of being found in repressor bound, empty, or RNAP-bound states, respectively.1562

Only pP is necessary to find since1563

RAh~m
0
i =

0

@
0

rpP

0

1

A . (S71)

Then Eq. S54 for h~mi reads1564

0

@
�k

�
R

k
+
R

0
k
�
R
�k

+
R
� k

+
P

k
�
P
+ r

0 k
+
P

�k
�
P
� r

1

A

0

@
pR

pE

pP

1

A = 0. (S72)

Discarding the middle row as redundant and incorporating the normalization condition leads1565

to a set of three linearly independent equations, namely1566

�k
�
R
pR + k

+
R
pE = 0 (S73)

k
+
P
pE + (�k�

P
� r)pP = 0 (S74)

pR + pE + pP = 1. (S75)

Using pR = 1� pE � pP to eliminate pR in the first and solving the resulting equation for pE1567

gives pE = (1 � pP )k
�
R
/(k�

R
+ k

+
R
). Substituting this for pE in the second equation gives an1568

equation in pP alone which is1569

k
+
P
k
�
R
(1� pP )� (k�

P
+ r)(k+

R
+ k

�
R
)pP = 0 (S76)

and solving for pP gives1570

pP =
k
+
P
k
�
R

k
+
P
k
�
R
+ (k�

P
+ r)(k+

R
+ k

�
R
)
. (S77)

Substituting this in Eq. S71 and multiplying by RA produces1571

RAh~m
0
i = r

k
+
P
k
�
R

k
+
P
k
�
R
+ (k�

P
+ r)(k+

R
+ k

�
R
)

0

@
0
1
0

1

A (S78)

from which hmi follows readily,1572

hmi =
r

�

k
+
P
k
�
R

k
+
P
k
�
R
+ (k�

P
+ r)(k+

R
+ k

�
R
)
. (S79)
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S1.6.2 Fold-change1573

Fold-change is again found from the ratio prescribed by Eq. 2 in the main text, from which1574

we have1575

fold-change =
k
�
R
k
+
P

k
�
R
k
+
P
+ k

�
R
(k�

P
+ r) + k

+
R
(k�

P
+ r)

k
+
P
+ k

�
P
+ r

k
+
P

(S80)

=

✓
1 +

k
+
R

k
�
R

k
�
P
+ r

k
+
P
+ k

�
P
+ r

◆�1

(S81)

=

 
1 +

k
+
R

k
�
R

✓
1 +

k
+
P

k
�
P
+ r

◆�1
!�1

, (S82)

which follows the master curve of Figure 1(D) with ⇢ = 1 + k
+
P
/(k�

P
+ r) as claimed.1576

S1.6.3 Fano factor1577

To compute the Fano factor, we first remove the repressor bound state from the matrices1578

describing the model, which reduce to1579

K =

✓
�k

+
P

k
�
P

k
+
P
�k

�
P

◆
, RA =

✓
0 r

0 0

◆
, RD =

✓
0 0
0 r

◆
. (S83)

Similarly we remove the repressor bound state from RAh~m
0
i and take the k

+
R
! 0 limit,1580

which simplifies to1581

RAh~m
0
i = r

k
+
P

k
+
P
+ k

�
P
+ r

✓
1
0

◆
. (S84)

Then we must compute h~mi from Eq. S55, which with these matrices reads1582

(K�RD+RA��I)h~mi =

✓
�k

+
P
� � k

�
P
+ r

k
+
P

�k
�
P
� r � �

◆✓
mE

mP

◆
= r

k
+
P

k
+
P
+ k

�
P
+ r

✓
1
0

◆
, (S85)

where we labeled the components of h~mi as mE and mP , since they are the mean mRNA1583

counts conditional upon the system residing in the empty or polymerase bound states, respec-1584

tively. Unlike for h~m0
i, the rows of this matrix are linearly independent so we simply solve1585

this matrix equation as is. We can immediately eliminate mE since mE = mP (k
�
P
+r+�)/k+

P
1586

from the second row, and substituting into the first row gives an equation formP alone, which1587

is1588

⇥
�(k+

P
+ �)(k�

P
+ r + �) + k

+
P
(k�

P
+ r)

⇤
mP = �

r(k+
P
)2

k
+
P
+ k

�
P
+ r

. (S86)

Expanding the products cancels several terms, and solving for mP gives1589

mP =
r(k+

P
)2

�(k+
P
+ k

�
P
+ r)(k+

P
+ k

�
P
+ r + �)

. (S87)

Note then that ~1† ·RAh~mi = rmP . We also need the constitutive limit of hmi from Eq. S79,1590

again found by taking k
+
R
! 0, which is1591

hmi =
r

�

k
+
P

k
+
P
+ k

�
P
+ r

(S88)
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and substituting this along with ~1† ·RAh~mi = rmP into Eq. S53 for the Fano factor ⌫, we1592

find1593

⌫ = 1�
r

�

k
+
P

k
+
P
+ k

�
P
+ r

+
r

�

r(k+
P
)2

�(k+
P
+ k

�
P
+ r)(k+

P
+ k

�
P
+ r + �)

✓
r

�

k
+
P

k
+
P
+ k

�
P
+ r

◆�1

. (S89)

This simplifies to1594

⌫ = 1�
r

�

✓
k
+
P

k
+
P
+ k

�
P
+ r
�

k
+
P

k
+
P
+ k

�
P
+ r + �

◆
, (S90)

which further simplifies to1595

⌫ = 1�
rk

+
P

(k+
P
+ k

�
P
+ r)(k+

P
+ k

�
P
+ r + �)

. (S91)

S1.7 Kinetic Model Three - Multistep Transcription Initiation1596

and Escape1597

One might reasonably complain that the first two “kinetic” models we have considered are1598

straw men. Their steady states necessarily satisfy detailed balance which is equivalent to1599

thermodynamic equilibrium. Why is this the case? At steady state there is by definition no1600

net probability flux in or out of each promoter state, but since the promoter states form a1601

linear chain, there is only one way in or out of the repressor bound and RNAP bound states,1602

implying each edge must actually have a net zero probability flux, which is the definition of1603

detailed balance (usually phrased as equality of forward and reverse transition fluxes).1604

Now we consider model 3 in Figure 1(C) which allows the possibility of true nonequilibrium1605

steady-state fluxes through the promoter states. We point out that this model was considered1606

previously in [13] where a comparison was made with model 1 as used in [14]. The authors1607

of [13] argued that the additional complexity is essential to properly account for the noise in1608

the mRNA distribution. We will weigh in on both models later when we consider observables1609

beyond fold-change.1610

The master equation governing this model is identical in form to model 2 above, namely1611

d

dt
~p(m, t) = (K�RD � �mI) ~p(m, t) +RA~p(m� 1, t) + �(m+ 1)I~p(m+ 1, t), (S92)

but with a higher-dimensional state space and di↵erent matrices. The state vector and1612

promoter transition matrix are now1613

~p(m) =

0

BB@

pR(m)
pE(m)
pC(m)
pO(m)

1

CCA , K =

0

BB@

�k
�
R

k
+
R

0 0
k
�
R
�k

+
R
� k

+
P

k
�
P

0
0 k

+
P

�k
�
P
� kO 0

0 0 kO 0

1

CCA , (S93)

with the four promoter states, in order, being repressor bound (R), empty (E), RNAP closed1614

complex (C), and RNAP open complex (O). Besides increasing dimension by one, the only1615

new feature in K is the rate kO, representing the rate of open complex formation from the1616
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closed complex, which we assume for simplicity to be irreversible in keeping with some [13]1617

but not all [15] past literature. The initiation matrices are given by1618

RA =

0

BB@

0 0 0 0
0 0 0 r

0 0 0 0
0 0 0 0

1

CCA , RD =

0

BB@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 r

1

CCA , (S94)

again closely analogous to kinetic model 2.1619

S1.7.1 Mean mRNA1620

The expression for mean mRNA is substantially more complicated now. h~m0
i is again given1621

by Eq. S54, which in this case takes the form1622

(K�RD +RA)h~m
0
i =

0

BB@

�k
�
R

k
+
R

0 0
k
�
R
�k

+
R
� k

+
P

k
�
P

r

0 k
+
P

�k
�
P
� kO 0

0 0 kO �r

1

CCA

0

BB@

pR

pE

pC

pO

1

CCA = 0, (S95)

where the four components of h~m0
i correspond to the four promoter states repressor bound,1623

empty, RNAP-bound closed complex, and RNAP-bound open complex. As explained in1624

Section S1.4.1, we are free to discard one linearly dependent row from this matrix and1625

replace it with the normalization condition pR + pE + pC + pO = 1. Using normalization to1626

eliminate pR from the first row gives1627

pE = (1� pC � pO)
k
�
R

k
�
R
+ k

+
R

. (S96)

If we substitute this in the third row, then the last two rows constitute two equations in pC1628

and pO given by1629

k
+
P
k
�
R
(1� pC � pO)� (k�

P
+ kO)(k

+
R
+ k

�
R
)pC = 0 (S97)

kOpC � rpO = 0. (S98)

Solving for pC = pOr/kO in the second and substituting into the first gives us our desired1630

single equation in the single variable pO, which is1631

k
+
P
k
�
R
� k

+
P
k
�
R

✓
1 +

r

kO

◆
pO � (k�

P
+ kO)(k

+
R
+ k

�
R
)
r

kO
pO = 0, (S99)

and solving for pO we find1632

pO =
k
+
P
k
�
R
kO

k
+
P
k
�
R
kO + rk

+
P
k
�
R
+ r(k�

P
+ kO)(k

+
R
+ k

�
R
)
. (S100)

Once again pO, the transcriptionally active state, is the only component of h~m0
i that survives1633

multiplication by RA, and RAh~m
0
i = rpO. So1634

hmi =
1

�

~1† ·RAh~m
0
i =

r

�

k
+
P
k
�
R
kO

k
+
P
k
�
R
kO + rk

+
P
k
�
R
+ r(k�

P
+ kO)(k

+
R
+ k

�
R
)
. (S101)
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which can be simplified to1635

hmi =
r

�

k
+
P
kO

r(kO+k
�
P
)

1 +
k
+
P
(kO+r)

r(kO+k
�
P
)
+

k
+
R

k
�
R

. (S102)

S1.7.2 Fold-change1636

The strategy is to isolate the terms involving the repressor, so that now the fold-change is1637

seen to be simply1638

fold-change =

k
+
P
kO

r(kO+k
�
P
)

1 +
k
+
P
(kO+r)

r(kO+k
�
P
)
+

k
+
R

k
�
R

1 +
k
+
P
(kO+r)

r(kO+k
�
P
)

k
+
P
kO

r(kO+k
�
P
)

(S103)

=

 
1 +

k
+
R

k
�
R

✓
1 +

k
+
P
(kO + r)

r(kO + k
�
P
)

