Light-matter interactions in films of randomly distributed unidirectionally scattering dielectric nanoparticles

Parker Wray, and Harry A Atwater

ACS Photonics, Just Accepted Manuscript • DOI: 10.1021/acsphtotonics.0c00545 • Publication Date (Web): 23 Jun 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Light-matter interactions in films of randomly distributed unidirectionally scattering dielectric nanoparticles

Parker R. Wray‡, and Harry A. Atwater, †,*
‡Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
†Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA

KEYWORDS: Kerker Scattering, Random Metamaterials, Polarization Invariance

ABSTRACT: We theoretically investigate the light scattering characteristics of monolayer films composed of randomly positioned unidirectionally scattering dielectric nanoparticles that support overlapping electric and magnetic dipole modes. We show using generalized Mie theory that the optical response of both sparse and dense nanoparticle films can be understood from the scattering properties of the individual dielectric nanoparticles, despite random particle-particle coupling effects, and validate these results with full wave electromagnetic simulations. The spectral, angular, and polarization dependent reflection and transmission scattering characteristics of these random particle films are also shown to be strikingly different from those of homogeneous dense solid thin films of equivalent dielectric permittivity.

Scattering objects made of a high index dielectrics offer the ability to generate low-loss electric and magnetic Mie resonances for light manipulation below the free-space diffraction limit1–7. Of notable interest, the addition of magnetic Mie resonances in spherical dielectric particles enables field distributions not achievable in metal counterparts, which support only resonant electric Mie modes4,5,8–10. This degree of freedom provides a compelling argument for the use of high index dielectrics in next generation metamaterial technologies. For example, overlapping electric and magnetic Mie modes have shown to produce dramatic unidirectional scattering, termed Kerker scattering5,9,11. Through precise particle placement, research in Kerker scattering particle films has shown new ways to design antireflective coatings, reflectors, absorbers, and other wavefront manipulating metasurfaces1,3,6–8,11–17. We expand on this growing body of research by studying the behavior of Kerker metasurfaces composed of randomly positioned but uniformly sized particles. We find the spectral, angular, and polarization response of these random Kerker metasurfaces are dramatically distinct from dense solid thin films of equivalent dielectric permittivity. The particle films exhibit no polarization dependence and transmission and reflection peaks can be directly manipulated through proper design of the constituent particle. The results suggest that random films of Kerker particles could be used in designs of polarization invariant antireflective coatings or reflectors. Notably, random Kerker metasurfaces can be synthesized without the need for precise lithographic patterning, self-assembly, or layer stacking and thus could be fabricated using low-cost deposition methods such as plasma synthesis.

A scattering object with overlapping electric dipole (ED) and magnetic dipole (MD) modes and suppressed higher order modes will have a far field scattering distribution which mimics an idealized point source (i.e., an only forward or backward propagating spherical wavelet) that is described by the Huygens-Fresnel principle18. Objects of this type are characterized by extreme forward-to-backward scattering ratios (FBR) dictated by the phase relationship between the ED and MD modes. They are also characterized by an even distribution in energy between the two modes, which gives rise to polarization invariance; meaning the scattering pattern looks the same in the direction parallel and perpendicular to the electric field11,19. The concept of overlapping electric and magnetic scattering modes was first introduced by Milton Kerker, in the context of elastic scattering from magnetic particles19. For this reason, the unique scattering behavior is often called Kerker scattering.

In recent years there has been rapidly expanding interest in Kerker scattering based on small dielectric particles. Though not magnetic, these particles support spectrally overlapping electric and magnetic dipole modes in the visible wavelength range. This is done by creating an optically-induced magnetic resonance4,5,8–11,15,17,20–22. The use of Kerker particles in the context of antenna arrays has been explored to produce highly directional scattering. Previous research has shown that precise placement of Kerker particles in chains along the plane wave propagation direction can lead to a polarization-invariant scattered far field. Backward reflection could be substantially suppressed and forward directivity and side lobes could be tuned through particle spacing23. Particle clusters have been studied which were shown to collectively exhibit Kerker scattering behavior24–26. Random silicon trimer and quadrimer particle clusters in different orientations were shown to behave like effective Kerker particles26. The magnetic response was attributed to the individual nanoparticle, whereas the electric component was attributed to gap modes between particles26. Films composed of Kerker particles have also been studied in 2D and 3D ordered periodic arrays. Lattices of various types have been studied in the metasurface regime, where the sub-wavelength periodicity produces no diffraction orders, and in
the grating regime where diffraction is present at various orders. This body of work has led to the theoretical predictions and experimental verification of near prefect transmission\(^{27,28}\), reflection\(^{29,30}\), and absorption\(^{11,13}\) in ordered arrays, through particle design and lattice spacing.

