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Abstract

In this paper, we propose a new stochastic simulation-based methodology for pricing

discretely-monitored double barrier options and estimating the corresponding proba-

bilities of execution. We develop our framework by employing a versatile tool for the

estimation of rare event probabilities known as subset simulation algorithm. In this

regard, considering plausible dynamics for the price evolution of the underlying asset,

we are able to compare and demonstrate clearly that our treatment always outper-

forms the standard Monte Carlo approach and becomes substantially more efficient

(measured in terms of the sample coefficient of variation) when the underlying asset

has high volatility and the barriers are set close to the spot price of the underlying

asset. In addition, we test and report that our approach performs better when it is
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compared to the multilevel Monte Carlo method for special cases of barrier options

and underlying assets that make the pricing problem a rare event estimation. These

theoretical findings are confirmed by numerous simulation results.

JEL classification: G13, C15

Keywords: Simulation; Barrier options pricing; Rare event; Path–dependent deriva-

tives; Discrete monitoring

1 Introduction

A barrier option is among the most actively-traded path-dependent financial derivatives

whose payoff depends on whether the underlying asset1 has reached (or exceeded) a

predetermined price during the option’s contract term (e.g., Hull, 2009; Dadachanji,

2015). In the financial industry, a barrier option is traded, because it more accurately

represents investor’s beliefs2 and offers a more attractive risk–reward relation than the

corresponding plain–vanilla option.3 Further, a barrier option’s advantage stems from

its lower price that reflects the additional risk that the spot price might never reach

(knock–in) or cross (knock–out) the barrier throughout its life.4

In practice, to have a double barrier option with a very small probability of exe-

cution (i.e., to be a very cheap option), we should either set the barriers close to the

spot price(s) of the underlying asset(s) at contract initiation or the underlying asset(s)

need to be of high volatility. Apparently, in both ways, the execution of the option

will be a rare event.5 In this paper, we develop an effective framework to deal with

1In practice, mostly currencies, commodities and interest rates are used as the underlying asset(s).
2Actually, a down-and-out barrier call option can serve the same purpose as a plain–vanilla call, but at a

much lower cost given the investor has a strong indication that the price of the underlying asset will increase.
3Note that the payoff at maturity of a barrier option is identical to that of a plain–vanilla European

option, in case the price of the underlying asset has remained above the barrier (for a knock–out barrier
option) or zero otherwise.

4Barrier options tend to be cheaper than the corresponding plain vanilla ones because they expire more
easily and are less likely to be executed (Jewitt, 2015). Further discussion about ins and outs of barrier
options can be found in Derman and Kani (1996, 1997).

5We should emphasise here that a barrier option on high volatility underlying asset(s) can be used in a
similar way as a cheap, deep out–of–the–money option, serving as a hedge to provide insurance in a financial
turmoil, given their volatility–dependence (Carr and Chou, 2002). Moreover, according to Andersen et al.
(2001), the mean realized annual volatility of the thirty stocks in the Dow Jones Industrial Average (DJIA)
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barrier options, given that these are almost exclusively over-the-counter (OTC)–traded

instruments. In particular, we consider the case of a high volatility underlying asset(s)

that tackles an actual yet challenging problem in computational finance, which to our

knowledge has not been explicitly studied so far.

The main contributions of this paper can be summarized as follows. First, we de-

velop a novel stochastic simulation-based methodology for pricing discretely-monitored

double barrier options which is based on the subset simulation (SubSim) method, a

Markov Chain Monte Carlo (MCMC)–based algorithm originally introduced by Au

and Beck (2001) to deal with complex engineered systems.6

Second, we calculate the fair price for discretely-monitored double barrier options on

high volatility asset, and when, the barriers set near the starting price of the underlying

asset. Further, we show that the proposed methodology is insensitive to the choice of

the underlying asset(s) dynamics. However, for illustration purposes in our extensive

simulation study, we consider two processes for the evolution of the asset price: first, a

standard geometric Brownian motion (GBM) and second, the double exponential jump

diffusion process proposed in Kou (2002). Under this challenging setting, the very small

exercise (rare event) probability corresponds to the probability of the barrier option to

be executed at maturity (i.e., the price of the underlying asset to remain within the

barriers). This setting in a simple Monte Carlo simulation (MCS) setup results – with

an extremely large probability – in asset price trajectories which cross the barriers,

rendering the barrier option invalid before maturity.

Third, we show by measuring the coefficient of variation (CV), and the mean

squared error (MSE) that the proposed SubSim–based algorithm is an efficient tech-

nique for the pricing of such derivatives. In particular, the SubSim estimator has a

CV which is O(| log pE |r/2), where pE is the execution probability and 2 ≤ r ≤ 3 is a

constant. Comparing this against the MCS estimator whose CV is O(p
−1/2
E ) and for

very small values of pE , we verify in a straightforward manner that the latter increases

is approximately 28% (ranging between 22% and 42%) while it is not uncommon to record stocks with
volatility levels between 33% and 40%.

6This is later extended by Zuev et al. (2015) to complex networks (see, also in Au and Wang, 2014).
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at a dramatically faster pace compared to the SubSim estimator. Moreover, the MSE

of the derived SubSim estimator is O(p2E | log pE |r−1m−1) which is decreasing with pE .

We finally show that the computational cost (i.e., the complexity) of the SubSim es-

timate for the discretely-monitored double barrier option price can be bounded above

by an amount proportional to |log pE |mh−1s , where m is the number of samples per

subset and hs is the time step of the discretized underlying stochastic process.