◆�1
!�1

, (S104)

surprisingly reducing to the master curve of Figure 1(D) once again, with ⇢ = 1+
k
+
P
(kO+r)

r(kO+k
�
P
)
.1639

S1.7.3 Fano factor1640

To compute the Fano factor of the analogous constitutive promoter, we first excise the1641

repressor states and rates from the problem. More precisely, we construct the matrix (K�1642

RD +RA � �I) and substitute it into Eq. S55 which is now1643

(K�RD +RA � �I)h~mi =

0

@
�k

+
P
� � k

�
P

r

k
+
P

�k
�
P
� kO � � 0

0 kO �r � �

1

A

0

@
mE

mC

mO

1

A = �rpO

0

@
1
0
0

1

A

(S105)
where we labeled the unbound, closed complex, and open complex components of h~mi as1644

mE, mC , and mO, respectively. pO is given by the limit of Eq. S100 as k+
R
! 0, which is1645

pO =
k
+
P
kO

k
+
P
(kO + r) + r(k�

P
+ kO)

⌘
k
+
P
kO

Z
, (S106)

where we define Z for upcoming convenience as this sum of terms will appear repeatedly.1646

We can use the second equation to eliminate mE, finding mE = mC(k
�
P
+ kO + �)/k+

P
, and1647

the third to eliminate mC , which is simply mC = mO(r + �)/kO. Substituting these both1648

into the first equation gives a single equation for the variable of interest, mO,1649

�(k+
P
+ �)(k�

P
+ kO + �)(r + �)mO + k

�
P
k
+
P
(r + �)mO + rk

+
P
kOmO = �rk+

P
kOpO, (S107)

which is solved for mO to give1650

mO = pO
rk

+
P
kO

(k+
P
+ �)(k�

P
+ kO + �)(r + �)� rk

+
P
kO � k

�
P
k
+
P
(r + �)

. (S108)
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Expanding the denominator and canceling terms leads to1651

mO = pO
r

�

k
+
P
kO

Z + �(k+
P
+ k

�
P
+ kO + r) + �2

. (S109)

Now ~1† · RAh~mi = rmO, and hmi = rpO/�, so if we substitute these two quantities into1652

Eq. S53, we will readily obtain the Fano factor as1653

⌫ = 1� hmi+
~1† ·RAh~mi

�hmi
= 1�

r

�
pO +

mO

pO
. (S110)

Substituting, we see that1654

⌫ = 1�
r

�

k
+
P
kO

Z
+

r

�

k
+
P
kO

Z + �(k+
P
+ k

�
P
+ kO + r) + �2

, (S111)

and after simplifying, we obtain1655

⌫ = 1�
rk

+
P
kO

Z

k
+
P
+ k

�
P
+ kO + r + �

Z + �(k+
P
+ k

�
P
+ kO + r) + �2

. (S112)

S1.7.4 Generalizing ⌫ < 1 to more fine-grained models1656

In the main text we argued that the convolution of multiple exponential distributions should1657

be a distribution with a smaller fractional width than the corresponding exponential dis-1658

tribution with the same mean. This can be made more precise with a result from [16],1659

who showed that the convolution of multiple gamma distributions (of which the exponential1660

distribution is a special case) is, to a very good approximation, also gamma distributed.1661

Using their Eq. 2 for the distribution of the convolution, with shape parameters set to 1 to1662

give exponential distributions, the total waiting time distribution has a ratio of variance to1663

squared mean �
2
/µ

2 =
P

i
k
2
i
/ (
P

i
ki)

2, where the ki are the rates of the individual steps.1664

Clearly this is less than 1 and therefore the total waiting time distribution is narrower than1665

the corresponding exponential.1666

We also claimed in the main text that for a process whose waiting time distribution is1667

narrower than exponential, i.e., has �
2
/µ

2
< 1, the distribution of counts should be less1668

variable than a Poisson distribution, leading to a Fano factor ⌫ < 1. This we argue by1669

analogy to photon statistics where it is known that “antibunched” arrivals, in other words1670

more uniformly distributed in time relative to uncorrelated arrivals, generally gives rise to1671

sub-Poissonian noise [17], [18]. Although loopholes to this result are known to exist, to our1672

knowledge they appear to arise from uniquely quantum e↵ects so we do not expect they1673

apply for our problem. Nevertheless we refrain from elevating this equivalence of kinetic1674

cycles with sub-Poissonian noise to a “theorem.”1675

S1.8 Kinetic Model Four - “Active” and “Inactive” States1676

Model 4 in Figure 1(C) is at the core of the theory in [10]. At a glance the cartoon for this1677

model may appear very similar to model 2, and mathematically it is, but the interpretation1678
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is rather di↵erent. In model 2, we interpreted the third state literally as an RNAP-bound1679

promoter and modeled initiation of a transcript as triggering a promoter state change, making1680

the assumption that an RNAP can only make one transcript at a time. In contrast, in the1681

present model the promoter state does not change when a transcript is initiated. So we no1682

longer interpret these states as literally RNAP bound and unbound but instead as coarse-1683

grained “active” and “inactive” states, the details of which we leave unspecified for now. We1684

will comment more on this model below when we discuss Fano factors of models.1685

Mathematically this model is very similar to models 1 and 2. Like model 1, the matrix R1686

describing transcription initiation is diagonal, namely1687

R =

0

@
0 0 0
0 0 0
0 0 r

1

A . (S113)

The master equation takes verbatim the same form as it did for model 1. Meanwhile the1688

promoter transition matrix K is the same as Eq. S69 from model 2, although we relabel1689

the rate constants from k
±
P
to k

± to reiterate that these are not simply RNAP binding and1690

unbinding rates.1691

S1.8.1 Mean mRNA1692

The mathematical specification of this model is almost identical to model 2. The matrix K1693

is identical, as is RD. The only di↵erence is that now RA = RD, i.e., both are diagonal, in1694

contrast to model 2 where RA has an o↵-diagonal element. Then the analog of Eq. S72 for1695

finding hm0
i is1696 0

@
�k

�
R

k
+
R

0
k
�
R
�k

+
R
� k

+
k
�

0 k
+

�k
�

1

A

0

@
pR

pI

pA

1

A = 0. (S114)

In fact we need not do this calculation explicitly and can instead recycle the calculation1697

of mean mRNA hmi from model 2. The matrices are identical except for the relabeling1698

k
�
 ! (k�

P
+ r), and a careful look through the derivation of hmi for model 2 shows that1699

the parameters k�
P
and r only ever appear as the sum k

�
P
+ r. So taking hmi from model 2,1700

Eq. S79, and relabeling (k�
P
+ r)! k

� gives us our answer for model four, simply1701

hmi =
r

�

k
+
k
�
R

k+k
�
R
+ k�(k+

R
+ k

�
R
)
. (S115)

S1.8.2 Fold-change1702

The fold-change readily follows,1703

fold-change =
k
�
R
k
+

k
�
R
k+ + k

�
R
k� + k

+
R
k�

k
�
R
k
+ + k

�
R
k
�

k
�
R
k+

(S116)

=

 
1 +

k
+
R

k
�
R

✓
1 +

k
+

k�

◆�1
!�1

, (S117)

from which we see ⇢ = 1 + k
+
/k

� as shown in Figure 1(C).1704
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S1.8.3 Fano factor1705

Likewise, for computing the Fano factor of this model we may take a shortcut. Consider the1706

constitutive model four from Figure 2 for which we want to compute the Fano factor and1707

compare it to kinetic model one of simple repression in Figure 1. Mathematically these are1708

exactly the same model, just with rates labeled di↵erently and the meaning of the promoter1709

states interpreted di↵erently. Furthermore, kinetic model 1 from Figure 1 was the model1710

considered by Jones et. al. [14], where they derived the Fano factor for that model to be1711

⌫ = 1 +
rk

+
R

(k+
R
+ k

�
R
)(k+

R
+ k

�
R
+ �)

. (S118)

So recognizing that the relabelings k+
R
! k

� and k
�
R
! k

+ will translate this result to our1712

model four from Figure 2, we can immediately write down our Fano factor as1713

⌫ = 1 +
rk

�

(k� + k+)(k� + k+ + �)
, (S119)

as quoted in Eq. 9 and in Figure 2.1714

S2 Bursty promoter models - generating function so-1715

lutions and numerics1716

S2.1 Constitutive promoter with bursts1717

S2.1.1 From master equation to generating function1718

The objective of this section is to write down the steady-state mRNA distribution for model1719

5 in Figure 2. Our claim is that this model is rich enough that it can capture the expres-1720

sion pattern of bacterial constitutive promoters. Figure S2 shows two di↵erent schematic1721

representations of the model. Figure S2(A) shows the promoter cartoon model with burst1722

initiation rate ki, mRNA degradation rate �, and mean burst size b. For our derivation of1723

the chemical master equation we will focus more on Figure S2(B). This representation is1724

intended to highlight that bursty gene expression allows transitions between mRNA count1725

m and m
0 even with m�m

0
> 1.1726

To derive the master equation we begin by considering the possible state transitions to1727

“enter” state m. There are two possible paths to jump from an mRNA count m0
6= m to a1728

state m in a small time window �t:1729

1. By degradation of a single mRNA, jumping from m+ 1 to m.1730

2. By producing m�m
0 mRNA for m0

2 {0, 1, . . . ,m� 1}.1731

For the “exit” states from m into m
0
6= m during a small time window �t we also have two1732

possibilities:1733

1. By degradation of a single mRNA, jumping from m to m� 1.1734
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(B)

Figure S2. Bursty transcription for unregulated promoter. (A) Schematic of the
one-state bursty transcription model. Rate ki is the bursty initiation rate, � is the mRNA
degradation rate, and b is the mean burst size. (B) Schematic depiction of the mRNA count state
transitions. The model in (A) allows for transitions of > 1 mRNA counts with probability
Gm�m0 , where the state jumps from having m0 mRNA to having m mRNA in a single burst of
gene expression.

2. By producing m
0
�m mRNA for m0

�m 2 {1, 2, . . .}.1735

This implies that the probability of having m mRNA at time t+�t can be written as1736

p(m, t+�t) =p(m, t) +

m+1!mz }| {
��t(m+ 1)p(m+ 1, t)�

m!m�1z }| {
��tmp(m, t)

+

m
02{0,1,...m�1}!mz }| {

ki�t

m�1X

m0=0

Gm�m0p(m0
, t)�

m!m
02{m+1,m+2,...}z }| {

ki�t

1X

m0=m+1

Gm0�mp(m, t),

(S120)

where we indicate Gm0�m as the probability of having a burst of size m
0
� m, i.e. when1737

the number of mRNAs jump from m to m
0
> m due to a single mRNA transcription burst.1738

We suggestively use the letter G as we will assume that these bursts sizes are geometrically1739

distributed with parameter ✓. This is written as1740

Gk = ✓(1� ✓)k for k 2 {0, 1, 2, . . .}. (S121)

In Section 3 of the main text we derive this functional form for the burst size distribu-1741

tion. An intuitive way to think about it is that for transcription initiation events that take1742

place instantaneously there are two competing possibilities: Producing another mRNA with1743

probability (1 � ✓), or ending the burst with probability ✓. What this implies is that for a1744

geometrically distributed burst size we have a mean burst size b of the form1745

b ⌘ hm
0
�mi =

1X

k=0

k✓(1� ✓)k =
1� ✓

✓
. (S122)
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To clean up Equation S120 we can send the first term on the right hand side to the left, and1746

divide both sides by �t. Upon taking the limit where �t! 0 we can write1747

d

dt
p(m, t) = (m+1)�p(m+1, t)�m�p(m, t)+ki

m�1X

m0=0

Gm�m0p(m0
, t)�ki

1X

m0=m+1

Gm0�mp(m, t).