In this paper, we show that 2D films of randomly placed Kerker particles also give rise to behavior which cannot be replicated by equivalent homogeneous dense thin film analogs. The key finding is that, in an average sense, nanoparticles will retain their Kerker behavior in the presence of random interparticle coupling. This occurs despite the stringent requirement placed on both the amplitude and phase of the ED and MD modes. The result is that the optical properties of both sparse and dense monolayer films of randomly distributed Kerker particles can be accurately predicted from the scattering characteristics of single particle building blocks. The specular, angular, and polarization dependent properties are distinctly different from dense homogeneous thin film analogs. Our analysis uses generalized Mie theory, which completely accounts for particle coupling. This framework creates satisfying parallels between studying random Kerker particle films and the use of traditional Mie theory for the design of isolated Kerker particles.

DESIGN OF ED/MD OVERLAPPING KERKER PARTICLES

The phenomenon of Kerker scattering from a spherical particle can be directly seen from Mie theory\(^{22}\). In the far field limit, the amplitude response of elastic scattering from a wave incident on a particle can be written in a convenient matrix form

\[
\begin{bmatrix}
E_x^f \\
E_z^f
\end{bmatrix} = \frac{e^{ikR}}{-i k R S_4} S_2 \begin{bmatrix}
S_1[E_1^\perp] \\
S_1[E_1^\parallel]
\end{bmatrix} \tag{1}
\]

where \(E_x\) is the elastic scattered electric field amplitude, \(E_i\) is the incident field amplitude, \(\perp\) and \(\parallel\) represent the planes parallel and perpendicular to the scattering plane\(^{32}\), \(k\) is the wavenumber in the surrounding media, and \(R\) is the radial observation distance from the particle’s origin. \(S_j (j = 1,2,3,4)\) are the elements of the amplitude scattering matrix. For a single particle under plane wave illumination, there is no polarization conversion \((S_3 = S_4 = 0)\). If all scattering coefficients beyond the first order are negligible, the angle-resolved far field scattering efficiency parallel, \(Q^\perp (\theta)\), and perpendicular, \(Q^\parallel (\theta)\), to the scattering plane are given by

\[
Q^\perp (\theta) = \frac{\|S_2\|^2}{x^2} = \frac{1}{x^2} (\|a_1\|^2 r_1^2 + \|b_1\|^2 r_1^2 + (a_1 b_1^* + b_1 a_1^*) \pi r_1) \tag{2}
\]

and

\[
Q^\parallel (\theta) = \frac{\|S_1\|^2}{x^2} = \frac{1}{x^2} (\|b_1\|^2 r_1^2 + \|a_1\|^2 r_1^2 + (a_1 b_1^* + b_1 a_1^*) \pi r_1), \tag{3}
\]

where \(\pi = \frac{dP_n}{d\theta}\) and \(\pi = \frac{P_n}{\sin \theta}\) are the angle-dependent basis functions, based on the associated Legendre polynomial \((P_n)\) of order \(n\) and degree \(m = 1\). The coefficients for this basis are \(a_n\) for transverse magnetic (TM) modes and \(b_n\) for transverse electric (TE) modes. These coefficients are found by applying the boundary conditions of field continuity between the particle and environment, leading to the well-known Mie solutions\(^{32}\). The asterisk over the variable denotes the complex conjugate and the \(n = 1\) subscript represent the dipole modes. The argument \(x = \frac{\lambda_0}{\pi a}\) called the size parameter, is a unitless ratio between the particle radius \((r)\) and the free-space wavelength \((\lambda_0)\). In the forward \((\theta = 0^\circ)\) and backward \((\theta = 180^\circ)\) scattering directions the parallel and perpendicular scattering efficiencies are the same. Therefore, the forward-to-backward ratio (FBR) is defined as \(FBR = Q_\perp (\theta = 0^\circ) / Q_\perp (\theta = 180^\circ)\), where either \(Q^\perp (\theta)\) or \(Q^\parallel (\theta)\) can be used.

