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Bounds on precipitate hardening of line and surface defects in solids
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Abstract. The yield behavior of crystalline solids is determined by the motion of defects like dislocations, twin boundaries
and coherent phase boundaries. These solids are hardened by introducing precipitates—small particles of a second phase. It
is generally observed that the motion of line defects like dislocations are strongly inhibited or pinned by precipitates while
the motion of surface defects like twin and phase boundaries are minimally affected. In this article, we provide insight into
why line defects are more susceptible to the effect of precipitates than surface defects. Based on mathematical models that
describe both types of motion, we show that for small concentrations of a nearly periodic arrangement of precipitates, the
critical force that is required for a surface defect to overcome a precipitate is smaller than that required for a line defect. In
particular, the critical forces for surface and line defects scale with the radius of precipitates to the second and first power,
respectively.
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1. Introduction

A crystalline solid can deform inelastically through dislocation glide, the motion of twin boundaries as well
as the motion of coherent phase boundaries [7,29]. While the dislocation is a topological line defect, twin
and phase boundaries are surfaces across which either the orientation or the structure of crystal changes
discontinuously. Mechanical stress acts as a driving force on these defects, and their motion results in
inelastic deformation. Materials often contain precipitates—small inclusions of a distinct material (either
second-phase particles of a different composition or foreign substance), and these affect the motion of
both line and surface defects by creating an internal stress field in the material. Precipitates are often
introduced into the material by heat treatment to inhibit the motion of the defects, thereby increasing
the yield strength (stress required for inelastic deformation).

In this paper, we will show that the critical external force for a line defect like dislocations required
to propagate through an arrangement of precipitates scales with their radius to the power one and the
critical external force for a surface defect like a twin or phase boundary scales with the radius to the
power two. Hence, for small radii, or, equivalently for small concentrations of precipitates, the effect on
surface defects is negligible compared to the effect on line defects.

This result arises by the difference in geometry of the two defects. Indeed, a line defect is a one-
dimensional object propagating in a given plane through the material, while a surface defect is a 2-
dimensional object. It is a well-known fact that the dimensionality of the problem has an impact on the
pinning/depinning behavior of interfaces; this was first studied for charged density waves (e.g., [19,24,26])
and later for magnetic domain walls and general interface motion following the quenched Edwards—
Wilkinson equation, see for instance [5,18,22,27,33]. The arguments in these works are generally heuristic.
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By contrast, in this work we prove mathematically rigorous bounds on the critical depinning threshold—
by constructing appropriate viscosity sub- and supersolutions—for line- and surface-like defects and then
apply these bounds to physical models.

We emphasize that the dimensional argument has to do with pinning rather than the possibility that
twin boundaries always hit the precipitates while dislocations might miss some. We show in Lemma 3.4
that any plane will almost surely intersect some precipitate; consequently any dislocation gliding on a
plane almost surely encounters some precipitate.

Our result has some very interesting implications. In any crystal, the energetics and mobility of
dislocations and twin boundaries depend on crystallography. In high-symmetry crystals, like copper or
aluminum, symmetry dictates that the system with the lowest critical resolved stress is sufficient to
accommodate all deformations. However, in low-symmetry materials like magnesium and zirconium, this
is not the case, and therefore, one sees multiple defects. Magnesium and its alloys have been the topic
of much recent interest since they have potentially the highest strength-to-weight ratio. However, they
lack ductility. In magnesium, the so-called basal dislocation is an order of magnitude softer than other
defects, but insufficient to accommodate arbitrary distortions. So it is common to see twins, especially
in tension [7,20,30]. Further, this significant anisotropy is believed to be ultimately responsible for the
low ductility. The results here suggest that precipitate hardening can have a differential effect, and this
can be used to improve the strength and ductility of magnesium. Indeed, precipitate hardening is used
extensively in magnesium alloys. It has been observed through neutron diffraction and modeling that the
critical stress in the basal system increases threefold while that for tensile twinning remains essentially
unchanged during aging in Mg—Y-Nd-Zr alloys [3]. It is important to note here that observations in other
related alloys do not show such a clear distinction due to the elongated shape and basal orientation of the
precipitates as well as the fact that twin growth is accompanied by basal slip [31,32]. Precipitates play a
similar role in low stacking fault steels like TWIP steels where they increase yield strength by inhibiting
dislocation motion and leave hardening rate that is influenced by twinning unaffected [6].