(S123)
Furthermore, given that the timescale for this equation is set by the mRNA degradation rate1748

� we can divide both sides by this rate, obtaining1749

d

d⌧
p(m, ⌧) = (m+1)p(m+1, ⌧)�mp(m, ⌧)+�

m�1X

m0=0

Gm�m0p(m0
, ⌧)��

1X

m0=m+1

Gm0�mp(m, ⌧),

(S124)
where we defined ⌧ ⌘ t ⇥ �, and � ⌘ ki/�. The last term in Eq. S124 sums all burst sizes1750

except for a burst of size zero. We can re-index the sum to include this term, obtaining1751

�

1X

m0=m+1

Gm0�mp(m, ⌧) = �p(m, t)

2

6664

1X

m0=m

Gm0�m

| {z }
re-index sum to include burst size zero

� G0|{z}
subtract extra added term

3

7775
.

(S125)
Given the normalization constraint of the geometric distribution, adding the probability1752

of all possible burst sizes –including size zero since we re-indexed the sum– allows us to1753

write1754
1X

m0=m

Gm0�m �G0 = 1�G0. (S126)

Substituting this into Eq. S124 results in1755

d

d⌧
p(m, ⌧) = (m+ 1)p(m+ 1, ⌧)�mp(m, ⌧) + �

m�1X

m0=0

Gm�m0p(m0
, ⌧)� �p(m, ⌧) [1�G0] .

(S127)
To finally get at a more compact version of the equation notice that the third term in1756

Eq. S127 includes burst from size m0
�m = 1 to size m0

�m = m. We can include the term1757

p(m, t)G0 in the sum which allows bursts of size m
0
�m = 0. This results in our final form1758

for the chemical master equation1759

d

d⌧
p(m, ⌧) = (m+ 1)p(m+ 1, ⌧)�mp(m, ⌧)� �p(m, ⌧) + �

mX

m0=0

Gm�m0p(m0
, ⌧). (S128)

In order to solve Eq. S128 we will use the generating function method [19]. The probability1760

generating function is defined as1761

F (z, t) =
1X

m=0

z
m
p(m, t), (S129)
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where z is just a dummy variable that will help us later on to obtain the moments of the1762

distribution. Let us now multiply both sides of Eq. S128 by z
m and sum over all m1763

X

m

z
m

d

d⌧
p(m, ⌧) =

X

m

z
m

"
�mp(m, ⌧) + (m+ 1)p(m+ 1, ⌧) + �

mX

m0=0

Gm�m0p(m0
, ⌧)� �p(m, ⌧)

#
,

(S130)
where we use

P
m
⌘
P1

m=0. We can distribute the sum and use the definition of F (z, t) to1764

obtain1765

dF (z, ⌧)

d⌧
= �

X

m

z
m
mp(m, ⌧)+

X

m

z
m(m+1)p(m+1, ⌧)+�

X

m

z
m

mX

m0=0

Gm�m0p(m0
, ⌧)��F (z, ⌧).

(S131)
We can make use of properties of the generating function to write everything in terms of1766

F (z, ⌧): the first term on the right hand side of Eq. S131 can be rewritten as1767

X

m

z
m
·m · p(m, ⌧) =

X

m

z
@z

m

@z
p(m, ⌧), (S132)

=
X

m

z
@

@z
(zmp(m, ⌧)) , (S133)

= z
@

@z

 
X

m

z
m
p(m, ⌧)

!
, (S134)

= z
@F (z, ⌧)

@z
. (S135)

For the second term on the right hand side of Eq. S131 we define k ⌘ m+ 1. This allows us1768

to write1769

1X

m=0

z
m
· (m+ 1) · p(m+ 1, ⌧) =

1X

k=1

z
k�1

· k · p(k, ⌧), (S136)

= z
�1

1X

k=1

z
k
· k · p(k, ⌧), (S137)

= z
�1

1X

k=0

z
k
· k · p(k, ⌧), (S138)

= z
�1

✓
z
@F (z)

@z

◆
, (S139)

=
@F (z)

@z
. (S140)

The third term in Eq. S131 is the most trouble. The trick is to reverse the default order of1770

the sums as1771
1X

m=0

mX

m0=0

=
1X

m0=0

1X

m=m0

. (S141)
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0,00,0 1,01,0 2,02,0 3,03,0

1,11,1 2,12,1 3,13,1

2,22,2 3,23,2

3,33,3

Figure S3. Reindexing double sum. Schematic for reindexing the sum
P1

m=0

P
m

m0=0. Blue
circles depict the 2D grid of nonnegative integers restricted to the lower triangular part of the
m,m0 plane. The trick is that this double sum runs over all (m,m0) pairs with m0

 m. Summing
m first instead of m0 requires determining the boundary: the upper boundary of the m0-first
double sum becomes the lower boundary of the m-first double sum.

To see the logic of the sum we point the reader to Figure S3. The key is to notice that the1772

double sum
P1

m=0

P
m

m0=0 is adding all possible pairs (m,m
0) in the lower triangle, so we can1773

add the terms vertically as the original sum indexing suggests, i.e.1774

1X

m=0

mX

m0=0

x(m,m0) = x(0,0) + x(1,0) + x(1,1) + x(2,0) + x(2,1) + x(2,2) + . . . , (S142)

where the variable x is just a placeholder to indicate the order in which the sum is taking1775

place. But we can also add the terms horizontally as1776

1X

m0=0

1X

m=m0

x(m,m0) = x(0,0) + x(1,0) + x(2,0) + . . .+ x(1,1) + x(2,1) + . . . , (S143)

which still adds all of the lower triangle terms. Applying this reindexing results in1777

�

X

m

z
m

mX

m0=0

Gm�m0p(m0
, ⌧) = �

1X

m0=0

1X

m=m0

z
m
✓(1� ✓)m�m

0
p(m0

, ⌧), (S144)

where we also substituted the definition of the geometric distribution Gk = ✓(1 � ✓)k. Re-1778

distributing the sums we can write1779

�

1X

m0=0

1X

m=m0

z
m
✓(1� ✓)m�m

0
p(m0

, ⌧) = �✓

1X

n=0

(1� ✓)m
0
P (m0

, ⌧)
1X

m=m0

[z(1� ✓)]m . (S145)

The next step requires us to look slightly ahead into what we expect to obtain. We are1780

working on deriving an equation for the generating function F (z, ⌧) that when solved will1781

allow us to compute what we care about, i.e. the probability function p(m, ⌧). Upon finding1782

the function for F (z, ⌧), we will recover this probability distribution by evaluating derivatives1783

of F (z, ⌧) at z = 0, whereas we can evaluate derivatives of F (z, ⌧) at z = 1 to instead recover1784
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the moments of the distribution. The point here is that when the dust settles we will evaluate1785

z to be less than or equal to one. Furthermore, we know that the parameter of the geometric1786

distribution ✓ must be strictly between zero and one. With these two facts we can safely1787

state that |z(1� ✓)| < 1. Defining n ⌘ m�m
0 we rewrite the last sum in Eq. S145 as1788

1X

m=m0

[z(1� ✓)]m =
1X

n=0

[z(1� ✓)]n+m
0

(S146)

= [z(1� ✓)]m
0

1X

n=0

[z(1� ✓)]n (S147)

= [z(1� ✓)]m
0
✓

1

1� z(1� ✓)

◆
, (S148)

where we use the geometric series since, as stated before, |z(1�✓)| < 1. Putting these results1789

together, the PDE for the generating function is1790

@F

@⌧
=

@F

@z
� z

@F

@z
� �F +

�✓F

1� z(1� ✓)
. (S149)

Changing variables to ⇠ = 1� ✓ and simplifying gives

@F

@⌧
+ (z � 1)

@F

@z
=

(z � 1)⇠

1� z⇠
�F. (S150)

S2.1.2 Steady-state1791

To get at the mRNA distribution at steady state we first must solve Eq. S150 setting the1792

time derivative to zero. At steady-state, the PDE reduces to the ODE1793

dF

dz
=

⇠

1� z⇠
�F, (S151)

which we can integrate as1794 Z
dF

F
=

Z
�⇠dz

1� ⇠z
. (S152)

The initial conditions for generating functions can be subtle and confusing. The key fact1795

follows from the definition F (z, t) =
P

m
z
m
p(m, t). Clearly normalization of the distribution1796

requires that F (z = 1, t) =
P

m
p(m, t) = 1. A subtlety is that sometimes the generating1797

function may be undefined at z = 1, in which case the limit as z approaches 1 from below1798

su�ces to define the normalization condition. We also warn the reader that, while it is1799

frequently convenient to change variables from z to a di↵erent independent variable, one1800

must carefully track how the normalization condition transforms.1801

Continuing on, we evaluate the integrals (producing a constant c) which gives1802

lnF = �� ln(1� ⇠z) + c (S153)

F =
c

(1� ⇠z)�
. (S154)

Only one choice for c can satisfy initial conditions, producing1803

F (z) =

✓
1� ⇠

1� ⇠z

◆�

=

✓
✓

1� z(1� ✓)

◆�

, (S155)
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S2.1.3 Recovering the steady-state probability distribution1804

To obtain the steady state mRNA distribution p(m) we are aiming for we need to extract it1805

from the generating function1806

F (z) =
X

m

z
m
p(m). (S156)

Taking a derivative with respect to z results in1807

dF (z)

dz
=
X

m

mz
m�1

p(m). (S157)

Setting z = 0 leaves one term in the sum when m = 11808

dF (z)

dz

����
z=0

=
�
0 · 0�1

· p(0) + 1 · 00 · p(1) + 2 · 01 · p(2) + · · ·
�
= p(1), (S158)

since in the limit limx!0+ x
x = 1. A second derivative of the generating function would result1809

in1810

d
2
F (z)

dz2
=

1X

m=0

m(m� 1)zm�2
p(m). (S159)

Again evaluating at z = 0 gives1811

d
2
F (z)

dz

����
z=0

= 2p(z). (S160)

In general any p(m) is obtained from the generating function as1812

p(m) =
1

m!

d
m
F (z)

dz

����
z=0

. (S161)

Let’s now look at the general form of the derivative for our generating function in Eq. S155.1813

For p(0) we simply evaluate F (z = 0) directly, obtaining1814

p(0) = F (z = 0) = ✓
�
. (S162)

The first derivative results in1815

dF (z)

dz
= ✓

�
d

dz
(1� z(1� ✓))��

= ✓
�
⇥
��(1� z(1� f))���1

· (✓ � 1)
⇤

= ✓
�
⇥
�(1� z(1� ✓))���1(1� ✓)

⇤
.