Figure 1. Parameter space for the single particle scattering coefficients, showing the different Kerker regimes. (a) Normalized difference between the first order TM and TE scattering coefficients, as a function of size parameter and lossless permittivity. The dashed and dotted magenta line show the region where \(\|a_1\|^2 = \|b_1\|^2\). The dashed line is under the dotted line. The white region is where the particle supports more than one mode, which is defined when the first order modes contribute less than 99% of the scattering cross-section. (b) The phase difference between the first order TM and TE mode. The dashed and dotted magenta lines are transferred from Figure 1a, to show the phase relationship in the regions where TM and TE mode energy is equal. The white region is also transferred from Figure 1a. (c) Log base 10 of the FBR which would occur from the magnitude and phase results in Figure 1a and 1b. The black outline denotes the transition region from single to multi-mode. Multi-mode regions are not overlaid with white. The first magenta dashed line shows and the forward-only scattering region. The second magenta line shows the region of backward-to-forward scattering transitions.
Figure 2. Scattering profiles of a 88 nm diameter Si particle and a 280 nm diameter GaN particle. (a) The log base 10 FBR from Figure 1c, with the permittivity of silicon overlaid in magenta, as a function of size parameter ($x = \frac{2\pi 44 \text{[nm]}}{\lambda} \text{[nm]}$). The dashed magenta line represents the region of Si permittivity that is not applicable for the graph, due to material loss. The solid magenta line is the region of Si applicable to the graph ($\epsilon_r < 0.7$). (b) Efficiency scaled magnitude response of the dominant scattering coefficients in the Si particle’s scattering cross-section (solid lines). The dashed black line plots the log base 10 FRB of the Si particle, as a function of wavelength, in the regions showing the backward scattering (blue), the optically-induced artificial magnetic resonance (red), and the forward scattering (green) regime. (c) The angle-resolved far field scattering profiles near the backward and forward Kerker resonances in the Si particle. (d-f) The analogous graphs from (a-c) for a 280 nm diameter GaN particle. For 280 nm diameter GaN, only forward-dominant scattering is present and second order modes become appreciable at shorter wavelengths ($\lambda < 650$ nm). All magnitude responses are efficiency scaled based on the formula $Q = \frac{1}{\pi} \frac{1}{2} \frac{\omega}{\gamma} \frac{1}{\epsilon_r} |\delta_\lambda|^2$, where $\delta_\lambda = a_\lambda$ or b_λ, and λ is the mode order.

Kerker’s condition for forward scattering requires $a_1 = b_1$ and backward scattering requires $a_1 = -b_1$. The condition $||a_1||^2 = ||b_1||^2$ creates polarization invariance. Therefore, Kerker scattering requires an even distribution of energy between the transverse electric (TE) and transverse magnetic (TM) modes, while the propagation direction is directly related to the relative phase of the coefficients, due to the interference term. Figure 1 depicts the entire particle size-permittivity parameter space where the Kerker conditions are satisfied for the first order (dipole) case. The contribution of higher order modes is shown in the Figure S1. The plots assume a particle with lossless permittivity ($\epsilon = \epsilon_r$) and unity relative permeability ($\mu_r = 1$) with a background of free space. The assumption of negligible loss is justified in Figure S2. Figure 1a shows the difference in energy distribution between the first order TE and TM modes. The dotted and dashed magenta line indicate where the TE and TM mode energies are equal. Figure 1b shows the relative phase between these two modes. From the phase profile we see the dashed magenta line corresponds to the forward Kerker condition whereas the dotted magenta line is approaching the backward Kerker condition with increasing permittivity. Between these two regions is an optically-induced artificial magnetic resonance. Figure 1c shows the resulting FBR that would be achieved as a result of the magnitude and phase relationships from Figure 1a and 1b. This figure shows that there are two distinct Kerker regimes for real passive materials: (1) a region where forward-scattering is always dominant and (2) a region producing a backward-to-forward scattering transition.

