A Caltech Library Service

X-shooter survey of disk accretion in Upper Scorpius. I. Very high accretion rates at age > 5 Myr

Manara, C. F. and Natta, A. and Rosotti, G. P. and Alcalá, J. M. and Nisini, B. and Lodato, G. and Testi, L. and Pascucci, I. and Hillenbrand, L. and Carpenter, J. and Scholz, A. and Fedele, D. and Frasca, A. and Mulders, G. and Rigliaco, E. and Scardoni, C. and Zari, E. (2020) X-shooter survey of disk accretion in Upper Scorpius. I. Very high accretion rates at age > 5 Myr. Astronomy and Astrophysics, 639 . Art. No. A58. ISSN 0004-6361.

[img] PDF - Published Version
See Usage Policy.

[img] PDF - Accepted Version
See Usage Policy.


Use this Persistent URL to link to this item:


Determining the mechanisms that drive the evolution of protoplanetary disks is a necessary step toward understanding how planets form. For this work, we measured the mass accretion rate for young stellar objects with disks at age > 5 Myr, a critical test for the current models of disk evolution. We present the analysis of the spectra of 36 targets in the ∼5–10 Myr old Upper Scorpius star-forming region for which disk masses were measured with ALMA. We find that the mass accretion rates in this sample of old but still surviving disks are similarly high as those of the younger (∼1−3 Myr old) star-forming regions of Lupus and Chamaeleon I, when considering the dependence on stellar and disk mass. In particular, several disks show high mass accretion rates ≳10⁻⁹ M⊙ yr⁻¹ while having low disk masses. Furthermore, the median values of the measured mass accretion rates in the disk mass ranges where our sample is complete at a level ∼60−80% are compatible in these three regions. At the same time, the spread of mass accretion rates at any given disk mass is still > 0.9 dex, even at age > 5 Myr. These results are in contrast with simple models of viscous evolution, which would predict that the values of the mass accretion rate diminish with time, and a tighter correlation with disk mass at age > 5 Myr. Similarly, simple models of internal photoevaporation cannot reproduce the observed mass accretion rates, while external photoevaporation might explain the low disk masses and high accretion rates. A possible partial solution to the discrepancy with the viscous models is that the gas-to-dust ratio of the disks at ∼5–10 Myr is significantly different and higher than the canonical 100, as suggested by some dust and gas disk evolution models. The results shown here require the presence of several interplaying processes, such as detailed dust evolution, external photoevaporation, and possibly MHD winds, to explain the secular evolution of protoplanetary disks.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Manara, C. F.0000-0003-3562-262X
Natta, A.0000-0002-4608-7995
Rosotti, G. P.0000-0003-4853-5736
Alcalá, J. M.0000-0001-8657-095X
Nisini, B.0000-0002-9190-0113
Lodato, G.0000-0002-2357-7692
Testi, L.0000-0003-1859-3070
Pascucci, I.0000-0001-7962-1683
Carpenter, J.0000-0003-2251-0602
Scholz, A.0000-0001-8993-5053
Fedele, D.0000-0001-6156-0034
Frasca, A.0000-0002-0474-0896
Rigliaco, E.0000-0003-1401-6444
Zari, E.0000-0003-3769-8812
Additional Information:© 2020 ESO. Article published by EDP Sciences. Received 13 March 2020; Accepted 11 May 2020; Published online 07 July 2020. Based on observations collected at the European Southern Observatory under ESO programmes 097.C-0378(A) and 0101.C-0866(A). We thank the anonymous referee for a detailed and constructive report that allowed us to improve the clarity of the paper. We thank S. Barenfeld and P. Cazzoletti for their help in the selection of the targets for the observations that were used for this work. CFM acknowledges an ESO fellowship. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement No. 823823 (DUSTBUSTERS). This work was partly supported by the Deutsche Forschungs-Gemeinschaft (DFG, German Research Foundation) – Ref no. FOR 2634/1 TE 1024/1-1. This work has made use of data from the European Space Agency (ESA) mission Gaia (, processed by the Gaia Data Processing and Analysis Consortium (DPAC, Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work is part of the research programme VENI with project number 016.Veni.192.233, which is (partly) financed by the Dutch Research Council (NWO). This work has been supported by the project PRIN-INAF Main Stream 2018 “Protoplanetary disks seen through the eyes of new generation instruments”.
Group:Astronomy Department
Funding AgencyGrant Number
European Southern Observatory (ESO)UNSPECIFIED
Marie Curie Fellowship823823
Deutsche Forschungsgemeinschaft (DFG)FOR 2634/1 TE 1024/1-1
Gaia Multilateral AgreementUNSPECIFIED
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)UNSPECIFIED
Istituto Nazionale di Astrofisica (INAF)UNSPECIFIED
Subject Keywords:accretion, accretion disks – protoplanetary disks – stars: pre-main sequence – stars: variables: T Tauri, Herbig Ae/Be
Record Number:CaltechAUTHORS:20200707-154716943
Persistent URL:
Official Citation:X-shooter survey of disk accretion in Upper Scorpius - I. Very high accretion rates at age > 5 Myr. C. F. Manara, A. Natta, G. P. Rosotti, J. M. Alcalá, B. Nisini, G. Lodato, L. Testi, I. Pascucci, L. Hillenbrand, J. Carpenter, A. Scholz, D. Fedele, A. Frasca, G. Mulders, E. Rigliaco, C. Scardoni and E. Zari. A&A, 639 (2020) A58; DOI:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:104261
Deposited By: Tony Diaz
Deposited On:07 Jul 2020 23:09
Last Modified:07 Jul 2020 23:09

Repository Staff Only: item control page