Lastly, we compare our results against another popular simulation-based method-

ology, namely the multi–level Monte Carlo (MLMC) of Giles (2008b,a) approach and

show that for very small values of pE , the SubSim estimator outperforms the MLMC

estimator in terms of the observed CV. To conclude, our method might be seen as

a reliable alternative to price path–dependent options that complements MLMC for

special cases of underlying assets and barrier setups.

Our paper is organized as follows. In Section 2, the connection with the existing

literature on barrier options is provided. In Section 3, we show how SubSim can be

used specifically for the estimation of the execution probability and the option payoff

at maturity. Section 4 subsequently presents the main theorem and its proof. This

establishes the limiting behaviour of the MSE and the computational complexity for

a broad category of applications. Finally, numerical results and comparisons with the

standard MCS and the MLMC methods are presented in Sections 5 and 6 to provide

support for the theoretical analysis. Some concluding remarks and directions for further

research follow in Section 7.

2 Literature Review

As we have seen before, a barrier option is typically classified as either knock -

in or -out depending on whether it is activated or expires worthless when the price

of the underlying asset crosses a certain level (i.e., the barrier) (Derman and Kani,

1996, 1997; Guardasoni and Sanfelici, 2016). Barrier options were estimated that they

accounted for approximately half the volume of all traded exotic options (Luenberger
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and Luenberger, 1999). Despite the 2007–08 credit crunch and the subsequent drop

in the demand for path–dependent instruments, barrier options can still be a useful

investment or hedging vehicle when the structure and the risks of the product are

comprehensible.7

Overall, the pricing of barrier options is a very challenging problem due to the

need to monitor the price of the underlying asset and compare it against the barriers

at multiple discrete points during the contract life (Kou, 2007). In essence, we have

to solve a multi–dimensional integral of normal distribution functionals, where the

dimension of the integral is defined by the number of discrete monitoring points (Fusai

and Recchioni, 2007).

Computationally, certain barrier options, such as down-and-out options, can be

priced via the standard Black–Scholes–Merton (BSM) (Merton, 1973)’s paper. This

idea can be further extended to more complicated barrier options, which can be priced

using replicating portfolios of vanilla options in a BSM framework (Carr and Chou,

2002). All these approaches, however, suffer from the BSM model’s dependence on

a number of assumptions which are not met in real–world trading (e.g., Hull, 2009).

As a result, the estimates we obtain for option prices under the equivalent martingale

measure are often inaccurate. In addition, we find models for barrier options with

analytical solutions, such as jump-diffusion models (Kou, 2002; Kou and Wang, 2004),

the constant elasticity of variance (CEV) model (Boyle and Tian, 1999; Davydov and

Linetsky, 2001), exact analytical approaches (Fusai et al., 2006), the Hilbert transform-

based (Feng and Linetsky, 2008) or methods built on Lévy processes (Jeannin and

Pistorius, 2010; Fusai et al., 2016; Lian et al., 2017; Phelan et al., 2018b).

Another set of methods for pricing barrier options based on solving partial differ-

ential equations (PDEs) was proposed in Boyle and Tian (1998), Zvan et al. (2000),

Buchen and Konstandatos (2009), Zhu and De Hoog (2010) and Golbabai et al. (2014).

Although these methods are generally powerful, they depend on being able to accu-

7For an up-to-date estimate of their traded volume the interested reader is referred to the OTC deriva-
tives statistics for 2018 by the Bank of International Settlements, found here: https://www.bis.org/

statistics/derstats.htm
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rately model the option with PDEs and cannot be used in all circumstances. Other ap-

proaches used in the pricing of exotic derivatives include the method of lines (Chiarella

et al., 2012), where the Greeks are also estimated, robust optimization techniques

(Bandi and Bertsimas, 2014), applicable also to American options, finite–difference

based approaches (Wade et al., 2007), where a Crank–Nicolson smoothing strategy

to treat discontinuities in barrier options is presented, and regime–switching models

(Elliott et al., 2014; Rambeerich and Pantelous, 2016).

MCS is often used for option pricing (Schoutens and Symens, 2003) and particu-

larly for barrier options (Glasserman and Staum, 2001). In the latter, an importance

sampling (IS) based method is developed for the pricing of several types of barrier

options. Although IS is known to be an efficient algorithm for sampling, in a rare

event estimation context, it is not as efficient as SubSim when sampling is performed

in high-dimensional spaces, i.e., the dimension N of the approximated equation is very

large (see, Au and Beck, 2003; Katafygiotis and Zuev, 2008, for the details). The main

reason for the exponential drop of efficiency of the standard IS in high-dimensional

spaces is that the importance sampling density, employed within IS, should be very

carefully tailored to the problem under consideration, which has been proved to be a

very difficult task (Snyder et al., 2008; Beskos et al., 2014). The theoretical aspects of

this phenomenon are described in (Bengtsson et al., 2008). More recently the “collapse

of IS in high dimensions” is discussed in Agapiou et al. (2017).