The commonly used shape-memory alloy has two inelastic deformation modes, plasticity due to dislo-
cations and superelasticity due to stress-induced phase transformations. The widely used shape-memory
alloy nickel-titanium undergoes plastic deformation at extremely low stress, and this hides its useful
superelastic effect. Therefore, commercial alloys are precipitate hardened. They increase the plastic yield
strength by inhibiting dislocation activity but leave superelasticity governed by phase and twin boundaries
unaffected [28].

2. Model and results
2.1. Model

We describe both defects, which are one (dislocations)- and two (twin boundaries)-dimensional subsets
of R? as graphs of suitable functions and then work with the evolution equations of these functions.

The evolution of a twin boundary Iwin(t) : ={(x,w(z,t)) | © € R?} can be described by a non-local
version of a quenched Edwards-Wilkinson (QEW) equation?

8tw(x7t) = _(_ A)l/Qw(x,t) —QO(.%,IU(J?,t)) +F7 (1)
where 9, is the derivative with respect to time and —(— A)'/?
(see [13] and Fig. 1).

is the half Laplacian with respect to space

I'We denote by QEW an evolution equation, driven by an external force, with linearized line (or surface) tension in a
random medium with finite correlation length. We refer to (1) as QEW-1/2 since we have a half-Laplace operator.
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F1G. 1. A part of the infinite strip, i.e., T? x R. The spherical objects are a representation of the precipitates. We model

these by the function ¢

(a) One possible slip plane 7 = {z2 =
w} for a dislocation is shown in this
figure. Note that the plane intersects
some precipitates.
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(b) A top-down view of the plane 7
from Figure 2a. The precipitates are
highlighted in dark gray. As not all
precipitates are cut in the middle, the
resulting radii of the disks in the plane

vary.
FiG. 2. These figures show how the slip planes are introduced in the model of the crystal
In this work, we consider a line tension model for a dislocation [29]. We assume that the dislocation

is confined to a random glide plane m = {x3 = w}, see Fig. 2. Then the evolution of the dislocation
Tais(t) : ={(z,w,v(z,t)) | € R} is described by the following partial differential equation

dpv(x,1) _ div Vou(z,t) ol
ey ( 1+vv(x,t>z> pla,vlz, b)) + F, (2)

where ¢ = ¢(-,w, ) (see also [9,11]). Note that by confining the dislocation to the glide plane, we have
ignored climb.

In both cases, the driving equation depends on three terms. The first term is a penalty for the deviation
of the geometry of the defect from a flat state (which in our setting also ensures that the graph-setting
remains appropriate), the second term—where ¢: R® — R is assumed to be bounded and uniformly
Lipschitz-continuous function—describes the interaction of the graph with the precipitates, and the last
term constitutes the external driving force. In the context of the twin boundary, the first term arises from
elasticity [13] (also [23]). The actual interaction between a defect and a precipitate is non-local; hence,
the second term should be a non-local potential. However, following [13] we assume that this interaction
can be approximated well by the local term (see also the discussion of Koslowski et al. [23]). In both
models, the constants such as elastic parameters, line tension, etc., have been suppressed. As we are
merely interested in a scaling result, this suppression does not affect the comparison of critical forces.

We assume w = 0 and v = 0 as initial conditions. We furthermore assume F' > 0 and ¢ > 0, which in
our model implies that the precipitates always impede the motion in the (positive) y-direction that the
external driving force is favoring.
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Remark 2.1. We choose the same interaction potential for both equations to keep the situations as similar
as possible. Importantly, the scaling results remain valid if one does consider two different interaction
potentials as long as they are both localized around the centers of the precipitates (see Assumption 2.1)
and have a “radius” that scales linearly in R (see Assumption 2.2).