As an example of Kerker scattering for passive materials, Figure 2 shows the response of an 88 nm diameter silicon (Si) particle illustrating the backward-to-forward scattering regime, and a 280 nm diameter gallium nitride (GaN) particle, as an example of the forward-only scattering regime. For the 88 nm diameter Si particle, the wavelength range from 400 nm to 500 nm is sufficient to study backward-to-forward scattering. In the case of the 280 nm diameter GaN particle, we find forward-only scattering with optimal forward scattering from 675-800 nm. We find wavelength ranges from 550 nm to 600 nm are shown to have appreciable second order terms. This region is not considered in our analysis, despite maintaining forward dominant scattering, since we are primarily interested in overlapping ED and MD modes. All calculations for Figure 1 and 2 were done using a Mie theory scattering formalism.
EFFECT OF RANDOMLY DISTRIBUTED NANO-
PARTICLE COUPLING

As described in the previous sections, Kerker scattering requires a particle to satisfy stringent magnitude and phase relationships between modes. To study the effect of random nanoparticle coupling, we generate random monolayer films of same sized Kerker particles and calculate how interparticle coupling alters the scattering behavior of an individual particle within the film. This is done using generalized Mie theory, which is a complete analytical solution to the problem of multiple scattering and interparticle coupling between particles. Interestingly we find that, the average response will continue to satisfy Kerker’s stringent amplitude and phase conditions. This is true even when the average nearest neighbor distance is well within the near field coupling regime. We then show, in the next section, that this average response has a direct relationship to the scattering behavior of an infinite randomly distributed particle film.

When dealing with coupled nanoparticles, polarization conversion can occur. Since this property is not seen in isolated Mie theory, it is necessary to work with the full scattering matrix from equation (1) to define a particle’s scattering response. The particle’s angle resolved scattering efficiency is written in general form

\[Q_\perp(\theta) = \frac{1}{x^2} (\|S_1\|^2 + \|S_2\|^2 + S_2S_3^* + S_2^*S_3) \quad (4) \]

and

\[Q_\parallel(\theta) = \frac{1}{x^2} (\|S_4\|^2 + \|S_3\|^2 + S_4S_1^* + S_4^*S_1) \quad (5) \]

Furthermore, in generalized Mie theory, it cannot be assumed that degree (m) in the modal expansion is unitary. Therefore, the scattering amplitude elements \((S_1 - S_4)\) are fully expanded with respect to degree (m), order (n), and mode (TE or TM). The derivation for converting the scattering amplitude elements from isolated Mie theory to generalized Mie theory is presented in section two of the supplementary information.

Using the generalized framework, we simulate finite sized random monolayer nanoparticle films with 10%, 20%, 30%, and 40% area fill fraction. The packing densities correspond to an average nearest neighbor distance ranging from 68nm to 10nm. Gap distances as small as zero (i.e., touching particles) are allowed and do occur. Simulations are done for both 88 nm diameter Si and 280 nm diameter GaN particles, to study both the forward-to-backward and forward-only Kerker scattering regimes. The method emulates simulating a particle in an infinite film by deterministically placing an “observation particle” at the origin, then generating a sufficiently large number of particles surrounding it. The surrounding particles are placed based on a uniform distribution (i.e., equal probability of finding a particle at any location where particles do not overlap) around the observation particle. The spatial autocorrelation of these random particle distributions is shown in Figure S3 for Si and Figure S4 for GaN. The generalized Mie program is then run on each finite particle film and the resulting scattering coefficients for the observation particle is recorded, accounting for all interparticle coupling. This process is repeated for 50 unique particle distributions, simulating both parallel and perpendicular incident polarization at normal incidence (100 simulations in total). Repeating the simulation procedure on unique distributions is designed to mimic randomly sampling particles in an infinite film.

In both the loose and densely packed cases, we find the average response of the observation particle is weakly affected by coupling between surrounding particles. The effect of particle coupling became more pronounced as fill fraction increased. Though, on average, the resulting spectral profile exhibits the same type of Kerker scattering as is seen for isolated particles. We find that particle coupling does not excite higher order modes within the Kerker particles, as all scattering coefficients having orders greater than one \((n > 1)\) were shown to be negligible (detail for 88 nm diameter Si particles is shown in Figure S5 and for 280 nm diameter GaN particles in Figure S6). Therefore, we need only consider \(mn = (11, -11)\). Unlike the isolated Mie solution, in both Si and GaN, polarization conversion was present. For the scattering coefficients associated with polarization conversion, their phase profiles mimicked a uniform distribution. Their magnitudes mimicked the parallel-to-parallel or perpendicular-to-perpendicular coefficients with, on average, an order of magnitude less strength (detail for 88 nm diameter Si particles is shown in Figure S5 and for 280 nm diameter GaN particles in Figure S6). In other words, the polarization conversion scattering elements, \(S_3\) and \(S_4\), had random phase. They also had magnitudes that were one order of magnitude less than \(S_1\) and \(S_2\) and have similar spectral shape. This result simplifies equations (4) and (5), with respect to the average response since \(E[S_3^*S_3 + S_2^*S_2] \approx E[S_3S_3^* + S_4S_4^*] \approx 0\). We can intuit the random phase of the polarization converted field from the facts that this field is a direct result of the scattered field from the surrounding particles impinging on the observation particle. Since these particles are a random distance from the observation particle, their phase profiles do not coherently overlap.