The main advantage of MCS over other pricing methods is its model–free property

and its non–dependence on the dimension N of the approximated equation. The latter

is an important property since as N →∞ (∆t→ 0), the price of a discretely monitored

barrier option converges to that of a continuously monitored one (Broadie et al., 1997;

Phelan et al., 2018a). However, MCS has a serious drawback, as high volatility makes

it difficult for the asset to remain within barriers -especially when the gap between

them is small- which in turn, makes a positive payoff a rare event (Glasserman et al.,

1999). As a result, any standard MCS method will be inaccurate and highly unstable

(Geman and Yor, 1996). This motivates the development of more advanced stochastic
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simulation methods which inherit the robustness of MCS, and yet are more efficient

in estimating barrier option prices. A range of stochastic simulation techniques for

speeding up the convergence have been proposed, such as the MCS approximation

correction for constant single barrier options (Beaglehole et al., 1997), the simulation

method based on the large deviations theory (Baldi et al., 1999) and the sequential

MCS method (Shevchenko and Del Moral, 2017).

3 Barrier option pricing with subset simulation

The starting point in option pricing is modeling the price St of the underlying asset. In

our study, we consider two dynamics for the evolution of asset price; we assume that the

underlying asset price follows either a GBM or a more complex double exponential jump

diffusion process with i.i.d. price jumps (Kou, 2002; Kou and Wang, 2004). Although

both models are well established and widely used in academic research, particularly

for option pricing, we present briefly here their basic features.

3.1 GBM

Under a standard GBM, the price St of the underlying asset follows the stochastic

differential equation (SDE)

dSt = Stµtdt+ StσtdWt, (1)

a risk–neutral process, where µt is the drift, σt is volatility, and Wt is the standard

Brownian motion defined on a common probability space (Ω,F ,P). The discretized

solution of Eq. (1) can then be written as follows

Sn = Sn−1 exp

((
µn −

σ2n
2

)
∆t+ σn

√
∆tZn

)
, (2)

where Z1, . . . , ZN ∼ N (0, 1) are i.i.d. standard normal random variables.
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3.2 Double exponential jump diffusion

The main contribution of Kou’s jump diffusion model is the incorporation of a discrete

jump component into the continuous part of the classic diffusion model as presented

on the RHS of Eq. (1). The price St then evolves according to the following SDE:

dSt = Stµtdt+ StσtdWt + d

( Nt∑
i=1

(Vi − 1)

)
, (3)

where Wt is the standard Brownian motion as in Eq. (1) defined on the same proba-

bility space, Nt is a Poisson process with rate λ (i.e., the expected number of jumps)

and {Vi} is a sequence of i.i.d. random variables which satisfies that X = log V has

an asymmetric double exponential distribution with probability density function (pdf)

given by

fX(x) = pη1e
−η1x1R+(x) + qη2e

η2x1R+(x). (4)

In Eq. (4), η1 > 1, η2 > 0, and they control the jump magnitude, p+q = 1 with p, q ≥ 0

and they represent the probability for an upward and a downward jump, respectively.

It follows that,

X = log V
d
=

 ξ+ ,with probability p

−ξ− ,with probability q

 , (5)

where ξ+ and ξ− are exponentially distributed random variables with mean values

1/η1 and 1/η2, respectively, while the
d
= symbol denotes equality in distribution. The

solution to the SDE in Eq. (3), in its discretized form, yields the following asset price

dynamics:

Sn = Sn−1 exp

((
µn −

σ2n
2

)
∆t+ σn

√
∆tZn

) Nn∏
i=1

Vi, (6)

where again Z1, . . . , ZN ∼ N (0, 1) are i.i.d. standard normal random variables. For

simplicity, both in the GBM case in Eq. (1) and in the jump diffusion model in Eq. (3),

µ(t) and σ(t) are time invariant and are set equal to µ and σ. In practice, our pric-

ing framework can be applied potentially to any plausible underlying price dynamics;

alternatively, we could use the constant elasticity of variance (CEV) process in place
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of the double exponential jump diffusion process. Notwithstanding the existence of

analytical or semi-analytical solutions for the pricing of path-dependent securities (see

Davydov and Linetsky, 2001; Sesana et al., 2014, for applications of the CEV model

in pricing exotics) under the CEV process, its underlying return distribution exhibits

a thinner tail compared to the jump diffusion model. As a result it fails to capture the

leptokurtic feature of asset returns to the same extent as the latter (Kou, 2002).

3.3 Subset simulation for barrier options

We first consider how SubSim can be used specifically for pricing barrier options and

why it is especially efficient for options with small probability of execution. The goal

is to estimate the price P at t = 0 given by the following discounted expectation under

the risk–neutral measure Q:

P = E

[
h(SN )

N∏
n=1

1[Ln,Un](Sn)

]
, (7)

where h(SN ) is the payoff at the contract maturity (t = T ), h(SN ) = max{SN −K, 0},

K is the strike price, and 1[A,B](x) stands for the indicator function: 1[A,B](x) = 1 if

A ≤ x ≤ B, where A and B are the upper and lower barriers respectively, and zero

otherwise.

In order to use the SubSim method, we need to bring the problem in Eq. (7) in a

form suitable to become an input for the method. Suppose that the time–evolution of

the dynamic system under study (e.g., evolution of the asset price Sn) is modeled by

the following discrete model:

Sn = F (Sn−1, Un), n = 1, 2, . . . , N, (8)

where Sn is the price of the underlying asset at time tn, S = (S1, . . . , SN ) is the

trajectory of the underlying asset, Un is a random input at time tn, and F is a certain

function that governs the evolution of S (i.e., the GBM Eq. (1) or the jump diffusion in
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Eq. (3) in our case). Let g(S) be the performance function – a function related to the

quantity of interest S – (e.g. the maximum value of the asset price g(S) = max
n=1,...,N

Sn).