Remark 2.2. Let us briefly comment why we decided to consider a linear, but non-local model for twin
boundaries and a nonlinear, but local model for dislocations. We use a nonlinear expression (i.e., the
mean curvature) to penalize the deviation from a flat state for dislocations, while we use a linearized
expression for twin boundaries. One reason for this is of a technical nature: The nonlinear equation for
twin boundaries [2] does not admit a comparison principle and even existence results are unavailable
without further regularization [14]. Furthermore, it is observed that twin boundaries do not usually
exhibit a strong curvature (see, e.g., [1]), especially compared to dislocation lines (see, e.g., [25]), and
so we consider our linear approximation to be suitable here. Moreover, our results do in fact remain
unchanged if both Egs. (1) and (2) are both replaced by their linear, local analogue which we refer to as
QEW-1

o(z,t) = Av(z,t) — p(z,v(x,t)) + F, (3)

This is proved in Sect. 4. Our main result can thus be interpreted in the sense that the difference in
scaling is only a matter of dimension. It is unaffected by the nature of the respective operator—at least
when considering powers « of the Laplacian for v > 1/2.

2.2. Background

Note, that since ¢: R? — R is assumed to be bounded and uniformly Lipschitz-continuous which allows to
use exponential time scaling, i.e., replace a subsolution v and a supersolution @ of (2) by V : =e~*uv and
V : =e~ 7, respectively, to derive a comparison principle. These new functions are sub- and supersolution
to an equation ;W = H(x,t, W, VW, D?*W) with an appropriate choice of H. By choosing A\ wisely, the
right-hand side will be—in the nomenclature of [10]—proper, and hence, we have a comparison principle.
This does imply a comparison principle for (2), and we can conclude that there exists a unique viscosity
solution provided that the initial datum is smooth enough, see [10, Theorems 8.2, 4.1]. For Eq. (1), a
similar argument can be found in [21, Theorem 2|, and for further details we refer to [17]. We conclude
that both equations (1), (2) satisfy a comparison principle and hence unique viscosity solutions exist.

We are interested in the pinning of defects by precipitates, i.e., We are interested in the pinning of
defects by precipitates, i.e., the question whether

1. there exists stationary supersolutions w: R? — R, w > 0 or 7: R — R, 7 > 0 such that, respectively,
w(z,t) <w(x) or v(z,t) <v(x) for all t > 0, x € R>3,

2. or whether w or v are unbounded as t — oo due to the existence of propagating subsolutions (e.g.,
w(x,t), such that w(x,t) > w(z,t) with w(z,0) = 0, w(x,t) > ct for all t > 0, 2 € R? and some
constant ¢ > 0).

While the question whether the two points above form a dichotomy is open in the general setting
[4,15] [8,12], the following simple statement follows immediately from the comparison principle using the
assumptions on ¢ made above.

twin > 0 such that for all F < Fyn the interface
Iiwin(+) gets pinned, i.e., for all F < Fliwin, there is a stationary supersolution. Moreover, for all F >
Fiwin the interface does not get pinned, i.e., there is a propagating subsolution. The same result holds
with a critical forces Fais, F 4, for dislocations.

Proposition 2.3. There are critical forces Fiwin > 0, F,

Our strategy of proving that the pinning threshold for twin boundaries is lower than the pinning

threshold for dislocations involves obtaining a lower bound for Fgi and an upper bound for Fiwin and
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then comparing these bounds to conclude. To retrieve the bounds, we construct worst-case scenarios for
pinning (in the case of dislocations) and depinning (in the case of twin boundaries).

It is clear that the bounds will depend on the pinning potential . In real crystals, it arises from
precipitates that have many different arrangements (random, periodic, planar) and shapes (rods, discs,
spheres, faceted). Therefore, we take ¢ to be given by (a regularization of) the characteristic function
of the precipitates. Further, we assume that the distribution is periodic orthogonal to the propagation
direction and well spaced in the propagation direction, while the shape is bounded by a cube from the
inside and the outside.

2.3. Main results

We first assume that the domain is an infinite strip 2 : =T? x R, i.e., we assume periodicity orthogonal
to the propagation direction. The coordinates of the torus are denoted by z; and x5 and the coordinates
of 2 by x1, z2 and y. We further use the convention T? = [—1,1]2. Moreover, let 3 > 0, A € (0,1],
0 < px < * < 0 be fixed. For each R € (0, %), we consider a distribution of precipitates in the strip.