In general particle clusters are not rotationally symmetric, so scattering coefficients for parallel and perpendicular incident polarization are different. We can intuitively understand this lack of symmetry by considering particle dimers. In dimers the electric field distribution can be different depending on if particles are aligned on or off axis with respect to the incident polarization. For an infinite film we can remove this polarization dependence, with respect to the average response, by including particle distributions rotated by 90 degrees when performing the average.

Removing the negligible higher order terms and incorporating all relevant simplifications discussed above, the average angle-resolved scattering efficiency for a particle in a randomly positioned Kerker film can be simplified to

\[E[Q_\perp(\theta)] = \frac{1}{x^2} E \left[\left(\|A_{11}\|^2 + \|A_{11}^*\|^2 \right) \tau_{11} + \left(\|B_{11}\|^2 + \|B_{11}^*\|^2 \right) \tau_{11} + \left(A_{11}B_{11}^* + A_{11}^*B_{11} \right) \tau_{11} \right] \quad (6) \]

and
The derivation of formulas \(E[A] \) and \(E[B] \) are provided in section four of the supplementary information. For randomly distributed Kerker particles, the phase relationship that determines forward or backward Kerker scattering is given by only the primary first order modes, \(E[A_{11}B_{111} + A_{111}B_{11}] \). Therefore, for both forward and backward Kerker scattering, it is necessary that \(E[|A_{11}|^2] = E[|B_{111}|^2] \) and that \(E[|A_{111}|^2] \) and \(E[|B_{11}|^2] \) approach zero, since the cross-polarization coefficients are not present in the interference term. The condition of polarization invariance is generalized to \(E[|A_{111}|^2 + |A_{111}|^2] = E[|B_{111}|^2 + |B_{11}|^2] \), indicating that it is not necessary for cross polarization terms to vanish in order to satisfy polarization invariance.

Figure 3 shows the average magnitude response of the prominent scattering coefficients found in a randomly coupled Kerker particle as well as the particle’s \(FBR_A \). The results are shown for 88 nm diameter Si nanoparticle films with (a) 10% and (d) 40% fill fraction and for 280 nm diameter GaN nanoparticle films with (b) 10% and (e) 40% fill fraction. Results for 20% and 30% fill fraction are shown in Figure S7. The variables \(A_{mn} \) and \(B_{mn} \) are the TM and TE modes associated with energy transfer between same polarization states. The variables \(A_{mn}^x \) and \(B_{mn}^x \) account for cross-polarization energy transfer. Averaging is taken over observation particles \(j \), including sets of 90 degree rotations. Justification for the definition of the \(FBR_A \) is provided in section four of the supplementary information. For randomly distributed Kerker particles, the phase relationship that determines forward or backward Kerker scattering is given by only the primary first order modes, \(E[A_{11}B_{111} + A_{111}B_{11}] \). Therefore, for both forward and backward Kerker scattering, it is necessary that \(E[|A_{11}|^2] = E[|B_{111}|^2] \) and that \(E[|A_{111}|^2] \) and \(E[|B_{11}|^2] \) approach zero, since the cross-polarization coefficients are not present in the interference term. The condition of polarization invariance is generalized to \(E[|A_{111}|^2 + |A_{111}|^2] = E[|B_{111}|^2 + |B_{11}|^2] \), indicating that it is not necessary for cross polarization terms to vanish in order to satisfy polarization invariance.
diameter GaN and 88 nm diameter Si, respectively), the average scattering coefficients mimic the overall shape of the mode profiles for the isolated Mie solution from Figure 2. Furthermore, the FBR_A for the coupled and isolated case follow a similar profile, indicating correct phase behavior. The phase response of the primary scattering coefficients is presented in Figure S5 for 88 nm diameter Si and Figure S6 for 280 nm diameter GaN. From the results above we find that a Kerker particle embedded in a random monolayer film of Kerker particles will retain the Kerker scattering behavior of its isolated particle solution, in an average sense, despite the effects of random particle coupling. All FBR_A's were calculated using the general formulas from (4) and (5), assuming no simplifications, to validate equations (6) and (7). In Figure 3, the mode decomposed independent scattering efficiencies are defined as $\frac{2}{A^2} E[||\Delta m_{ij}||^2]$, where $\Delta = A, B, A^X$, or B^X. These mode decomposed efficiencies will sum to the independent particle’s scattering efficiency. This is not the same as the total scattering efficiency due to the interference effect between particles. More information about particle efficiencies under the generalized Mie theory framework is presented in section three of the supplementary information.