We say that a target event E occurs if g(S) exceeds a critical threshold α:

E = {U = (U1, . . . , UN ) : g(S(U)) ≥ α} ⊂ RN . (9)

The central idea behind SubSim is to break down the “rare” event of interest E into

a series of “less rare” events that have easier-to-compute probabilities. This idea is

implemented by considering a collection of nested subsets starting from the entire input

space RN and finishing at the target rare event,

RN = E0 ⊃ E1 ⊃ . . . ⊃ EL ≡ E. (10)

The intermediate events Ei can be defined by simply repeatedly relaxing the value of

the critical threshold α in Eq. (9),

Ei = {U = (U1, . . . , UN ) : g(S(U)) ≥ αi} , α1 < α2 < . . . < αL ≡ α. (11)

To make SubSim directly applicable, we need to specify suitable functions for the

underlying asset price trajectory and the expected payoff at maturity. Let E ⊂ RN

be a set of vectors Z = (Z1, . . . , ZN ) that lead to a positive payoff. In other words,

E represents the target event for our problem and consists of all vectors Z that result

into those asset price trajectories that remain within barriers and end up above the

strike price. This is schematically illustrated in Figure 1. Let π be the payoff function,

π(Z) =


SN −K, if Z ∈ E,

0, if Z /∈ E,
(12)

equal to the payoff of a plain vanilla call in case the asset price trajectory remains

within the barriers and ends up above the strike price or zero otherwise.
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Figure 1: Target event. The target event E consists of all Z-vectors that lead to the positive
payoff (option execution). The mapping between Z- and S-spaces is given by either Eq. (2) or
Eq. (6).

Z-space
Z

N

Z
1

E

Positive payoff

S-space

K

L
N

U
1

S
1

L
1

S
N

U
N

Eq. (2)

As for the performance function, in the case of option pricing, this quantifies how far

the asset price trajectory S = (S1, . . . , SN ) lies from the positive payoff, or equivalently,

how far Z = (Z1, . . . , Z) is from E. We define it as follows:

g(S) =

N∑
n=1

gn(Sn), (13)

where gn(Sn) quantify how far the asset prices Sn is from the barriers Ln, Un and strike

K,

gn(Sn) =



Un − Sn, if Sn > Un,

Sn − Ln, if Sn < Ln,

0, otherwise.

for n = 1, . . . , N − 1.

gN (SN ) =



UN − SN , if SN > UN ,

SN −K, if Sn < K,

0, otherwise.

(14)

The difference between gn for n = 1, 2, . . . , N − 1 and gN stems from the fact that

at maturity tN = T , the role of the lower barrier is played by the strike price K. The

performance function g is schematically shown in Figure 2. In terms of g, the positive-
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Figure 2: Performance function. The function g(S) quantifies how far the asset price trajectory
S is from the positive payoff, which occurs when S stays between the barriers U and L and ends up
above the strike K. The value of g(S) on the depicted trajectory is the negative sum of the heights
of the vertical bars above the upper barrier (red), below the lower barrier (black), and ending below
the strike (purple).

Time t

A
ss

et
 p

ric
e 

 S
t

U

t
0
=0 t

N
=T

L

K=S
0

payoff event E can be written, according to the definition of the performance function

g(S) in Eq. (14), as follows:

E = {Z = (Z1, . . . , ZN ) : g(S(Z)) ≥ 0} , (15)

where α is now replaced by zero and the defined performance function brings the

problem of estimating the probability of positive payoff pE into the general SubSim

framework developed in Au and Beck (2001). Then, combining Eqs. (12) and (14),

the option price, which in our case is the expected payoff of the contract at maturity,

can be rewritten as follows:

P = E[π(Z)]

= E[π(Z)|Z ∈ E]P(Z ∈ E) + E[π(Z)|Z /∈ E]P(Z /∈ E)

= E[π(Z)|Z ∈ E]P(Z ∈ E) = E[SN −K|Z ∈ E]P(E)

= P(E)(E[SN |Z ∈ E]−K).

(16)

Now, the problem boils down to estimating the execution probability, pE = P(E), and
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the expectation of the payoff at maturity, given by the second term in the product of

Eq. (16). The analysis carried out in the next section is insensitive to the choice of

the underlying price dynamics; the results hold regardless of whether the GBM or the

jump diffusion or another stochastic process is used.

4 Probability of contract execution pE and op-

tion payoff h via SubSim

We start with the calculation of pE to notice that given the sequence in Eq. (10),

the small probability pE of rare event E can be written as a product of conditional

probabilities:

pE = P(EL) = P(EL|EL−1)P(EL−1)

= P(EL|EL−1)P(EL−1|EL−2)P(EL−2) = . . . =

L∏
i=1

P(Ei|Ei−1).
(17)

By choosing the intermediate thresholds, αi, appropriately (in the actual implementa-

tion of SubSim described below, αi are chosen adaptively on the fly), we can make all

conditional probabilities P(Ei|Ei−1) sufficiently large, and estimate them efficiently by

MC-like simulation methods. In fact, the first factor in the right-hand side of Eq. (17),

P(E1|E0) = P(E1), can be directly estimated by MCS:

P(E1) ≈
1

m

m∑
i=1

1E1

(
U (i)

)
, U (1), . . . , U (m) ∼ fU . (18)

However, estimating the remaining factors, P(Ei|Ei−1), for i ≥ 2, is not trivial, since

this requires sampling from the conditional distribution, fU (u|Ei−1) ∝ fU (u)IEi−1(u),

which is a computationally demanding process, especially at later levels, where Ei−1

becomes a rare event. In SubSim, this is achieved by using the so-called modified