Assumption 2.1. Let (X?, X4, Y%);en be a family of random variables, that represent the centers of the
precipitates. We will assume that

(a) (X1)ien, (X3)ien are identically and independently distributed with X1 ~ Unif([— 1, 1]),
(b) The random variables |Y?| = dist(0, Y?) have finite expected value and |Y?(w) — Y7 (w)| > 2R =7 if
1 # j almost surely.

Furthermore, we will also make the following assumption on the shape of the precipitates.
Assumption 2.2. For each i € N consider a smooth function 1; : R?* — R with

PX[= ARAR? < i < 9 X[- R,R)?

i.e., the precipitates contain a small cube and are bounded by a cube of sidelength R and have a pinning
strength which is bounded by ¢, and ¢*.

We assume that the resistance provided by the precipitates is given by
o(w) =D o'l = (Xi(w), X3(w), Y'(w))).
i=1

Remark 2.4. The assumptions are chosen in such a way that the x; and x5 components of the centers
of the contained balls are independent and identically distributed (iid) and that the distance between
two precipitates cannot approach zero too fast. Our proofs will work for any configuration of precipitates
that satisfy these conditions. Even though not included in our assumptions, one could image toroidal
precipitates for which our results will also hold. For clarity, we chose to formulate our assumptions in
the way above, and they do include most of the physical cases as spherical, elliptical and rod-shaped
precipitates.

We have the following results.

Theorem 2.5. (Bounds on the critical force for dislocation motion) For R > 0 small enough, we almost
surely have the following bounds
©*R > Fy, > Fais > min{e,,2(1 — AR) 7} - AR,

for the critical pinning force for dislocations confined to a random glide plane m = {xo = w}. This means
that the critical force scales with the first power of the radius of the precipitates.
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Theorem 2.6. [Bounds on the critical force for twin boundary motion] For R > 0 small enough, the
critical pinning force for twin boundaries can almost surely be estimated by

W*Rz > Etwin > Ftwin > min{@*a %} : (/\R)27

where C' > 0 is a geometric constant. Hence, the critical force scales with the second power of the radius
of the precipitates.

The proof of these theorems is mainly based on two ingredients. First, the comparison principle plays
a vital role as we construct a stationary supersolution and a non-stationary subsolution. Second, the
geometry of the problem is crucial as we have to construct said sub-/supersolution. Indeed, the first and
second power of R come from the (14 1)- and (2 + 1)-dimensional setting. We note that this problem is
related to geometry and that there are no hidden effects stemming from the nonlinearity of the mean-
curvature equation, the non-locality of the fractional Laplacian or the dimension. To substantiate this
claim, we prove the scaling result for n-dimensional QEW equations in Sect. 4.

We can combine the last two theorems in order to obtain the following result.

Corollary 2.7. For all R < 5 with distributions of precipitates that satisfy Assumptions 2.1 and 2.2, there

is almost surely a constant cy > 0 depending only on \ and the pinning strength, i.e., @, and ¢©*, such
that

F, .
coR < = < 'R,
dis
In particular, there exists R > 0 small enough, such that

E

= twin

< Fais
holds almost surely.

This means that if the concentration of the precipitates is small enough, there are external forces F,
such that dislocations get blocked while twin boundaries can move freely throughout the crystal.
Proof. We can apply Theorems 2.5 and 2.6 to obtain the following inequalities

min{p., 5} NR _ Fn _ o' R
QP*R o Fdis a min{@*v 2(1 - )‘R)_Q} : /\R

The statement follows by choosing ¢y depending on A, p., ¢* and the geometric constant C. g

3. Proofs

Both results are a consequence of the comparison principle and can be proven with similar techniques.
Therefore, we start by deriving the result for the abstract equation

Nlulu; = Alu] + (-, u) + F in T" x [0, 00), (4)
with zero initial condition, where n > 0 is the dimension of the interface, N[-] is an operator that is
invariant under the addition of constants with N[0] = 1 and 0 < Nu|(z) < 1 for all z € T" and A[] is
an operator that is invariant under the addition of constants with A[0] =0, & : T" x R — (—00,0] and

F > 0 some positive force. We assume that a viscosity solution exists and the comparison principle holds
for this equation.