MONOLAYER FILMS OF RANDOMLY DISTRIBUTED KERKER PARTICLES

To corroborate our results from generalized Mie theory and further study the reflection, transmission, absorption (RTA), and polarization-dependent behavior of these films, we simulate the random nanoparticle films using full-wave finite-difference time-domain (FDTD) simulations.41

Random nanoparticle films with length and width dimensions of 40 times the particle radius was repeated using Bloch boundary conditions to model an infinite random structure. Figure 4a-c shows the RTA behavior of 88 nm diameter Si random nanoparticle films in the backward-to-forward Kerker regime. Area fill fractions ranged from 10-40% and illumination was normal incidence. Figure 4d-f shows the corresponding RTA results for 280 nm diameter GaN random films in the forward-only regime. In all cases, three distinct random particle distributions were simulated using FDTD. The solid lines are the average from the three distinct simulations. The shaded region represents the area within one standard deviation of the average. In all cases, the reflection and transmission properties of these films were dramatically different from the behavior of a corresponding homogeneous dense thin film. The RTA response of a homogeneous dense thin film with a thickness equal to the corresponding nanoparticle diameter is given by the dashed black line.
We find the dominant scattering feature in these films is similar to that of an isolated nanoparticle building block. To highlight this, we propose the formula

$$ R = \frac{ffE[\sigma_{sca}]}{1 + FBR}, \quad A = ffE[\sigma_{abs}], \quad T = 1 - A - R \#(8) $$

which estimates the film’s spectral reflection (R), absorption (A), and transmission (T) response based only on parameters from the average Kerker particle scattering behavior and the particle film’s area fill fraction (ff). The FBR_A, average observation particle scattering efficiency ($E[\sigma_{sca}]$), and average observation particle absorption efficiency ($E[\sigma_{abs}]$) are calculated from the simulations performed in section three. The scattering efficiency is determined through the equation

$$ E[\sigma_{ext}] - E[\sigma_{abs}] = E[\sigma_{sca} - i] + E[\sigma_{sca} - d] = E[\sigma_{sca}] \#(9) $$

where $\sigma_{ext,j}$ is the extinction efficiency, $\sigma_{abs,j}$ is the absorption efficiency, $\sigma_{sca} - i,j$ is the independent scattering efficiency, and $\sigma_{sca} - d,j$ is the dependent scattering efficiency of the j'th sampled observation particle.42 A derivation of equation (8) and (9) is presented in section four of the supplementary information.

Figure 5 compares the result of equation (8) to the direct calculations from Figure 4. The comparison was done for fill fractions of 10% and 40% in 88 nm diameter Si films (Figure 5a,b) and in 280 nm diameter GaN films (Figure 5c,d). The results for fill fractions of 20% and 30% are shown in Figure S8. Satisfyingly we find a good agreement between equation (8) and the results from full-wave calculations. Alternatively, effective medium theories such as the Bruggeman and Maxwell-Garnett mixing formulas did not accurately predict the film’s RTA response.