Metropolis algorithm (MMA) (Au and Beck, 2001; Zuev and Katafygiotis, 2011), which

belongs to a large family of MCMC algorithms (Liu, 2001; Robert and Casella, 2004)
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for sampling from complex probability distributions.8

To sample from fU (u|Ei−1), MMA generates a Markov chain whose stationary dis-

tribution is fU (u|Ei−1). The key difference between MMA and the original Metropolis

algorithm is how the “candidate” state of a Markov chain is generated (in Appendix A,

the MMA algorithm used for the sampling is presented). Then, using the detailed bal-

ance equation, it can be shown (see Au and Beck, 2001, for the details) that if U (j) is

distributed according to the target distribution, U (j) ∼ fU (u|Ei−1), then so is U (j+1),

and fU (u|Ei−1) is thus indeed the stationary distribution of the Markov chain generated

by MMA. Now, to estimate the small probability of execution, pE , the method starts

by generating m MCS samples, U (1), . . . , U (m) ∼ fU , and computing the corresponding

system trajectories, S(1), . . . , S(m), via Eq. (8) and performance values, g
(i)
U = g(S(i)).

Without loss of generality, we can assume that

g
(1)
U ≥ g

(2)
U ≥ . . . ≥ g

(m)
U . (19)

Indeed, to achieve this ordering, we can simply renumber the samples accordingly.

Since E is a rare event, all U (i) /∈ E with large probability. The ordering in Eq. (19)

means however that, in the metric induced by the performance function, U (1), is the

closest sample to E, U (2) is the second closest, etc. Let us define the first intermediate

threshold, α1, as the average between the performance values of the m̃th and (m̃+ 1)th

system trajectories, where m̃ = βm with β ∈ (0, 1):

α1 =
g
(βm)
U + g

(βm+1)
U

2
, 0 < β < 1.9 (20)

8The MMA algorithm is a component-wise modification of the original (Metropolis et al., 1953) algorithm,
which is specifically tailored for sampling in high dimensions, where the original algorithm is known to
perform poorly (see, Katafygiotis and Zuev, 2008, for the details).

9In our context, β represents the “level” probability as introduced in Au and Beck (2001), which controls
for the intermediate target events. The way we choose β is not a systematic, but an adaptive one. In essence,
we define β via the choice of the intermediate target thresholds αi, in such a way that all the intermediate
conditional probabilities are equal to β. In practice, we choose the value of β = 0.1, which seems to work
sufficiently well for most of the cases. A more systematic way to set β can perhaps be an interesting area of
research, however, it is out of the scope of the present research.

14

 Electronic copy available at: https://ssrn.com/abstract=3132336 



Setting α1 to this value has two important corollaries: (1) the MCS estimate of P(E1)

given by Eq. (18) is exactly β, and (2) samples U (1), . . . , U (βm) are i.i.d. random

vectors distributed according to the conditional distribution fU (u|E1). In the next

step, SubSim generates m̃ = βm Markov chains by MMA starting from m̃ most closest

to E samples U (1), . . . , U (βm) as “seeds”:

U (i) = V (i,1) MMA−→ V (i,2) MMA−→ . . .
MMA−→ V (i,l). (21)

Since by construction, all seeds are in the stationary state, U (i) ∼ fU (u|E1), i =

1 . . . , m̃, so are all Markov chains states, V (i,j) ∼ fU (u|E1), j = 1, 2, . . . , l. The length

of each chain is l = 1/β, which makes the total number of states, m̃l = m. To simplify

the notation, let us denote samples V (i,j) by simply V (1), . . . , V (m). Next, the second

intermediate threshold, α2, is similarly defined as follows:

α2 =
g
(βm)
V + g

(βm+1)
V

2
, (22)

where g
(1)
V ≥ g

(2)
V ≥ . . . ≥ g

(m)
V are the ordered performance values corresponding to

samples V (1), . . . , V (m). Again, by construction, P(E2|E1) ≈ β and V (1), . . . , V (βm) ∼

fU (u|E2). The SubSim method, schematically illustrated in Figure 3, proceeds in

this way by directing Markov chains towards the rare event E until it is reached and

sufficiently sampled. Specifically, it stops when the number mE of samples in E, which

a priori 0 ≤ mE ≤ m, is mE ≥ βm. All but the last factor in the right-hand side of

Eq. (17) are then approximated by β and P(E|EL−1) ≈ mE/m. This results into the

following estimate:

pE ≈ p̂SubSimE = βL−1
mE

m
, (23)

where L10 is the number of subsets in Eq. (17) required to reach E. The total number

10The choice of the total number of subsets (levels) L is decided endogenously by the method, based on
how rare the event in question is. A rarer event, apparently, needs more levels to be accurately estimated.
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of samples used by SubSim is then

M = m︸︷︷︸
MCS

+m(1− β)(L− 1)︸ ︷︷ ︸
MMA

. (24)

The first factor, the probability of positive payoff pE = P(E), can be readily estimated

by SubSim,

Figure 3: Schematic illustration of Subset Simulation. First, Monte Carlo samples
U (1), . . . , U (m) are generated. Next, m̃ = βm “seeds” (the closest samples to E) are chosen and
MMA is used to generate V (1), . . . , V (m) from these seeds in the direction of E. The SubSim algo-
rithm proceeds in this way until the target rare event E has been reached and sufficiently sampled.
In this visualization, m = 6 and β = 1/3.
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P(E) ≈ p̂SubSimE . (25)