The following two theorems from which we will derive Theorems 2.5 and 2.6 are based on the existence
of sub- and supersolutions to the following partial differential equation

0 = AQ)(x) — HX— pppn (@) + Fo in T, 5)
where p >0, p € (—1,1) and Fy > 0.
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Proposition 3.1. Assume that there are p € (—1,1), p > 0 and a point yo € R such that &(-,yo + s) <
—X[= p,pn () for all s € (— p, p). If there is a F > 0 such that for Fy : =F there is a viscosily supersolution
vo : T" — R to Eq. (5) with

max [v(2)] < p,
then for all F < F there is a stationary supersolution to (4).

Proof. Define v(z,t) : =vo(x) + yo, then we have for all FF < F = Fj that
Nlo(z, vz, 1) = 0 = Alvo)(x) — px(- p,pn () + Fo
> Ao(-,t))(2) + Oz, v(x, 1)) + F
as vg is a viscosity supersolution and |vg(z)| < p. O

Proposition 3.2. Assume that there are p € (—1,1), > 0 such that
oo
45(1‘7 y) > - ZMX(— p,p)nt1 (J? — LY — yl)7
i=1

where x; € T" and y; € R with p < y; < yir1 and |y; — y;| > 2p' =7 for all i, j € N with i # j and some
B € (0,1). If there is a F > 0 such that for Fy : =F there is a viscosity subsolution wy : T™ — R to Eq.
(4) with

max{wo(x)} — min {wo(z)} < 20" = 2p (6)

then for all F > F there is a non-stationary solution w to (4) with lim;_,.c w(z,t) = +o00.

Proof. Let F' > F and let w : T™ x [0, 00) — R be the viscosity solution to (4) with zero initial condition.
Until w hits the first obstacle, it propagates like a flat plane with velocity F' (note that N[F't] = 1). Let
t; be such that w(xz,t1) = y1 — p, i.e., the last time before w hits the first precipitate. Now, we discuss
why w passes through this precipitate. Using a translation, we can assume without loss of generality
that w(-,t1) = 0. Set 7 : =F — F and define W (x,t) : = — maxzer» {wo(z)} + wo(x) + 7¢, then it holds

W(-,0) <w(-,t;) and
NWIW, — A[W] — &(x, W) — F (AW] + &(z, W)+ F — )

(Afwo] — px (= p,pyn (T) + Fp)

)

<
<
=<0,

if W does not interact with a second precipitate. Due to (6), this is guaranteed, and hence, W < w and
w pass through the precipitate. Moreover, there is a time point to, where W(-,t2) does not cross any
precipitates and W has passed the first one. Now, we can apply a translation and construct, in the same
way, a solution that passes through the second precipitate and has an initial value that lies below w(-, t2).
Again the comparison principle shows that w has to pass through the second precipitate. Repeating this
argument shows that w crosses every precipitate. 0

3.1. Bounds for the pinning threshold of dislocations

In order to apply Proposition 3.1 or 3.2, we have to construct a sub- or a supersolution to Eq. (5). The
construction is based on ideas in [11].

Lemma 3.3. Let p > 0, > Fy > 0 then the function v: T — R given by

v(z)::{”m(@ i (=p,p)

Uous(x) in (—1,—p]U]p, 1),
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with

Uzn :_\//’(‘ FO _'/E2+\/M_F0)_2_p2a

Vout (T \/Fo (1—z])? \/Fo

p—p P <Fp<(l-p)t
Moreover, v is a viscosity supersolution if Fy < pu and a viscosity subsolution if Fy > pu. Finally, v
satisfies the following inequalities

is well-defined if

<
max |v(z)] < p,

if p—2p"1 < Fy <2p(1—p)~2 and

— mi 201 7P —2
max{vo(z)} — min {vo()} < 2p P,

. —B_4
sz0<71 TR

Proof. The well-definiteness follows by a simple calculation. Moreover, due to this construction v satisfies
Eq. (5) pointwise for all z € [—1,1] with |z| # p. Now, to make v a viscosity sub- or supersolution the
mean curvature at this point has to be negative or positive definite. Due to the symmetry of v, this
leads to the condition —voug(p) < vin(p) for v being a supersolution and —vout(p) > vin(p) for v being a
subsolution. A simple computation leads to the asserted bounds.