(S163)

Evaluating this at z = 0 as required to get p(1) gives1816

dF (z)

dz

����
z=0

= ✓
�
�(1� ✓) (S164)
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For the second derivative we find1817

d
2
F (z)

dz2
= ✓

�
⇥
�(�+ 1)(1� z(1� ✓))���2(1� ✓)2

⇤
. (S165)

Again evaluating z = 0 gives1818

d
2
F (z)

dz2

����
z=0

= ✓
�
�(�+ 1)(1� ✓)2. (S166)

Let’s go for one more derivative to see the pattern. The third derivative of the generating1819

function gives1820

d
3
F (z)

dz3
= ✓

�
⇥
�(�+ 1)(�+ 2)(1� z(1� ✓))���3(1� ✓)3

⇤
, (S167)

which again we evaluate at z = 01821

d
3
F (z)

dz3

����
z=1

= ✓
�
⇥
�(�+ 1)(�+ 2)(1� ✓)3

⇤
. (S168)

If � was an integer we could write this as1822

d
3
F (z)

dz3

����
z=0

=
(�+ 2)!

(�� 1)!
✓
�(1� ✓)3. (S169)

Since � might not be an integer we can write this using Gamma functions as1823

d
3
F (z)

dz3

����
z=0

=
�(�+ 3)

�(�)
✓
�(1� ✓)3. (S170)

Generalizing the pattern we then have that the m-th derivative takes the form1824

d
m
F (z)

dzm

����
z=0

=
�(�+m)

�(�)
✓
�(1� ✓)m. (S171)

With this result we can use Eq. S161 to obtain the desired steady-state probability distri-1825

bution function1826

p(m) =
�(m+ �)

�(m+ 1)�(�)
✓
�(1� ✓)m. (S172)

Note that the ratio of gamma functions is often expressed as a binomial coe�cient, but1827

since � may be non-integer, this would be ill-defined. Re-expressing this exclusively in our1828

variables of interest, burst rate � and mean burst size b, we have1829

p(m) =
�(m+ �)

�(m+ 1)�(�)

✓
1

1 + b

◆�✓
b

1 + b

◆m

. (S173)
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S2.2 Adding repression1830

S2.2.1 Deriving the generating function for mRNA distribution1831

Let us move from a one-state promoter to a two-state promoter, where one state has repressor1832

bound and the other produces transcriptional bursts as above. A schematic of this model is1833

shown as model 5 in Figure 1(C). Although now we have an equation for each promoter state,1834

otherwise the master equation reads similarly to the one-state case, except with additional1835

terms corresponding to transitions between promoter states, namely1836

d

dt
pR(m, t) = k

+
R
pA(m, t)� k

�
R
pR(m, t) + (m+ 1)�pR(m+ 1, t)�m�pR(m, t), (S174)

and1837

d

dt
pA(m, t) = �k+

R
pA(m, t) + k

�
R
pR(m, t) + (m+ 1)�pA(m+ 1, t)�m�pA(m, t)

�kipA(m, t) + ki

mX

m0=0

✓(1� ✓)m�m
0
pA(m

0
, t),

(S175)

where pR(m, t) is the probability of the system having m mRNA copies and having repressor1838

bound to the promoter at time t, and pA is an analogous probability to find the promoter1839

without repressor bound. kR+ and k
�
R
are, respectively, the rates at which repressors bind1840

and unbind to and from the promoter, and � is the mRNA degradation rate. ki is the rate1841

at which bursts initiate, and as before, the geometric distribution of burst sizes has mean1842

b = (1� ✓)/✓.1843

Interestingly, it turns out that this problem maps exactly onto the three-stage promoter1844

model considered by Shahrezaei and Swain in [20], with relabelings. Their approximate1845

solution for protein distributions amounts to the same approximation we make here in re-1846

garding the duration of mRNA synthesis bursts as instantaneous, so their solution for protein1847

distributions also solves our problem of mRNA distributions. Let us examine the analogy1848

more closely. They consider a two-state promoter, as we do here, but they model mRNA as1849

being produced one at a time and degraded, with rates v0 and d0. Then they model transla-1850

tion as occurring with rate v1, and protein degradation with rate d1 as shown in Figure S4.1851

Now consider the limit where v1, d0 !1 with their ratio v1/d0 held constant. v1/d0 resem-1852

bles the average burst size of translation from a single mRNA: these are the rates of two1853

Poisson processes that compete over a transcript, which matches the story of geometrically1854

distributed burst sizes. In other words, in our bursty promoter model we can think of the1855

parameter ✓ as determining one competing process to end the burst and (1� ✓) as a process1856

wanting to continue the burst. So after taking this limit, on timescales slow compared to1857

v1 and d0, it appears that transcription events fire at rate v0 and produce a geometrically1858

distributed burst of translation of mean size v1/d0, which intuitively matches the story we1859

have told above for mRNA with variables relabeled.1860

To verify this intuitively conjectured mapping between our problem and the solution in [20],1861

we continue with a careful solution for the mRNA distribution using probability generating1862

functions, following the ideas sketched in [20]. It is natural to nondimensionalize rates in the1863
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﻿Shahrezaei & Swain
three stage promoter
﻿Shahrezaei & Swain

three stage promoter

Figure S4. Schematic of three-stage promoter from [20]. Adapted from Shahrezaei &
Swain [20]. In their paper they derive a closed form solution for the protein distribution. Our
two-state bursty promoter at the mRNA level can be mapped into their solution with some
relabeling.

problem by �, or equivalently, this amounts to measuring time in units of ��1. We are also1864

only interested in steady state, so we set the time derivatives to zero, giving1865

0 = k
+
R
pA(m)� k

�
R
pR(m) + (m+ 1)pR(m+ 1)�mpR(m), (S176)

and1866

0 = �k+
R
pA(m) + k

�
R
pR(m) + (m+ 1)pA(m+ 1)�mpA(m)

�kipA(m) + ki

mX

m0=0

✓(1� ✓)m�m
0
pA(m

0),
(S177)

where for convenience we kept the same notation for all rates, but these are now expressed1867

in units of mean mRNA lifetime �
�1.1868

The probability generating function is defined as before in the constitutive case, except now1869

we must introduce a generating function for each promoter state,1870

fA(z) =
1X

m=0

z
m
pA(m), fR(z) =

1X

m=0

z
m
pR(m). (S178)

Our real objective is the generating function f(z) that generates the mRNA distribution1871

p(m), independent of what state the promoter is in. But since p(m) = pA(m) + pR(m), it1872

follows too that f(z) = fA(z) + fR(z).1873

As before we multiply both equations by z
m and sum over all m. Each individual term1874

transforms exactly as did an analogous term in the constitutive case, so the coupled ODEs1875

for the generating functions read1876

0 = k
+
R
fA(z)� k

�
R
fR(z) +

@

@z
fR(z)� z

@

@z
fR(z), (S179)

and1877

0 =� k
+
R
fA(z) + k

�
R
fR(z) +

@

@z
fA(z)� z

@

@z
fA(z)

� kifA(z) + ki
✓

1� z(1� ✓)
fA(z),

(S180)

67



and after changing variables ⇠ = 1� ✓ as before and rearranging, we have1878

0 = k
+
R
fA(z)� k

�
R
fR(z) + (1� z)

@

@z
fR(z) (S181)

0 = �k
+
R
fA(z) + k

�
R
fR(z) + (1� z)

@

@z
fA(z) + ki

(z � 1)⇠

1� z⇠
fA(z), (S182)

We can transform this problem from two coupled first-order ODEs to a single second-order1879

ODE by solving for fA in the first and plugging into the second, giving1880

0 = (1� z)
@fR

@z
+

1� z

k
+
R

✓
k
�
R

@fR

@z
+

@fR

@z
+ (z � 1)

@
2
fR

@z2

◆

+
ki

k
+
R

(z � 1)⇠

1� z⇠

✓
k
�
R
fR + (z � 1)

@fR

@z

◆
,

(S183)

where, to reduce notational clutter, we have dropped the explicit z dependence of fA and1881

fR. Simplifying we have1882

0 =
@
2
fR

@z2
�

✓
ki⇠

1� z⇠
+

1 + k
�
R
+ k

+
R

1� z

◆
@fR

@z
+

kik
�
R
⇠

(1� z⇠)(1� z)
fR. (S184)

This can be recognized as the hypergeometric di↵erential equation, with singularities at1883

z = 1, z = ⇠
�1, and z = 1. The latter can be verified by a change of variables from z to1884

x = 1/z, being careful with the chain rule, and noting that z =1 is a singular point if and1885

only if x = 1/z = 0 is a singular point.1886

The standard form of the hypergeometric di↵erential equation has its singularities at 0, 1,1887

and 1, so to take advantage of the standard form solutions to this ODE, we first need1888

to transform variables to put it into a standard form. However, this is subtle. While any1889

such transformation should work in principle, the solutions are expressed most simply in the1890

neighborhood of z = 0, but the normalization condition that we need to enforce corresponds1891

to z = 1. The easiest path, therefore, is to find a change of variables that maps 1 to 0, 1 to1892

1, and ⇠
�1 to 1. This is most intuitively done in two steps.1893

First map the z = 1 singularity to 0 by the change of variables v = z � 1, giving1894

0 =
@
2
fR

@v2
+

✓
ki⇠

(1 + v)⇠ � 1
+

1 + k
�
R
+ k

+
R

v

◆
@fR

@v
+

kik
�
R
⇠

((1 + v)⇠ � 1)v
fR. (S185)

Now two singularities are at v = 0 and v =1. The third is determined by (1+ v)⇠� 1 = 0,1895

or v = ⇠
�1
� 1. We want another variable change that maps this third singularity to 11896

(without moving 0 or infinity). Changing variables again to w = v

⇠�1�1 = ⇠

1�⇠
v fits the bill.1897

In other words, the combined change of variables1898

w =
⇠

1� ⇠
(z � 1) (S186)

maps z = {1, ⇠�1
,1} to w = {0, 1,1} as desired. Plugging in, being mindful of the chain1899

rule and noting (1 + v)⇠ � 1 = (1� ⇠)(w � 1) gives1900

0 =

✓
⇠

1� ⇠

◆2
@
2
fR

@w2
+

✓
⇠ki

(1� ⇠)(w � 1)
+

⇠(1 + k
�
R
+ k

+
R
)

(1� ⇠)w
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⇠
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@fR
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+
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�
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⇠
2

(1� ⇠)2w(w � 1)
fR.