Moreover, the conditional expectation in Eq. (16) for the terminal asset price can

be estimated using the samples generated by SubSim at the last level. Namely, let

Z(1), . . . , Z(m) be the last batch of MMA samples generated by SubSim before it stops,

Z(1), . . . , Z(m) ∼ N (z|EL−1), EL−1 ⊃ EL ≡ E, (26)

where N (z|A) ∝ N (z)IA(z) denotes the standard multivariate normal distribution

conditioned on A. By construction (this is the SubSim stopping criterion), at least
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m̃ = βm of these samples are in E. Let

Z(1), . . . , Z(m∗) ∼ N (Z|E), βm ≤ m∗ < m, (27)

denote those samples. The conditional expectation can then be estimated as follows:

E[SN |Z ∈ E] ≈ ÊSubSim
Q =

1

m∗

m∗∑
i=1

SN (Z(i)), (28)

where SN (Z(i)) = SN (Z
(i)
1 , . . . , Z

(i)
N ) is the final value of the asset price. The expression

in Eq. (28) in essence gives the expected terminal price of the underlying asset under the

risk–neutral measure as the average of all the generated asset price paths. Combining

Eq. (25) and Eq. (28), we obtain the SubSim estimate of the option price:

P ≈ P̂ SubSim = p̂SubSimE (ÊSubSim
Q −K). (29)

SubSim as described above, yields an estimator for the execution probability, pE , which

scales like a power of the logarithm of pE (Au and Beck, 2001):

δ
(
p̂SubSimE

)
=

√
(1 + γ)(1− β)

Mβ(| lnβ|)r
| ln pE |r ∝ | ln pE |r/2, (30)

where γ is a constant that depends on the correlation of the Markov chain states and

2 ≤ r ≤ 3. Comparing Eq. (30) against the CV of a standard MCS method (Liu, 2001;

Robert and Casella, 2004)

δ
(
p̂MC
E

)
=

√
Var

[
p̂MC
E

]
E
[
p̂MC
E

] =

√
1− pE
MpE

∝ p−1/2E , (31)

reveals a serious drawback of MCS, as it makes it inefficient in estimating small prob-

abilities of rare events. Indeed, as pE → 0, then δ
(
p̂MC
E

)
≈ 1/

√
MpE . This means

that the number of samples M needed to achieve an acceptable level of accuracy is

inversely proportional to pE , and therefore very large, M ∝ 1/pE � 1. Therefore, for
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rare events, where probabilities are small pE � 1, the CV of SubSim is significantly

lower than that of MCS, δ
(
p̂SubSimE

)
� δ

(
p̂MC
E

)
. This property guaranties that SubSim

produces more accurate (on average) estimates of small probabilities of rare events.

In case the asset price S has high volatility, then discrete asset price trajectories

S1, . . . , SN will have large variability and with large probability will either cross the

barriers and expire or end up below the strike. This means that having a positive payoff

will be a rare event. This suggests – and we confirm this by simulation in Section 6

– that SubSim should be substantially more efficient in estimating prices of barrier

options on high volatility assets than MC-based methods.

5 Complexity theorem

The complexity theorem provides upper bounds for the MSE and the computational

complexity/cost of the SubSim estimator P̂ for the option price P at t = 0, by exam-

ining their limiting behavior. Both upper bounds are given in terms of the execution

probability, pE . Note that the theorem does not make any assumptions regarding the

underlying SDE or the functional of the solution used. We want to re-emphasise here

that our treatment is insensitive to the choice of the underlying price dynamics.

However, before we proceed to showing the main result in this section, we introduce

two lemmas in order to establish important statistical properties of the barrier option

price estimator P̂ as regards its bias and its corresponding CV.

Lemma 1. The fractional bias of the SubSim estimator P̂ is of order 1/M , for every

M . That is: ∣∣∣∣∣E
[
P̂ − P
P

]∣∣∣∣∣ = O

(
1

M

)
, (32)

where M denotes the total number of samples.

Proof. For each simulation level i, we can define the following standardized variable:

Zi =
P̂i − Pi
σi

=
̂pi(ST −K)− pi(ST −K)

σi
, (33)

18

 Electronic copy available at: https://ssrn.com/abstract=3132336 



where it is clear that the mean and variance equal to E[Zi] = 0 and E[Z2
i ] = 1,

respectively. We can solve Eq. (33) for P̂i to get P̂i = Pi + σiZi. We also have that

P̂ − P
P

=
L∏
i=1

P̂i − Pi
Pi

=
L∏
i=1

̂pi(ST −K)+ − pi(ST −K)+

pi(ST −K)+
=

L∏
i=1

̂pi(ST −K)+

pi(ST −K)+
−1, (34)

where L is the number of simulation levels the SubSim generates. Using Eq. (33), we

can rewrite Eq. (34) as

P̂ − P
P

=

L∏
i=1

(1 + σiZi)− 1. (35)

Taking the expectation of Eq. (35), using E[Zi] = 0, and following exactly the similar

steps of the proof of Proposition 1 in Au and Beck (2001), we derive the Eq. (32),

which shows that the SubSim estimate for the barrier option price, P̂ , is asymptotically

unbiased with bias equal to O(1/M).