For the estimates on the maximum of |v|, just note that

max |U| S max{—vm(()), UOut(l)}

and we can use the local Lipschitz-continuity of the square root to estimate

. < 1 2_10,_ F)\p2
Um(o)72wp 2(/~L 0)p

and
%Fg(l - p)Q.

< —p)? =
Uout (1) < 2\/ﬁ(1 p)
If these quantities should be less than p then Fj has to obey the stated bounds. For the final statement,
we compute

max{vg(x)} — min {vo(z)} = vour(1) = vin(0) < 3(Fo = 2pFy + up?).

Now, if Fy < # then

3(Fo — 2pFy + pp®) < 2p" " = 2p,

and the statement follows. O
We can now prove the upper bound of Theorem 2.5.

Proof of Theorem 2.5 (upper bound). For almost any random glide plane {z3 = w}, we have ¢(z,y) =
o(xz,w,y) for x,y € R, and therefore, the distance between the centers of two precipitates is always bigger
than 2R'~# by Assumption 2.1.

Hence, we can apply Proposition 3.2 with p = R and pu = ¢* with an F that satisfies the following
properties, see Lemma 3.3,

AR'P — 4R — ¢*R?
maX{sD*—R_l,w*R}SFSmin{ 172380 ,(1—3)—1}.
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If R is small enough, such an F exists, as

4R'™P — 4R — ¢*R?
<(1-R)™!
1—2R <A-B
where the second inequality holds as 8 € (0, 1). Now, we can choose F : =¢* R and apply Proposition 3.2

to see that for all F' > F the solution to (2) crosses all precipitates. Hence, the critical depinning force
satisfies Fly; < F. O

@*—Rflﬁw*Rﬁ

For the proof of the lower bound, we have to ensure that the random plane intersects a precipitate.

Lemma 3.4. Let w € [—1,1] and 7 : ={z2 = w}. Then almost surely the plane 7 intersects at least a
precipitate with an intersection containing a square of side-length 2r.

Proof. The probability that the plane 7 intersects at least a precipitate with an intersection containing
a square of side-length 27 is r. Moreover this probability is bigger than the probability that the plane
7 intersects infinitely many precipitates with an intersection containing a circle of side-length 2r. Let us
denote this event by A. As the X are independent so are the events A;. Moreover, we have

ZP(Ai) = 0.

Hence the Borel-Cantelli Lemma applies and it follows that P(A) = 1. O

Now, that we know that the random plane intersects almost surely a precipitate, we can prove the
lower bound.

Proof of Theorem 2.5 (lower bound). By Lemma 3.4, we have almost surely that @(z,y) < —puX[= rr2 (2, )
Therefore, we can apply Proposition 3.1 with p = AR and p = ¢, with an F' that satisfies the following
properties, see Lemma 3.3,

" — (AR)™! < F <min {0 AR, 2 AR(1 — AR) %, (1 —r)"'}.
If R is small enough such an F' exists. Now, we can choose
F:=min{p,,2(1 — AR)"?} - AR

and apply Proposition 3.2 to see that for all ' > F the solution to (2) remains bounded. Hence, the
critical depinning force satisfies Fq;s > F. O

3.2. Bounds for the pinning threshold of twin boundaries

We want to establish bounds for the pinning threshold of twin boundaries. In contrast to Eq. (1), we are
looking at the following more general partial differential equation

drw(x,t) = —(— A)*w(z,t) — o(x,w(z,t)) + F in T? x [0, 00).
This nonlocal partial differential equation obeys a comparison principle [17]. Based on ideas established
in [16], we are going to construct the solution to (5).
Lemma 3.5. Let Iy, Fy > 0,p > 0, such that g : =Fy — (Fy + F2)x[— p,p2 has vanishing average over
[~ 1,1]%. Then the periodic solution with vanishing average u of
(= A)u(z) = g(x) in [~ 1,1]?
is given by
4 F + F
u(zy,x2) 1 = Z # sin(mnp) sin(mmp) cos(mnry + Tmaes).