(S187)
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This is close to the standard form of the hypergeometric di↵erential equation, and some1901

cancellation and rearrangement gives1902

0 = w(w � 1)
@
2
fR

@w2
+
�
kiw + (1 + k

�
R
+ k

+
R
)(w � 1)

� @fR
@w

+ kik
�
R
fR. (S188)

and a little more algebra produces1903

0 = w(1� w)
@
2
fR

@w2
+
�
1 + k

�
R
+ k

+
R
� (1 + ki + k

�
R
+ k

+
R
)w
� @fR
@w
� kik

�
R
fR, (S189)

which is the standard form. From this we can read o↵ the solution in terms of hypergeometric1904

functions 2F1 from any standard source, e.g. [21], and identify the conventional parameters1905

in terms of our model parameters. We want the general solution in the neighborhood of1906

w = 0 (z = 1), which for a homogeneous linear second order ODE must be a sum of two1907

linearly independent solutions. More precisely,1908

fR(w) = C
(1)

2F1(↵, �, �;w) + C
(2)
w

1��
2F1(1 + ↵� �, 1 + � � �, 2� �;w) (S190)

with parameters determined by1909

↵� = kik
�
R

1 + ↵ + � = 1 + ki + k
�
R
+ k
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R

� = 1 + k
�
R
+ k

+
R

(S191)

and constants C
(1) and C

(2) to be set by boundary conditions. Solving for ↵ and �, we1910

find1911
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)2 � 4kik

�
R

◆

� =
1

2

✓
ki + k

�
R
+ k

+
R
�

q
(ki + k

�
R
+ k

+
R
)2 � 4kik
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�
R
+ k

+
R
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(S192)

Note that ↵ and � are interchangeable in the definition of 2F1 and di↵er only in the sign1912

preceding the radical. Since the normalization condition requires that fR be finite at w = 0,1913

we can immediately set C
(2) = 0 to discard the second solution. This is because all the1914

rate constants are strictly positive, so � > 1 and therefore w
1�� blows up as w ! 0. Now1915

that we have fR, we would like to find the generating function for the mRNA distribution,1916

f(z) = fA(z) + fR(z). We can recover fA from our solution for fR, namely1917

fA(z) =
1

k
+
R

✓
k
�
R
fR(z) + (z � 1)

@fR

@z

◆
(S193)

or1918

fA(w) =
1

k
+
R

✓
k
�
R
fR(w) + w

@fR

@w

◆
, (S194)
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where in the second line we transformed our original relation between fR and fA to our new,1919

more convenient, variable w. Plugging our solution for fR(w) = C
(1)

2F1(↵, �, �;w) into fA,1920

we will require the di↵erentiation rule for 2F1, which tells us1921

@fR

@w
= C

(1)↵�

�
2F1(↵ + 1, � + 1, � + 1;w), (S195)

from which it follows that1922

fA(w) =
C

(1)

k
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R
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�
R2F1(↵, �, �;w) + w

↵�

�
2F1(↵ + 1, � + 1, � + 1;w)

◆
(S196)

and therefore1923

f(w) = C
(1)

✓
1 +

k
�
R

k
+
R

◆
2F1(↵, �, �;w) + w

C
(1)

k
+
R

↵�

�
2F1(↵ + 1, � + 1, � + 1;w). (S197)

To proceed, we need one of the (many) useful identities known for hypergeometric functions,1924

in particular1925

w
↵�

�
2F1(↵ + 1, � + 1, � + 1;w) = (� � 1) (2F1(↵, �, � � 1;w)� 2F1(↵, �, �;w)) . (S198)

Substituting this for the second term in f(w), we find1926

f(w) =
C

(1)

k
+
R

⇥�
k
+
R
+ k

�
R

�
2F1(↵, �, �;w) + (� � 1) (2F1(↵, �, � � 1;w)� 2F1(↵, �, �;w))

⇤
,

(S199)
and since � � 1 = k

+
R
+ k

�
R
, the first and third terms cancel, leaving only1927

f(w) = C
(1)k

+
R
+ k

�
R

k
+
R

2F1(↵, �, � � 1;w). (S200)

Now we enforce normalization, demanding f(w = 0) = f(z = 1) = 1. 2F1(↵, �, �� 1; 0) = 1,1928

so we must have C
(1) = k

+
R
/(k+

R
+ k

�
R
) and consequently1929

f(w) = 2F1(↵, �, k
+
R
+ k

�
R
;w). (S201)

Recalling that the mean burst size b = (1� ✓)/✓ = ⇠/(1� ⇠) and w = ⇠

1�⇠
(z� 1) = b(z� 1),1930

we can transform back to the original variable z to find the tidy result1931

f(z) = 2F1(↵, �, k
+
R
+ k

�
R
; b(z � 1)), (S202)

with ↵ and � given above by1932

↵ =
1

2
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�
R
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+
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+
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�
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+
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)2 � 4kik

�
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�
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q
(ki + k

�
R
+ k

+
R
)2 � 4kik

�
R

◆
.
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70



Finally we are in sight of the original goal. We can generate the steady-state probability1933

distribution of interest by di↵erentiating the generating function,1934

p(m) = m!
@
m

@zm
f(z)

����
z=0

, (S204)

which follows easily from its definition. Some contemplation reveals that repeated application1935

of the derivative rule used above will produce products of the form ↵(↵+1)(↵+2) · · · (↵+m�1936

1) in the expression for p(m) and similarly for � and �. These resemble ratios of factorials,1937

but since ↵, �, and � are not necessarily integer, we should express the ratios using gamma1938

functions instead. More precisely, one finds1939

p(m) =
�(↵ +m)�(� +m)�(k+

R
+ k

�
R
)

�(↵)�(�)�(k+
R
+ k

�
R
+m)

b
m

m!
2F1(↵ +m, � +m, k

+
R
+ k

�
R
+m;�b) (S205)

which is finally the probability distribution we sought to derive.1940

S2.3 Numerical considerations and recursion formulas1941

S2.3.1 Generalities1942

We would like to carry out Bayesian parameter inference on FISH data from [14], us-1943

ing Eq. (S205) as our likelihood. This requires accurate (and preferably fast) numerical1944

evaluation of the hypergeometric function 2F1, which is a notoriously hard problem [22],1945

[23], and our particular needs here present an especial challenge as we show below.1946

The hypergeometric function is defined by its Taylor series as

2F1(a, b, c; z) =
1X

l=0

�(a+ l)�(b+ l)�(c)

�(a)�(b)�(c+ l)

z
l

l!
(S206)

for |z| < 1, and by analytic continuation elsewhere. If z . 1/2 and ↵ and � are not too large1947

(absolute value below 20 or 30), then the series converges quickly and an accurate numerical1948

representation is easily computed by truncating the series after a reasonable number of terms.1949

Unfortunately, we need to evaluate 2F1 over mRNA copy numbers fully out to the tail of the1950

distribution, which can easily reach 50, possibly 100. From Eq. (S205), this means evaluating1951

2F1 repeatedly for values of a, b, and c spanning the full range from O(1) to O(102), even1952

if ↵, �, and � in Eq. (S205) are small, with the situation even worse if they are not small.1953

A naive numerical evaluation of the series definition will be prone to overflow and, if any of1954

a, b, c < 0, then some successive terms in the series have alternating signs which can lead to1955

catastrophic cancellations.1956

One solution is to evaluate 2F1 using arbitrary precision arithmetic instead of floating point1957

arithmetic, e.g., using the mpmath library in Python. This is accurate but incredibly slow1958

computationally. To quantify how slow, we found that evaluating the likelihood defined1959

by Eq. (S205) ⇠ 50 times (for a typical dataset of interest from [14], with m values spanning1960

0 to ⇠ 50) using arbitrary precision arithmetic is 100-1000 fold slower than evaluating a1961

negative binomial likelihood for the corresponding constitutive promoter dataset.1962
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To claw back & 30 fold of that slowdown, we can exploit one of the many catalogued symme-1963

tries involving 2F1. The solution involves recursion relations originally explored by Gauss,1964

and studied extensively in [22], [23]. They are sometimes known as contiguous relations1965

and relate the values of any set of 3 hypergeometric functions whose arguments di↵er by1966

integers. To rephrase this symbolically, consider a set of hypergeometric functions indexed1967

by an integer n,1968

fn = 2F1(a+ ✏in, b+ ✏jn, c+ ✏kn; z), (S207)

for a fixed choice of ✏i, ✏j, ✏k 2 {0,±1} (at least one of ✏i, ✏j, ✏k must be nonzero, else the set1969

of fn would contain only a single element). Then there exist known recurrence relations of1970

the form1971

Anfn�1 +Bnfn + Cnfn+1 = 0, (S208)

whereAn, Bn, and Cn are some functions of a, b, c, and z. In other words, for fixed ✏i, ✏j, ✏k, a, b,1972

and c, if we can merely evaluate 2F1 twice, say for n
0 and n

0
� 1, then we can easily and1973

rapidly generate values for arbitrary n.1974

This provides a convenient solution for our problem: we need repeated evaluations of 2F1(a+1975

m, b + m, c + m; z) for fixed a, b, and c and many integer values of m. They idea is that1976

we can use arbitrary precision arithmetic to evaluate 2F1 for just two particular values of m1977

and then generate 2F1 for the other 50-100 values of m using the recurrence relation. In fact1978

there are even more sophisticated ways of utilizing the recurrence relations that might have1979

netted another factor of 2 speed-up, and possibly as much as a factor of 10, but the method1980

described here had already reduced the computation time to an acceptable O(1 min), so1981

these more sophisticated approaches did not seem worth the time to pursue.1982

However, there are two further wrinkles. The first is that a naive application of the recurrence1983

relation is numerically unstable. Roughly, this is because the three term recurrence relations,1984

like second order ODEs, admit two linearly independent solutions. In a certain eigenbasis,1985

one of these solutions dominates the other as n ! 1, and as n ! �1, the dominance is1986

reversed. If we fail to work in this eigenbasis, our solution of the recurrence relation will be1987

a mixture of these solutions and rapidly accumulate numerical error. For our purposes, it1988

su�ces to know that the authors of [23] derived the numerically stable solutions (so-called1989

minimal solutions) for several possible choices of ✏i, ✏j, ✏k. Running the recurrence in the1990

proper direction using a minimal solution is numerically robust and can be done entirely1991

in floating point arithmetic, so that we only need to evaluate 2F1 with arbitrary precision1992

arithmetic to generate the seed values for the recursion.1993

The second wrinkle is a corollary to the first. The minimal solutions are only minimal for1994

certain ranges of the argument z, and not all of the 26 possible recurrence relations have1995

minimal solutions for all z. This can be solved by using one of the many transformation1996

formulae for 2F1 to convert to a di↵erent recurrence relation that has a minimal solution1997

over the required domain of z, although this can require some trial and error to find the1998

right transformation, the right recurrence relation, and the right minimal solution.1999
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S2.3.2 Particulars2000

Let us now demonstrate these generalities for our problem of interest. In order to evaluate2001

the probability distribution of our model, Eq. (S205), we need to evaluate hypergeometric2002

functions of the form 2F1(↵+m, �+m, �+m;�b) for values of m ranging from 0 to O(100).2003