Remark 1. The result in Eq. 32 should come as no surprise. Given that the payoff of

the option is calculated only at the final simulation level L, the final estimation of the

exercise probability, pE, requires only one step, which adds no computational complexity

to the estimation.

We next establish a result for the CV of the SubSim estimate P̂ introducing the

following lemma:

Lemma 2. The squared CV, δ2, of the SubSim estimator P̂ is of order 1/M , for every

M . That is:

δ2 = E
[
P̂ − P
P

]2
= O

(
1

M

)
, (36)

where M denotes the total number of samples.

Proof. Rewriting the expectation E
[
P̂−P
P

]2
in terms of the product

∏L
i=1 P̂ /P − 1 =∏L

i=1(1+σiZi)−1 ensures that the same sequence of steps, as in the proof of Lemma 1,

can be also applied here. This shows that P̂ is a consistent estimator for P and its CV

δ is O(1/
√
M).
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With the two lemmas above, we show that the SubSim estimate for the option price

P̂ has the same statistical properties as the exercise probability, pE . Subsequently,

results established for the second can be used for the first and vice versa. We now

use the results in the two lemmas to derive the upper bounds for the MSE and the

computational complexity for the SubSim estimate, P̂ .

Theorem 1. The SubSim estimator, P̂ , for a functional of the solution Ŝ to a given

SDE has

(i) the MSE bounded from above by c1p
2
E | log pE |r−1m−1,

(ii) with computational cost which has an upper bound of c2(|log pE |)mh−1s ,

where c1, c2 are constants, pE is the probability of positive payoff at maturity, m is the

number of samples per subset, 2 ≤ r ≤ 3 is a parameter dependent on the correlation

between the intermediate execution probabilities, and hs is the time-step used in the

discretization of the given SDE.

Proof. (i) From Eq. (30), we have that the squared CV of the exercise probability, pE ,

is equal to

δ2 =
(1 + γ)(1− β)

β| log β|rM
| log pE |r, (37)

where γ is a constant related to the correlation between the states of the Markov chains

used for the sampling at different levels, β is the level probability and M is the total

number of samples used by the method. Choosing L = log pE/ log β the following

holds:

δ2 =
(1 + γ)(1− β)

βLm
|L|r

=
(1 + γ)(1− β)

β

∣∣∣∣ log pE
log β

∣∣∣∣r−1m−1
= O(log pr−1E m−1),

(38)

using now that the total number of samples, M = Lm, where L is the number of

subsets (levels) and m the samples per subset. To estimate the upper bound for the
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MSE of P̂ , we notice that

δP̂ =

√
Var[P̂ ]

E[P̂ ]
=

√
MSE[P̂ ]− Bias[P̂ , P ]2

E[P̂ ]
. (39)

Squaring both sides of Eq. (39) gives

δ2
P̂

=
MSE[P̂ ]− Bias[P̂ , P ]2

E[P̂ ]2
, (40)

which equivalently can be written as

MSE[P̂ ] = δ2
P̂
E[P̂ ]2 + Bias[P̂ , P ]2. (41)

To bound the MSE in Eq. (41), we can make use of Lemmas 1 and 2 which show that

the first term of the MSE is O(1/M) while the second term is O(1/M2). This results

in a MSE bounded above by p2E/M as for large values of M the first term prevails.

The term p2E enters the upper bound of the MSE from the estimation of the option

price P̂ = E[pE(ST −K)] at the final level L. Moreover, in Eq. (38), we show that δ2

is O(log pr−1E m−1) which derives the following upper bound for the MSE of P̂ :

MSE ≤ c1
p2E

| log pE |1−rm
. (42)

(ii) To estimate the complexity (or computational cost) involved in the estimation of

P̂ , we make use of the result that

L =
|log pE |
log β

= O(|log pE |), (43)

to approximate the cost by

C u Lmh−1s , (44)

where hs is the discretization step. From Eq. (44) we can bound the computational
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cost above by

C ≤ c2(|log pE |)mh−1s . (45)

The result in (i) shows that decreasing the probability of contract execution (i.e.,

generating a more rare event) results in a smaller MSE. Moreover, in (ii) we show

that the computational complexity of SubSim is proportional to the natural logarithm

of the execution probability, pE . As the execution probability decreases, the absolute

value of its logarithm increases, resulting in a higher computational cost. Indeed, as

expected, the smaller the execution probability, the more computationally demanding

the estimation of P̂ is. Figure 5 shows the results of a simulation run (repeated 100

times) to compare how the MSE and the computational complexity scale with respect

to pE according to the SubSim theory and the experimental outputs.

6 Simulation study

6.1 Barrier options

Our numerical experiments focus on pricing double knock-out barrier call options, but

it is straightforward to extend the proposed methodology to other types of barrier

options. For instance, our method can be very easily adjusted to accommodate single

barrier options, or barrier put options, while it can even account for options with

varying barriers. All simulation runs where conducted on a Intel i7 - 6700 with x64-

based processor and CPU speed at 3.40 Ghz.

Suppose that barriers are monitored during time period [0, T ] at equally spaced

times 0 = t0 < t1 < . . . < tN = T with frequency ∆t = T/N , and the option expires

if the asset St hits either the upper U or the lower L barrier. Let us denote the

corresponding asset prices by Sn = Stn , the drift by µn = µ(tn) and the volatility by

σn = σ(tn). The quantity of interest is the barrier option price at the beginning of the

contract (t0 = 0), given by Eq. (7), which takes a non–zero value only in case the asset
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Figure 4: Mean squared error and complexity/cost of the SubSim estimator P̂ . The
simulation results on the left panel show that the MSE scales like p2E | log pE |r−1m−1, r = 2 (in
general 2 ≤ r ≤ 3). In accordance with the theoretical findings, simulated MSE drops with respect
to pE . Computational cost/complexity of SubSim with respect to the probability of execution is
presented on the right panel. The simulation results show that the cost can be bounded above by
a function of | log pE |.
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price trajectory remains within the two barriers and ends up above the strike price K.