7T2+2a TL2 + m2)anm
n,meN
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Proof. For every n,m € N denote by s, , : —Sln(71’ni61 + mmas) and ¢y, 0 =cos(mnzy + Tmas) the
eigenfunctions of the negative Laplacian in [—1,1]? with periodic boundary conditions. Moreover, we
define the eigenvalue to s, and ¢, m as Ay, © —772(n +m?). We are now going to compute the Fourier
series of g. Due to the symmetries of g, we have (g, s,,1n) ;> = 0. Moreover, note that

2
/ /cmm(x, y) de dy = m(cos(wan — mam) — cos(man + wam))
T

—a —a

= si si
= in(man) sin(ram),

which allows us to compute

1 1 P
(9, Cnm) 2 = Fz//cnm x1,22) doy dxo — (F1 + F3) /
—1-1 —p —

=0

4(Fy + F
= —% sin(mnp) sin(mrmp).
w2nm

Cn,m (21, 2) dor dag

b\b

Hence, the Fourier series of g is given by

4(Fy + Fy) . .

g(z) 1 =— Z ﬁ sin(mnp) sin(mmp)cp, m ().
n,meN

Assume that u € L?((—1,1)%) with periodic boundary data. Hence, we can represent u by its Fourier

series u = ) o Us Cnm + Up, Sn,m- This leads to

(_ Z )‘nm nmcnm( )+)‘zm flmsn,m(x)‘
n,meN
Comparing coefficients with the Fourier series of g, we see that uj, ,, = 0 and that
4(Fy + Fy)
c _ . .
Un.m = ~ 3734 (2 + m2)anm sin(mnp) sin(wrmp).
This proves the lemma. O

Lemma 3.6. The function u from Lemma 3.5 has the following L* bounds depending on «,
|ulloc < C(a)(F1 + F2)p*,

where C'(a) is a constant depending badly on «. This means in our case that C(a) — oo as a — 0 and
oa— 1.

Proof. As n? +m? > 2nm implies that (n? +m?)® > (2nm)®, we can estimate

4(F + F) sin(mnp) sin(wmp) cos(rzn + Tym)
(@) = = | 2o 2 )
T ot (n? +m?2)*nm
4(Fy + Fy) | sin(mnp) sin(mmp) cos(ran + ﬂym)\
7-‘-2Jr20¢ Z n1+o¢m1+a

n,meN
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We note that | cos(rzn + mzm)| < 1 and hence

()] < 4(F + Fy) Z | sin(7np)] Z | sin(rmp)]

212 T+ s
(= = LU
2
- 4(Fy + Fy) | sin(mnp)|
— 7T2+20‘ Z nlJra
neN
Let us now estimate the sum, using |sin(7mnp)| < max{1, 7np},
singepn) P 7
sin(mpn 1y 1
Z Ta <mp+ / n—adn—l— / s dn
nelt 1 (2p)~
— mp+mp(l — @) L (20)° 1 — mp(1 — @)L+ 0" (2p)°
< C(a)p*,
and the result follows. O

Lemma 3.7. Let u > 0 and Fy = pp?, then there exists a solution wg : T2 — R to (5) with A = (—A)*
and N =1 and it holds

[|wolloo < Cle)up®®.

If p < ﬁpl_h then

[lwolloo < p-
If p < giayp' > (p™7 = 1), then

— mi 2018 —2p.
max {wo(x)} — min {wo(x)} < 2p p

Proof. Let g(x) : =—px[— p,p2 (¥)+Fo, then g has zero average over [— 1, 1]? and we can apply Lemma 3.5
with

Fy:=Fy=p’u >0,

Fyi=p—Fy=p—p*u>0.
Therefore, there exists a solution wg, by Lemma 3.5, that is bounded, see Lemma 3.6. The two esti-

mates follow by elementary computations, note that we estimate max,er» {wo(z)} — mingern {wo(x)} by
2| Jwo ]| so- O

Now, we have all the information we need to proof Theorem 2.6.