Figure 6 shows the angle- and polarization-dependent RTA responses of both Si and GaN nanoparticle films with 20% fill fraction. The response to the random Si Kerker film is plotted at a wavelength of 420 nm (Figure S9), for backward-Kerker behavior, and at 459 nm (Figure 6a), for forward-Kerker scattering. A comparison to the response of an 88 nm thick Si homogeneous dense thin film is shown in Figure 6d. Figures 6b,c,e,f show the analogous comparisons for GaN. Unlike the thin film cases, we see that the RTA response of the Kerker particle films are relatively unchanged for angles of incidence lower than 40 degrees. At steeper angles, reflection begins to increase and transmission decreases accordingly, while absorption stays relatively constant. This effect is most pronounced at wavelengths with forward-direction Kerker scattering. The RTA response of the random Kerker films are also invariant to incident polarization state and show no Brewster’s angle suppression of transverse magnetic reflective.
This behavior is completely different to the case of a homogeneous dense thin film.

CONCLUSION

In summary, we show that Kerker scattering achieved by ED and MD overlap in small size parameter particles can create either forward-only scattering or scattering with a backward-to-forward transition as the wavelength is varied. Using 280 nm diameter GaN nanoparticles as an example of forward-only scattering and 88 nm diameter Si nanoparticles as an example of a backward-to-forward scattering transition, we study the effect of random particle coupling in monolayer particle films. The scattering properties of an individual Kerker particles in a random film was weakly affected by particle coupling. In an average sense, the scattering properties mimic the isolated Mie response with the introduction of an added cross-polarization term. This term was roughly an order of magnitude weaker than the dominant terms and had random phase. Random films of Kerker particles had reflection and transmission spectra that could be predicted from three values: the average particle scattering cross-section, the forward-to-backward ratio, and the films area fill fraction. In all cases the spectrum was distinctly different from thin-film analogs or effective medium predictions. Finally, we showed that the reflection and transmission response of random Kerker films does not differentiate between s- and p-polarizations and that these films do not exhibit a Brewster angle reflection like that of a thin film sample.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Definition of the scattering amplitude coefficients for an isolated and coupled particle using generalized Mie theory, definition of particle efficiencies in generalized Mie theory, derivation of estimating the RTA response of random films of Kerker particles, regime of higher order mode contributions when designing isolated Kerker particles, the effect of material loss on satisfying Kerker’s scattering condition, average autocorrelation of the simulated...
random particle distributions, higher order mode contributions of coupled Kerker particles in a random film, primary mode contributions of coupled Kerker particles with 20% and 30% area fill fraction, comparison of RTA response of random Kerker particle films with 20% and 30% area fill fraction.

AUTHOR INFORMATION

Corresponding Author
* haa@caltech.edu

Author Contributions
P.R.W. and H.A.A. devised the research idea. P.R.W. performed simulations and interpreted results. H.A.A. oversaw the project progress. Both authors contributed to writing and editing the manuscript.

Funding Sources
This work was supported by the Army Research Office under MURI Grant W911NF-18-1-0240.

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENT
We thank M. Su and R. Sokhoyan for commentary and discussions, and also H. Andaraarachchi and N. Uner of the Kortshagen group at U. Minnesota and Thimsen group at Washington University for useful discussions. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

ABBREVIATIONS
ED, Electric Dipole; MD, Magnetic Dipole; FBR, Forward-to-Backward Ratio; TM, Transverse Magnetic; TE, Transverse Electric; Si, Silicon; GaN, Gallium Nitride; FDTD, Finite-Difference Time-Domain.

REFERENCES

(1) Kapitanova, P.; Odit, M.; Danaeiifar, M.; Sayanskiy, A.; Belov, P.; Miroshnichenko, A.; Kivshar, Y. All-Dielectric Biaxiotropic and Multimode Unidirectional Microwave Metasurfaces. In 2017 47th European Microwave Conference (EuMC); 2017; pp 476–479.
https://doi.org/10.23919/EuMC.2017.8230893.

(2) Krasnok, A. E.; Miroshnichenko, A. E.; Belov, P. A.; Kivshar, Y. S. All-Dielectric Optical Nanoantennas. 2012, 6.

(6) Limonov, M. F.; Nikulin, A. V.; Li, S. V.; Samusev, K. B.; Kivshar, Y. S.; Rybin, M. V. Mie Bands in All-Dielectric High-Index Metamaterials. In 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS); 2017; pp 2825–2827.
https://doi.org/10.1109/PIERS.2017.8262234.

Title: Light-matter interactions in films of randomly distributed unidirectionally scattering dielectric nanoparticles

Authors: Parker R. Wray and Harry A. Atwater

Picture synopsis: A random particle film with electric field magnitude overlaid. The center observation particle is highlighted in red.