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Deep Learning for Predicting Significant Wave
Height From Synthetic Aperture Radar

Brandon Quach , Yannik Glaser , Justin Edward Stopa , Alexis Aurélien Mouche , and Peter Sadowski

Abstract� The Sentinel-1 satellites equipped with synthetic
aperture radars (SARs) provide near-global coverage of the
world�s oceans every six days. We curate a data set of collocations
between SAR and altimeter satellites and investigate the use of
deep learning to predict signi�cant wave height from SAR. While
previous models for predicting geophysical quantities from SAR
rely heavily on feature-engineering, our approach learns directly
from low-level image cross-spectra. Training on collocations from
2015 to 2017, we demonstrate on test data from 2018 that deep
learning reduces the state-of-the-art root mean squared error
by 50%, from 0.6 to 0.3 m when compared to altimeter data.
Furthermore, we isolate the contributions of different features to
the model performance.

Index Terms� CWAVE, deep learning, machine learning,
neural networks, Sentinel-1, signi�cant wave height, synthetic
aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) enables us to measure
submesoscale phenomena with unprecedented coverage,

resolution, and frequency. By measuring the backscatter from
the ocean surface, SAR captures information about ocean
swells and sea surface roughness at high spatial resolutions
(<10 m) [1], from which many oceanic, atmospheric, and
biologic phenomena can be identified [2]. The two Sentinel-
1 satellites of the European Space Agency (ESA) take regular
SAR measurements of the ocean surface, together covering the
entire globe every six days [3], and have already accumulated
more than 600 TB of level-1 (L1) wave mode data. However,
in order to take full advantage of this technology and the tor-
rent of data being produced, new methods are needed to extract
useful information from the high-dimensional measurements.

Sea state information extracted from SAR has been instru-
mental in understanding swell decay [1], [4], [5], improving
swell propagation in numerical models [6], and predicting
swell amplitudes and arrivals times by assimilation into numer-
ical models [7]. SAR can also be used to estimate extreme
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sea states in extra-tropical and tropical cyclones [8]–[10].
A geophysical quantity of particular interest is the significant
wave height, Hs, defined as the mean of the top third of a
wave height distribution, and estimating Hs from SAR has
immediate practical uses in alerting ships to dangerously large
waves. Traditional “inverse” algorithms for inferring Hs from
SAR are slow and perform poorly in windy conditions typical
of most storms [11], [12] because of the complex nonlinear
mechanism involved in the image synthesis when observing
moving scenes. As a result, several recent studies have focused
on data-driven statistical models [8]–[10], [13].

Previous data-driven approaches for predicting Hs from
SAR used small data sets of buoy observations as targets
for training (<5000 examples) [14]–[16], or numerical mod-
els of global wave generation such as WAVEWATCH3 [8],
[10], [13], [17]. The current state-of-the-art method uses a
neural network trained on the latter, and predicts Hs with
0.6-m root mean squared error (RMSE) [10]. However, the
WAVEWATCH3 targets are only an estimate of Hs and are
known to be unreliable in high sea states [18]–[20].

Furthermore, the neural network in [10] relies on a
reduced representation of the modulation cross-spectra: a set
of 22 engineered features known as CWAVE [13]. Such
dimensionality-reduction methods can be very useful, but
often come at the cost of discarding relevant information.
We hypothesize that the SAR image modulation spectra con-
tains additional information about Hs that is lost by the
CWAVE dimensionality-reduction step. We propose to learn
the relevant intermediate data representations using deep learn-
ing with artificial neural networks, similar to what has been
done in other fields from computer vision [21] to high-energy
physics [22]–[24].

In this work, we address both limitations of current data-
driven Hs prediction models. First, we curate a data set
containing direct observations of ocean wave heights by iden-
tifying 750,000 collocations of SAR and altimeter satellites.
Second, we train a statistical model to extract information
directly from low-level SAR image spectra using deep learn-
ing. Finally, we analyze the importance of the different inputs
to this model, and its performance in different settings.