The authors of [23] did not derive a recursion relation for precisely this case. We could follow2004

their methods and do so ourselves, but it is much easier to convert to a case that they did2005

consider. The strategy is to look through the minimal solutions tabulated in [23] and search2006

for a transformation we could apply to 2F1(↵ +m, � +m, � +m;�b) that would place the2007

m’s (the variable being incremented by the recursion) in the same arguments of 2F1 as the2008

minimal solution. After some “guess and check,” we found that the transformation2009

2F1(↵ +m, � +m, � +m;�b) = (1 + b)�↵�m
2F1

✓
↵ +m, � � �, � +m;

b

1 + b

◆
, (S209)

produces a 2F1 on the right hand side that closely resembles the minimal solutions y3,m and2010

y4,m in Eq. 4.3 in [23]. Explicitly, these solutions are2011

y3,m / 2F1 (�↵
0 + �

0
�m,��

0 + �
0
, 1� ↵

0
� �

0 + �
0
�m; 1� z) (S210)

y4,m / 2F1 (↵
0 +m, �

0
, 1 + ↵

0 + �
0
� �

0 +m; 1� z) , (S211)

where we have omitted prefactors which are unimportant for now. Which of these two we2012

should use depends on what values z takes on. Equating 1�z = b/(1+b) gives z = 1/(1+b),2013

and since b is strictly positive, z is bounded between 0 and 1. From Eq. 4.5 in [23], y4,m is2014

the minimal solution for real z satisfying 0 < z < 2, so this is the only minimal solution we2015

need.2016

Now that we have our minimal solution, what recurrence relation does it satisfy? Confusingly,2017

the recurrence relation of which y4,m is a solution increments di↵erent arguments of 2F1 that2018

does y4,m: it increments the first only, rather than first and third. This recurrence relation2019

can be looked up, e.g., Eq. 15.2.10 in [21], which is2020

(�0 � (↵0 +m))fm�1 + (2(↵0 +m)� �
0 + (�0

� ↵
0)z)fm + ↵

0(z � 1)fm+1 = 0. (S212)

Now we must solve for the parameters appearing in the recurrence relation in terms of our2021

parameters, namely by setting2022

↵
0 = ↵

�
0 = � � �

1 + ↵
0 + �

0
� �

0 = �

1� z =
b

1 + b

(S213)

and solving to find2023

↵
0 = ↵

�
0 = � � �

�
0 = 1 + ↵� �

z =
1

1 + b
.

(S214)
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Finally we have everything we need. The minimal solution2024

y4,m =
�(1 + ↵

0
� �

0 +m)

�(1 + ↵0 + �0 � �0 +m)
⇥ 2F1 (↵

0 +m, �
0
, 1 + ↵

0 + �
0
� �

0 +m; 1� z) , (S215)

where we have now included the necessary prefactors, is a numerically stable solution of the2025

recurrence relation Eq. (S212) if the recursion is run from large m to small m.2026

Let us finally outline the complete procedure as an algorithm to be implemented:2027

1. Compute the value of 2F1 for the two largest m values of interest using arbitrary2028

precision arithmetic.2029

2. Compute the prefactors to construct y4,max(m) and y4,max(m)�1.2030

3. Recursively compute y4,m for all m less than max(m) down to m = 0.2031

4. Cancel o↵ the prefactors of the resulting values of y4,m for all m to produce 2F1 for all2032

desired m values.2033

With 2F1 computed, the only remaining numerical danger in computing p(m) in Eq. (S205)2034

is overflow of the gamma functions. This is easily solved by taking the log of the entire2035

expression and using standard routines to compute the log of the gamma functions, then2036

exponentiating the entire expression at the end if p(m) is needed rather than log p(m).2037

S3 Bayesian inference2038

S3.1 The problem of parameter inference2039

One could argue that the whole goal of formulating theoretical models about nature is to2040

sharpen our understanding from qualitative statements to precise quantitative assertions2041

about the relevant features of the natural phenomena in question [24]. It is in these models2042

that we intend to distill the essential parts of the object of study. Writing down such2043

models leads to a propagation of mathematical variables that parametrize our models. By2044

assigning numerical values to these parameters we can compute concrete predictions that2045

can be contrasted with experimental data. For these predictions to match the data the2046

parameter values have to carefully be chosen from the whole parameter space. But how2047

do we go about assessing the e↵ectiveness of di↵erent regions of parameter space to speak2048

to the ability of our model to reproduce the experimental observations? The language of2049

probability, and more specifically of Bayesian statistics is –we think– the natural language2050

to tackle this question.2051

S3.1.1 Bayes’ theorem2052

Bayes’ theorem is a simple mathematical statement that can apply to any logical conjecture.2053

For two particular events A and B that potentially depend on each other Bayes’ theorem2054

gives us a recipe for how to update our beliefs about one, let us say B, given some state2055
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of knowledge, or lack thereof, about A. In its most classic form Bayes’ theorem is written2056

as2057

P (B | A) =
P (A | B)P (B)

P (A)
, (S216)

where the vertical line | is read as “given that”. So P (B | A) is read as probability of B2058

given that A took place. A and B can be any logical assertion. In particular the problem2059

of Bayesian inference focuses on the question of finding the probability distribution of a2060

particular parameter value given the data.2061

For a given model with a set of parameters ~✓ = (✓1, ✓2, . . . , ✓n), the so-called posterior2062

distribution P (~✓ | D), where D is the experimental data, quantifies the plausibility of a2063

set of parameter values given our observation of some particular dataset. In other words,2064

through the application of Bayes’ formula we update our beliefs on the possible values that2065

parameters can take upon learning the outcome of a particular experiment. We specify the2066

word “update” as we come to every inference problem with prior information about the2067

plausibility of particular regions of parameter space even before performing any experiment.2068

Even when we claim as researchers that we are totally ignorant about the values that the2069

parameters in our models can take, we always come to a problem with domain expertise that2070

can be exploited. If this was not the case, it is likely that the formulation of our model is2071

not going to capture the phenomena we claim to want to understand. This prior information2072

is captured in the prior probability P (~✓). The relationship between how parameter values2073

can connect with the data is enconded in the likelihood function P (D | ~✓). Our theoretical2074

model, whether deterministic or probabilistic, is encoded in this term that can be intuitively2075

understood as the probability of having observed the particular experimental data we have2076

at hand given that our model is parametrized with the concrete values ~✓. Implicitly here we2077

are also conditioning on the fact that our theoretical model is “true,” i.e. the model itself if2078

evaluated or simulated in the computer is capable of generating equivalent datasets to the2079

one we got to observe in an experiment. In this way Bayesian inference consists of applying2080

Bayes’ formula as2081

P (~✓ | D) / P (D | ~✓)P (~✓). (S217)

Notice than rather than writing the full form of Bayes’ theorem, we limit ourselves to the2082

terms that depend on our quantity of interest –that is the parameter values themselves ~✓–2083

as the denominator P (D) only serves as a normalization constant.2084

We also emphasize that the dichotomy we have presented between prior and likelihood is more2085

subtle. Although it is often stated that our prior knowledge is entirely encapsulated by the2086

obviously named prior probability P (~✓), this is usually too simplistic. The form(s) we choose2087

for our likelihood function P (D | ~✓) also draw heavily on our prior domain expertise and the2088

assumptions, implicit and explicit, that these choices encode are at least as important, and2089

often inseparable from, the prior probability, as persuasively argued in [25].2090

S3.1.2 The likelihood function2091

As we alluded in the previous section it is through the likelihood function P (D | ~✓) that2092

we encode the connection between our parameter values and the experimental observables.2093
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Broadly speaking there are two classes of models that we might need to encode into our2094

likelihood function:2095

• Deterministic models: Models for which a concrete selection of parameter values give2096

a single output. Said di↵erently, models with a one-to-one mapping between inputs2097

and outputs.2098

• Probabilistic models: As the name suggests, models that, rather than having a one-to-2099

one input-output mapping, describe the full probability distribution of possible out-2100

puts.2101

In this paper we focus on inference done with probabilistic models. After all, the chemical2102

master equations we wrote down describe the time evolutions of the mRNA probability2103

distribution. So all our terms P (~✓ | D) will be given by the steady-state solution of the2104

corresponding chemical master equation in question. This is rather convenient as we do not2105

have to worry about adding a statistical model on top of our model to describe deviations2106

from the predictions. Instead our models themselves focus on predicting such variation in2107

cell count.2108

S3.1.3 Prior selection2109

The di↵erent models explored in this work embraced di↵erent levels of coarse-graining that2110

resulted in a diverse number of parameters for di↵erent models. For each of these model2111

configurations Bayes’ theorem demands from us to represent our preconceptions on the2112

possible parameter values in the form of the prior P (~✓). Throughout this work for models2113

with > 1 parameter we assign independent priors to each of the parameters; this is2114

P (~✓) =
nY

i=1

P (✓i). (S218)

Although it is not uncommon practice to use non-informative, or maximally uninformative2115

priors, we are of the mindset that this is a disservice to the philosophical and practical2116

implications of Bayes’ theorem. It sounds almost contradictory to claim that can we represent2117

our thinking about a natural phenomenon in the form of a mathematical model –in the2118

context of Bayesian inference this means choosing a form for the likelihoods, and even making2119

this choice presupposes prior understanding or assumptions as to the relevant features in the2120

system under study– but that we have absolutely no idea what the parameter values could2121

or could not be. We therefore make use of our own expertise, many times in the form of2122

order-of-magnitude estimates, to write down weakly-informative prior distributions for our2123

parameters.2124

For our particular case all of the datasets from [14] used in this paper have O(103) data2125

points. What this implies is that our particular choice of priors will not significantly a↵ect2126

our inference as long as they are broad enough. A way to see why this is the case is to simply2127

look at Bayes’ theorem. For N 1000� 3000 datum all of the independent of each other and2128
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n⌧ 103 parameters Bayes’ theorem reads as2129

P (~✓ | D) /
NY

k=1

P (dk | ~✓)
nY

i=1

P (✓i), (S219)

where dk represents the k-th datum. That means that if our priors span a wide range2130

of parameter space, the posterior distribution would be dominated by the likelihood func-2131

tion.2132

S3.1.4 Expectations and marginalizations2133

For models with more than one or two parameters, it is generally di�cult to visualize or2134

reason about the full joint posterior distribution P (~✓ | D) directly. One of the great powers2135

of Bayesian analysis is marginalization, allowing us to reduce the dimensionality to only the2136

parameters of immediate interest by averaging over the other dimensions. Formally, for a2137

three dimensional model with parameters ✓1, ✓2, and ✓3, we can for instance marginalize2138

away ✓3 to produce a 2D posterior as2139

P (✓1, ✓2 | D) /

Z

✓3

d✓3 P (✓1, ✓2, ✓3 | D), (S220)

or we can marginalize away ✓1 and ✓3 to produce the 1D marginal posterior of ✓2 alone,2140

which would be2141

P (✓2 | D) /

Z

✓1

d✓1

Z

✓3

d✓3 P (✓1, ✓2, ✓3 | D). (S221)