Proof of Theorem 2.6. From now on, we will assume that a = %; however, the statements hold also true
for all a > % Let us start by deriving the right criteria for the existence of a stationary supersolution.
In this case, we have to choose p = AR. Moreover, we obtain two conditions on g, namely p < @,
and p < % : —% Hence, we choose p = min{p,, %} and then obtain that for all F' < Fy =
min{¢., 35 }(AR)?, Eq. (1) has a stationary supersolution by Lemma 3.7 and Proposition 3.1. Therefore,
we obtain Fiyi, > mln{gp*, 75 HAR)?.

For the upper bound, we can again use Lemma 3.7 combined with Proposition 3.2. This time, the
statement follows if

1
<< Z(RP-1).
w_u_c( )

As € (0,1) the right-hand side grows to 400 as R — 0, and hence, for R small enough we can choose
u = *. In conclusion, it follows F, ., < ¢* R U
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4. Scaling results for (n + 1)-dimensional QEW-1 equations

Let us consider the (n + 1)-dimensional QEW-1 equations, i.e.,
Opu(z,t) = Au(x,t) — p(x,u(z,t)) + F in T" x [0, 00), (7)

where Aw : =31 | 0;,,,u is the Laplacian, ¢ : T" x R — R satisfies the (n + 1)-dimensional analog of
Assumptions 2.1, 2.2 and is Lipschitz-continuous. Moreover, F' > 0 is a positive external driving force.

As this equation satisfies a comparison principle, we can similarly to Proposition 2.3 derive the exis-
tence of critical pinning forces F' and F with

e For all F' < F, the interface I'(t) : ={(z,u(z,t)) | z € R} gets pinned.

e For all F > F, the interface I'(t) : ={(z,u(z,t)) | z € R} propagates to +o0.

Theorem 4.1. For R > 0 small enough, the critical pinning forces F, F for Eq. (7) can almost surely be
estimated by
F <¢*R"™ and F >min{p., AR)'"™"}- (AR)™.

Proof. The proof is very similar to the proofs from the last section, i.e., we want to use Proposition 3.1
and 3.2. Similar to Lemma 3.3, we define for g > Fy > 0 and p > 0 the function

B=Fo (1212 — p2) ifz € [—p,p|"
o 2n ’ ’
ug(z) : { %((1 —p)2—(1—|z|)?) elsewhere.

The function ug satisfies Eq. (5) pointwise with N = 1 and A = A. Moreover, if Fy = up™, then ug is a
continuous weak solution and hence also a viscosity solution.

We now discuss the lower bound. A simple computation shows that |ug| < p, if
Fy < min{u + 2np~*, Qnﬁ}.

and we can apply Proposition 3.1 with p = AR, & = ¢, u =

1-n

Therefore, F, exists if y < p
min{p,, (AR)!™"} and Fy = pp".
For the upper bound, we compute that max{uo} — min{ug} < 2p'=" — 2p if

dnp' =P — dnp — pp?

<
0 -2

Again, such an Fj exists if
dnp=P —dn — pp
1—-2p
which is true for p small enough as the left-hand side remains bounded and the right-hand side goes to

~+00. Therefore, we can apply Proposition 3.2 with p = R, ® = ¢, p = ¢* and Fy = pup™ and the result
follows. O

n—1

Hp

5. Conclusion and future work

In this work, we have considered dislocations and twin boundaries propagating through a medium con-
taining precipitates. We have shown that in materials with well-spaced, quasi-periodic arrangement of
spherical precipitates (or precipitates that are bounded from inside and outside by spheres), the critical
pinning force for dislocations scales, i.e., is bounded rigorously from both above and below by terms that
scale as the radius of the precipitates while that of twin boundaries scales as the square of the radius of
the precipitates. It follows that dislocations are more likely to get pinned than twin boundaries in crystals
with a well spaced, quasi-periodic arrangement of spherical precipitates. Future work would entail look-
ing at more general arrangements. The key technical difficulty in obtaining such a result is constructing
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non-stationary subsolutions to a random arrangement of precipitates (for instance generated by a Poisson
process).
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