II. DATA AND METHODS

A. Sensors, Collocations and Preprocessing

Our first contribution is a data set of historical measure-
ments from two types of polar-orbiting satellites: Sentinel-1
SAR satellites and altimeter satellites. Because the satel-
lites are in different orbits, their paths intersect, providing
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Fig. 1. Collocations between S-1 and satellite altimetry and moored buoys. (a) Total number of S-1/ALT collocations in 2 × 2� bins. (b) Locations of
the S-1/buoy collocations, the colors and size of the markers indicating the buoy Hs . (c) Histogram of Hs for S-1/ALT for WV1 and WV2, with the inset
showing the tail for extreme sea states. (d) Histogram of distance between the S-1/ALT acquisitions for WV1 and WV2. (e) Bar graph showing number of
collocations from each of the altimeter-SAR combinations.

measurements at roughly the same time and location. Specif-
ically, we use pairs of measurements taken within 3 h and
200 km apart; if this condition is satisfied by multiple mea-
surement pairs by the same set of satellites on the same
pass, then only the closest pair is used. This process results
in 753,777 collocation events from 2015 through 2018 that
are well-distributed geographically (Fig. 1). The majority of
collocations are within 100 km and 1 h (68% and 76%,
respectively). These events have both SAR imaging from
Sentinel-1 and Hs from an altimeter, and provide a high-
fidelity reference data set.

1) Sentinel-1: The S-1 mission is a constellation of two
(A&B) polar-orbiting, sun-synchronous satellites equipped
with SARs [3]. The two satellites have the same orbit and
cross the equator at approximately 0600 or 1800 local time,
with a 180� phase difference to provide an effective six-day
repeat cycle. The SARs are active sensors that emit and record
electromagnetic signals with wavelengths of 5.5 cm (C-band).
Although S-1 has four exclusive acquisition modes, in this
study, we focus solely on wave mode (WV), the default acqui-
sition mode over open ocean. WV was specifically designed
for sensitivity to the modulation of ocean surface gravity
waves with footprints of 20 × 20 km and a 4-m spatial
resolution. S-1 WV primarily operates at two incidence angles:
23� (WV1) and 36� (WV2) from nadir. Acquisitions are made
every 100 km along the orbit alternating between WV1 and
WV2 along its track so that images with the same incidence
angle are separated by 200 km. The S-1 WV can image the
ocean surface in either VV (default) or HH polarization; in this
study, we use VV data only, because this is the default mode

of S-1 and the number of HH acquisitions is insufficient to
create a robust model for the global ocean.

We show the spatial coverage of collocations between
S-1 WV and altimeters in Fig. 1(a). The spatial coverage
is the same as the entire S-1A/B monthly coverage. Every
month there are � 32,000 observations for each incidence angle
and S-1A/B, giving � 130,000 observations per month. There
are few WV acquisitions over the Arctic Ocean, Northeast
Atlantic, coastal seas, and closed seas (Red, Black, Mediter-
ranean, and Caribbean seas) because S-1 uses other imaging
modes in these regions. S-1A and S-1B went into routine
data collection after their calibration and validation stages
in October 2015 and July 2016, respectively. This work is
based on the image modulation spectra, NRCS (or �0), and
normalized variance (nv) of the image intensity included in
the ESA-Copernicus WV level 2 (L2) product.

2) Altimeter Data: We leverage a multiplatform altimeter
data product which has been calibrated and quality controlled
by Young et al. [25] and Ribal and Young [26]. The 1-Hz
altimeter data set estimates significant wave heights with
spatial footprints of 6–10 km and is an updated version of [27]
that includes all available altimeter missions. In particular,
it contains six overlapping mission from 2014 to 2018: Jason-2
(JA2), CRYOSAT-2 (CRY), Haiyan-2 (HY2), Altika SARAL
(SRL), Jason-3 (JA3), and Sentinel-3A (S3A). Each mission is
quality controlled and calibrated with respect to moored buoys
and cross-calibrated between platforms. The cross-calibration
is extremely important as it enables the collective merged
database to be relatively consistent between platforms and
improves consistency over time [25]. An altimeter Hs RMSE
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