Conceptually, this is what we did in generating the 2D slices of the full 9D model in Fig-2142

ure 4(A). In practice, this marginalization is even easier with Markov Chain Monte Carlo2143

samples in hand. Since each point is simply a list of parameter values, we simply ignore the2144

parameters which we want to marginalize away [26].2145

S3.1.5 Markov Chain Monte Carlo2146

The theory and practice of Bayesian inference with Markov Chain Monte Carlo (MCMC) is2147

a rich subject with fascinating and deep analogies to statistical mechanics, even drawing on2148

classical Hamiltonian mechanics and general relativity in its modern incarnations. We refer2149

the interested reader to [26] and [27] for excellent introductions. Here we merely give a brief2150

summary of the MCMC computations carried out in this work.2151

We used the Python package emcee for most of the MCMC sampling in this work. For2152

the constitutive promoter inference, we also ran sampling with the excellent Stan modeling2153

language as a check. We did not use Stan for the inference of the simple repression model be-2154

cause implementing the gradients of the hypergeometric function 2F1 appearing in Eq. S205,2155

the probability distribution for our bursty model with repression, would have been an im-2156

mensely challenging task. emcee was more than adequate for our purposes, and we were2157

perhaps lucky that the 9-D posterior model for the model of simple repression with bursty2158

promoter was quite well behaved and did not require the extra power of the Hamiltonian2159

Monte Carlo algorithm provided by Stan [28]. Source code for all statistical inference will2160

be made available at https://github.com/RPGroup-PBoC/bursty_transcription.2161
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S3.2 Bayesian inference on constitutive promoters2162

Having introduced the ideas behind Bayesian inference we are ready to apply the theoretical2163

machinery to our non-equilibrium models. In particular in this section we will focus on2164

model 1 and model 5 in Figure 2(A). Model 1, the Poisson promoter, will help us build2165

practical intuition into the implementation of the Bayesian inference pipeline. As we noted2166

in Section 3 of the main text, this model cannot be reconciled with experimental data from2167

observables such as the Fano factor. In other words, we acknowledge that this model is2168

“wrong,” but we still see value in going through the analysis since the simple nature of the2169

model translates into a neat statistical analysis.2170

S3.2.1 Model 1 - Poisson promoter2171

Model 1 in Figure 2(A) predicts a mRNA distribution whose steady-state solution is given by2172

a Poisson distribution with parameter � ⌘ r/�, where r is the mRNA production rate, and2173

� is the mRNA degradation rate [2]. The goal of our inference problem is then to find the2174

probability distribution for the parameter value � given the experimental data. By Bayes’2175

theorem this can be written as2176

p(� | D) =
p(D | �)p(�)

p(D)
, (S222)

where D = {m1,m2, . . . ,mN} are the single-cell mRNA experimental counts. As is standard2177

we will neglect the denominator p(D) on the right hand side since it is independent of � and2178

serves only as a normalization factor.2179

The steady-state solution for the master equation defines the likelihood term for a single2180

cell p(m | �). What this means is that for a given choice of parameter �, under model 1 of2181

Figure 2(A), we expect to observe m mRNAs in a single cell with probability2182

p(m | �) =
�
m
e
��

m!
. (S223)

Assuming each cell’s mRNA count in our dataset is independent of others, the likelihood of2183

the full inference problem p(D | �) is simply a product of the single cell likelihoods given by2184

Eq. S223 above, so2185

p(D | �) =
NY

k=1

�
mke

��

mk!
. (S224)

Throughout this Appendix we will appeal to the convenient notation for probability distri-2186

butions of the form2187

m ⇠ Poisson(�), (S225)

where the symbol “⇠” can be read as is distributed according to. So the previous equation2188

can be read as: the mRNA copy number m is distributed according to a Poisson distribution2189

with parameter �. Our objective then is to compute the posterior probability distribution2190

P (� | D), where, as in the main text, D = {m1,m2, . . . ,mN} are the data consisting of2191

single-cell mRNA counts. Since we can assume that each of the cells mRNA counts are2192
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independent of any other cells, our likelihood function P (D | �) consists of the product of2193

N Poisson distributions.2194

To proceed with the inference problem we need to specify a prior. In this case we are2195

extremely data-rich, as the dataset from Jones et. al [14] has of order 1000-3000 single-cell2196

measurements for each promoter, so our choice of prior matters little here, as long as it2197

is su�ciently broad. A convenient choice for our problem is to use a conjugate prior. A2198

conjugate prior is a special prior that causes the posterior to have the same functional form2199

as the prior, simply with updated model parameters. This makes calculations analytically2200

tractable and also o↵ers a nice interpretation of the inference procedure as updating our2201

knowledge about the model parameters. This makes conjugate priors very useful when they2202

exist. The caveat is that conjugate priors only exist for a very limited number of likelihoods,2203

mostly with only one or two model parameters, so in almost all other Bayesian inference2204

problems, we must tackle the posterior numerically.2205

But, for the problem at hand, a conjugate prior does in fact exist. For a Poisson likelihood2206

of identical and identically distributed data, the conjugate prior is a gamma distribution,2207

as can be looked up in, e.g., [26], Section 2.6. Putting a gamma prior on � introduces two2208

new parameters ↵ and � which parametrize the gamma distribution itself, which we use to2209

encode the range of � values we view as reasonable. Recall � is the mean steady-state mRNA2210

count per cell, which a priori could plausibly be anywhere from 0 to a few hundred. ↵ = 12211

and � = 1/50 achieve this, since the gamma distribution is strictly positive with mean ↵/�2212

and standard deviation
p
↵/�. To be explicit, then, our prior is2213

� ⇠ Gamma(↵, �) (S226)

As an aside, note that if we did not know that our prior was a conjugate prior, we could still2214

write down our posterior distribution from its definition as2215

p(� | D,↵, �) / p(D | �)p(� | ↵, �) /

 
NY

k=1

�
mke

��

mk!

!
�

�(↵)
(��)↵�1

e
���

. (S227)

Without foreknowledge that this in fact reduces to a gamma distribution, this expression2216

might appear rather inscrutable. When conjugate priors are unavailable for the likelihood2217

of interest - which is almost always the case for models with > 1 model parameter - this2218

inscrutability is the norm, and making sense of posteriors analytically is almost always2219

impossible. Fortunately, MCMC sampling provides us a powerful method of constructing2220

posteriors numerically which we will make use of extensively.2221

Since we did use a conjugate prior, we may simply look up our posterior in any standard2222

reference such as [26], Section 2.6, from which we find that2223

� ⇠ Gamma (↵ + m̄N, � +N) , (S228)

where we defined the sample mean m̄ = 1
N

P
k
mk for notational convenience. A glance at2224

the FISH data from [14] reveals that N is O(103) and hmi & 0.1 for all constitutive strains2225

in [14], so m̄N & 102. Therefore as we suspected, our prior parameters are completely2226
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overwhelmed by the data. The prior behaves, in a sense, like � extra “data points” with a2227

mean value of (↵ � 1)/� [26], which gives us some intuition for how much data is needed2228

to overwhelm the prior in this case: enough data N such that � ⌧ N and ↵/� ⌧ m̄. In2229

fact, m̄N and N are so large that we can, to an excellent approximation, ignore the ↵ and2230

� dependence and approximate the gamma distribution as a Gaussian with mean m̄ and2231

standard deviation
p
m̄/N , giving2232

� ⇠ Gamma (↵ + m̄N, � +N) ⇡ Normal

 
m̄,

r
m̄

N

!
. (S229)

As an example with real numbers, for the lacUV5 promoter, Jones et. al [14] measured 26482233

cells with an average mRNA count per cell of m̄ ⇡ 18.7. In this case then, our posterior2234

is2235

� ⇠ Normal (18.7, 0.08) , (S230)

which suggests we have inferred our model’s one parameter to a precision of order 1%.2236

This is not wrong, but it is not the full story. The model’s posterior distribution is tightly2237

constrained, but is it a good generative model? In other words, if we use the model to2238

generate synthetic data in the computer does it generate data that look similar to our actual2239

data, and is it therefore plausible that the model captures the important features of the data2240

generating process? This intuitive notion can be codified with posterior predictive checks, or2241

PPCs, and we will see that this simple Poisson model fails badly.2242

The intuitive idea of posterior predictive checks is simple:2243

1. Make a random draw of the model parameter � from the posterior distribution.2244

2. Plug that draw into the likelihood and generate a synthetic dataset {mk} conditioned2245

on �.2246

3. Repeat many times.2247

More formally, the posterior predictive distribution can be thought of as the distribution of2248

future yet-to-be-observed data, conditioned on the data we have already observed. Clearly if2249

those data appear quite di↵erent, the model has a problem. Put another way, if we suppose2250

the generative model is true, i.e. we claim that our model explains the process through2251

which our observed experimental data was generated, then the synthetic datasets we generate2252

should resemble the actual observed data. If this is not the case, it suggests the model is2253

missing important features. All the data we consider in this work are 1D (distributions2254

of mRNA counts over a population) so empirical cumulative distribution functions ECDFs2255

are an excellent visual means of comparing synthetic and observed datasets. In general for2256

higher dimensional datasets, much of the challenge is in merely designing good visualizations2257

that can actually show if synthetic and observed data are similar or not.2258

For our example Poisson promoter model then, we merely draw many random numbers, say2259

1000, from the Gaussian posterior in Eq. S230. For each one of those draws, we generate a2260

dataset from the likelihood, i.e., we draw 2648 (the number of observed cells in the actual2261
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dataset) Poisson-distributed numbers for each of the 1000 posterior draws, for a total of2262

2648000 samples from the posterior predictive distribution.2263

To compare so many samples with the actual observed data, one excellent visualization for2264

1D data is ECDFs of the quantiles, as shown for our Poisson model in Figure 3(B) in the2265

main text.2266

S3.2.2 Model 5 - Bursty promoter2267

Let us now consider the problem of parameter inference from FISH data for model five2268

from Figure 1(C). As derived in Appendix S2, the steady-state mRNA distribution in this2269

model is a negative binomial distribution, given by2270

p(m) =
�(m+ ki)

�(m+ 1)�(ki)

✓
1

1 + b

◆ki
✓

b

1 + b

◆m

, (S231)

where b is the mean burst size and ki is the burst rate nondimensionalized by the mRNA2271

degradation rate �. As sketched earlier, we can intuitively think about this distribution2272

through a simple story. The story of this distribution is that the promoter undergoes2273

geometrically-distributed bursts of mRNA, where the arrival of bursts is a Poisson process2274

with rate ki and the mean size of a burst is b.2275

As for the Poisson promoter model, this expression for the steady-state mRNA distribution2276

is exactly the likelihood we want to use in Bayes’ theorem. Again denoting the single-cell2277

mRNA count data as D = {m1,m2, . . . ,mN}, here Bayes’ theorem takes the form2278

p(ki, b | D) / p(D | ki, b)p(ki, b), (S232)

where the likelihood p(D | ki, b) is given by the product of N negative binomials as in2279

Eq. S231. We only need to choose priors on ki and b. For the datasets from [14] that we2280

are analyzing, as for the Poisson promoter model above we are still data-rich so the prior’s2281

influence remains weak, but not nearly as weak because the dimensionality of our model has2282

increased from one to two.2283

We follow the guidance of [26], Section 2.9 in opting for weakly-informative priors on ki and b2284

(conjugate priors do not exist for this problem), and we find “street-fighting estimates” [29]2285

to be an ideal way of constructing such priors. The idea of weakly informative priors is2286

to allow all remotely plausible values of model parameters while excluding the completely2287

absurd or unphysical.2288

Consider ki. Some of the strongest known bacterial promoters control rRNA genes and2289

initiate transcripts no faster than ⇠ 1/sec. It would be exceedingly strange if any of the2290

constitutive promoters from [14] were stronger than that, so we can take that as an upper2291

bound. For a lower bound, if transcripts are produced too rarely, there would be nothing2292

to see with FISH. The datasets for each strain contain of order 103 cells, and if the hmi =2293

kib/� . 10�2, then the total number of expected mRNA detections would be single-digits2294

or less and we would have essentially no data on which to carry out inference. So assuming2295

b is not too di↵erent from 1, justified next, and an mRNA lifetime of ��1
⇠ 3� 5 min, this2296

gives us soft bounds on ki/� of perhaps 10�2 and 3⇥ 101.2297
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Next consider mean burst size b. This parametrization of the geometric distribution allows2298

bursts of size zero (which could representing aborted transcripts and initiations), but it2299

would be quite strange for the mean burst size b to be below ⇠ 10�1, for which nearly all2300

bursts would be of size zero or one. For an upper bound, if transcripts are initiating at a2301

rate somewhat slower than rRNA promoters, then it would probably take a time comparable2302

to the lifetime of an mRNA to produce a burst larger than 10-20 transcripts, which would2303

invalidate the approximation of the model that the duration of bursts are instantaneous2304

compared to other timescales in the problem. So we will take soft bounds of 10�1 and 1012305

for b.2306

Note that the natural scale for these “street-fighting estimates” was a log scale. This is2307

commonly the case that our prior sense of reasonable and unreasonable parameters is set on2308

a log scale. A natural way to enforce these soft bounds is therefore to use a lognormal prior2309

distribution, with the soft bounds set ±2 standard deviations from the mean.2310

With this, we are ready to write our full generative model as2311

ln ki ⇠ Normal(�0.5, 2),

ln b ⇠ Normal(0.5, 1),

m ⇠ NBinom(ki, b).

(S233)

Section 4 in the main text details the results of applying this inference to the single-cell2312

mRNA counts data. There we show the posterior distribution for the two parameters for2313

di↵erent promoters. Figure S5 shows the so-called posterior predictive checks (see main text2314

for explanation) for all 18 unregulated promoters shown in the main text.2315

S3.3 Bayesian inference on the simple-repression architecture2316

As detailed in 4 in the main text the inference on the unregulated promoter served as a2317

stepping stone towards our ultimate goal of inferring repressor rates from the steady-state2318

mRNA distributions of simple-repression architectures. For this we expand the one-state2319

bursty promoter model to a two-state promoter as schematized in Figure 1(C) as model2320

5. This model adds two new parameters: the repressor binding rate k
+, solely function of2321

the repressor concentration, and the repressor dissociation rate k
�, solely a function of the2322

repressor-DNA binding a�nity.2323

The structure of the data in [14] for regulated promoters tuned these two parameters inde-2324

pendently. In their work the production of the LacI repressor was under the control of an2325

inducible promoter regulated by the TetR repressor as schematized in Figure S6. When TetR2326

binds to the small molecule anhydrotetracycline (aTc), it shifts to an inactive conformation2327

unable to bind to the DNA. This translates into an increase in gene expression level. In other2328

words, the higher the concentration of aTc added to the media, the less TetR repressors that2329

can control the expression of the lacI gene, so the higher the concentration of LacI repressors2330

in the cell. So by tuning the amount of aTc in the media where the experimental strains2331

were grown they e↵ectively tune k
+ in our simple theoretical model. On the other hand2332

to tune k
� the authors swap three di↵erent binding sites for the LacI repressor, each with2333

di↵erent repressor-DNA binding a�nities previously characterized [7].2334
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Figure S5. Theory-data comparison of inference on unregulated promoters.
Comparison of the inference (red shaded area) vs the experimental measurements (black lines) for
18 di↵erent unregulated promoters with di↵erent mean mRNA expression levels from Ref. [14].
Upper panels show the empirical cumulative distribution function (ECDF), while the lower panels
show the di↵erences with respect to the median of the posterior samples. White numbers are the
same as in Figure 1 for cross comparison. The predicted binding energies ��"p were obtained
from the energy matrix model in Ref. [30]
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lacI

TetR LacI[aTc]
tetR inducible promoter

controlling expression
of LacI repressor

LacI regulated promoter
from which sm-FISH

measurements were made

Figure S6. aTc controlled expression of LacI repressor. Schematic of the circuit used
in [14] to control the expression of the LacI repressor. The lacI gene is under the control of the
TetR repressor. As the TetR repressor is inactivated upon binding of anhydrotetracycline or aTc,
the more aTc added to the media were cells are growing, the less TetR repressors available to
control the expression of the lacI gene, resulting in more LacI repressors per cell. LacI
simultaneously controls the expression of the mRNA on which single-molecule mRNA FISH was
performed for gene expression quantification.

What this means is that we have access to data with di↵erent combinations of k� and k
+.2335

We could naively try to fit the kinetic parameters individually for each of the datasets, but2336

there is no reason to believe that the binding site identity for the LacI repressor somehow2337

a↵ects its expression level controlled from a completely di↵erent location in the genome,2338

nor vice versa. In other words, what makes the most sense it to fit all datasets together to2339

obtain a single value for each of the association and dissociation rates. What this means,2340

as described in Section 4 of the main text is that we have a seven dimensional parameter2341

space with four possible association rates k
+ given the four available aTc concentrations,2342

and three possible dissociation rates k
� given the three di↵erent binding sites available in2343

the dataset.2344

Formally now, denote the set of seven repressor rates to be inferred as2345

~k = {k
�
Oid

, k
�
O1, k

�
O2, k

+
0.5, k

+
1 , k

+
2 , k

+
10}. (S234)

Note that since the repressor copy numbers are not known directly as explained before, we2346

label their association rates by the concentration of aTc. Bayes theorem reads simply2347

p(~k, ki, b | D) / p(D | ~k, ki, b)p(~k, ki, b), (S235)

where D is the set of all N observed single-cell mRNA counts across the various conditions.2348

We assume that individual single-cell measurements are independent so that the likelihood2349

factorizes as2350

p(D | ~k, ki, b) =
NY

j=1

p(m | ~k, ki, b) =
NY

j=1

p(m | k
+
j
, k

�
j
, ki, b) (S236)

where k
±
j
represent the appropriate binding and unbinding rates for the j-th measured cell.2351

Our likelihood function, previously derived in Appendix S2, is given by the rather compli-2352

cated result in Eq. S205, which for completeness we reproduce here as2353

p(m | k
+
R
, k

�
R
, ki, b) =

�(↵ +m)�(� +m)�(k+
R
+ k

�
R
)

�(↵)�(�)�(k+
R
+ k

�
R
+m)

b
m

m!

⇥ 2F1(↵ +m, � +m, k
+
R
+ k

�
R
+m;�b).

(S237)
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where ↵ and �, defined for notational convenience, are2354

↵ =
1

2

✓
ki + k

�
R
+ k

+
R
+
q
(ki + k

�
R
+ k

+
R
)2 � 4kik

�
R

◆

� =
1

2

✓
ki + k

�
R
+ k

+
R
�

q
(ki + k

�
R
+ k

+
R
)2 � 4kik

�
R

◆
.

(S238)

Next we specify priors. As for the constitutive model, weakly informative lognormal priors2355

are a natural choice for all our rates. We found that if the priors were too weak, our2356

MCMC sampler would often become stuck in regions of parameter space with very low2357

probability density, unable to move. We struck a balance in choosing our prior widths2358

between helping the sampler run while simultaneously verifying that the marginal posteriors2359

for each parameter were not artificially constrained or distorted by the presence of the prior.2360

The only exception to this is the highly informative priors we placed on ki and b, since we2361

have strong knowledge of them from our inference of constitutive promoters above.2362

With priors and likelihood specified we may write down our complete generative model2363

as2364

log10 ki ⇠ Normal(0.725, 0.025)

log10 b ⇠ Normal(0.55, 0.025)

log10 k
+
0.5 ⇠ Normal(�0.45, 0.3)

log10 k
+
1 ⇠ Normal(0.6, 0.3)

log10 k
+
2 ⇠ Normal(1.15, 0.3)

log10 k
+
10 ⇠ Normal(1.5, 0.3)

log10 k
�
Oid
⇠ Normal(�0.25, 0.3)

log10 k
�
O1 ⇠ Normal(0.1, 0.3)

log10 k
�
O2 ⇠ Normal(0.45, 0.3)

m ⇠ Likelihood(k+
R
, k

�
R
, ki, b),

(S239)

where the likelihood is specified by Eq. S237. We ran MCMC sampling on the full nine2365

dimensional posterior specified by this generative model.2366

We found that fitting a single operator/aTc concentration at a time with a single binding2367

and unbinding rate did not yield a stable inference for most of the possible operator/aTc2368

combinations. In other words, a single dataset could not independently resolve the binding2369

and unbinding rates, only their ratio as set by the mean fold-change in Figure 1 in the main2370

text. Only by making the assumption of a single unique binding rate for each repressor copy2371

number and a single unique unbinding rate for each binding site, as done in Figure 4(A),2372

was it possible to independently resolve the rates and not merely their ratios.2373

We also note that we found it necessary to exclude the very weakly and very strongly2374

repressed datasets from Jones et. al. [14]. In both cases there was, in a sense, not enough2375

information in the distributions for our inference algorithm to extract, and their inclusion2376

simply caused problems for the MCMC sampler without yielding any new insight. For the2377
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strongly repressed data (Oid, 10 ng/mL aTc), with > 95% of cells with zero mRNA, there2378

was quite literally very little data from which to infer rates. And the weakly repressed2379

data, all with the repressor binding site O3, had an unbinding rate so fast that the sampler2380

essentially sampled from the prior; the likelihood had negligible influence, meaning the data2381

was not informing the sampler in any meaningful way, so no inference was possible.2382

As suggested by one of our reviewers, in order for readers to judge the agreement between2383

our predictions and the experimental data for the regulated case, we include Figure S7 that2384

plot the same data as Figure 4(C), but rather than showing ECDF, we show histograms of2385

the individual distributions.2386
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