For illustrative purposes, Figure 5 shows several asset trajectories that lead to both

option expiration and positive payoff.

6.2 Simulation results for SubSim vs standard MCS

In the first of our numerical experiments, we consider a double knock-out barrier call

option with a starting price (spot) S0 = 100 that evolves under the GBM in Eq. (1),

strike K = 100, and constant lower and upper barriers, L = 90 and U = 110. A

double knock–out option expires worthless in case either the upper or the lower barrier

is crossed by the asset price trajectory over the life of the option ([0, T ]). In any

other case, the payoff at maturity is calculated as a plain vanilla European call option
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Figure 5: Asset price trajectories. The top panel shows two asset trajectories that lead to
a zero payoff: one trajectory breaks the upper barrier U at time tk, the other ends up below the
strike, SN < K. The bottom panel shows an asset price trajectory that results in a positive payoff
SN −K. For the sake of illustration, both lower and upper barriers are constant.
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(i.e., P = (ST −K)+, where ST is the terminal asset price). The option is discretely

monitored during time period [0, T ] at equally spaced times 0 = t0 < t1 < . . . < tN = 1

with frequency ∆t = T/N , where N = 250 which implies daily monitoring of the barrier

option price. We further assume that the drift of the underlying asset is constant

µ = 0.10. To observe the effect of high volatility, we vary the value of σ over ten

different values logarithmically spaced between σmin = 0.20 and σmax = 0.40.

The quantity of interest, the fair option price at the beginning of the contract

(t0 = 0) is given by

P0 = P exp

(
−
∫ T

0
r(t)dt

)
, (46)

where P is the value of the option at the end of time period given by Eq. (7) and

estimated by Eq. (29), e−
∫ T
0 r(t)dt is the discounting factor from maturity tN = T to

t0 = 0, and r(t) is the interest rate, which is assumed to be constant in this example,

r = 0.10.
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First, we use SubSim with m = 50, 000 samples per subset to estimate both the

probability pE of having a positive payoff at the end of the period, pE ≈ p̂SubSimE , and

the option price,

P0 ≈ P̂ SubSim
0 = P̂ SubSime−rT . (47)

The mean values of estimates and their CVs computed from 100 independent runs of

the SubSim algorithm are presented in Table 1. As expected, as the asset volatility

σ increases, the event of having a positive payoff becomes increasingly rare (e.g. if

σ = 0.40, then pE ≈ 2× 10−7), and thus, the option becomes cheaper. The right plot

in Figure 6 shows the average (based on 100 runs) total number of samples M used by

SubSim versus the volatility σ. The obtained trend is again expected: as σ increases,

the probability pE becomes smaller, and, therefore, the number L of subsets in Eq. (23)

increases, which leads to the increase in the total number of samples Eq. (24).

Table 1: Simulation results. This table shows the mean values and coefficients of variations of
the estimates of the execution probability pE and the barrier option price P0, obtained by SubSim
and MCS for different values of volatility σ. All statistics are obtained from 100 independent runs
of the algorithms.

σ p̂SubSim
E /p̂MCS

E P̂SubSim
0 /P̂MCS

0 δ(p̂SubSim
E )/δ(p̂MCS

E ) δ(P̂SubSim
0 )/δ(P̂MCS

0 )
0.200 8.30× 10−3 / 8.26× 10−3 2.93× 10−2 / 2.91× 10−2 0.030 / 0.0281 0.034 / 0.0347
0.216 4.32× 10−3 / 4.34× 10−3 1.52× 10−2 / 1.53× 10−2 0.032 / 0.0391 0.036 / 0.0476
0.233 2.04× 10−3 / 2.04× 10−3 7.18× 10−3 / 7.19× 10−3 0.039 / 0.0596 0.044 / 0.0673
0.252 8.67× 10−4 / 8.76× 10−4 3.06× 10−3 / 3.11× 10−3 0.048 / 0.0788 0.055 / 0.0985
0.272 3.23× 10−4 / 3.21× 10−4 1.14× 10−3 / 1.15× 10−3 0.057 / 0.126 0.062 / 0.160
0.294 1.06× 10−4 / 1.08× 10−4 3.75× 10−4 / 3.80× 10−4 0.060 / 0.217 0.069 / 0.282
0.317 2.91× 10−5 / 2.63× 10−5 1.03× 10−4 / 9.38× 10−5 0.076 / 0.406 0.081 / 0.476
0.343 6.85× 10−6 / 5.66× 10−6 2.46× 10−5 / 2.14× 10−5 0.099 / 0.759 0.109 / 1.014
0.370 1.31× 10−6 / 9.93× 10−7 4.69× 10−6 / 3.06× 10−6 0.153 / 1.971 0.160 / 2.337
0.400 1.99× 10−7 / 2.45× 10−7 7.20× 10−7 / 1.10× 10−6 0.180 / 3.844 0.205 / 4.017

Next, we use MCS to estimate pE and P0. To ensure fair comparison of the two

methods, for each value of σ, MCS is implemented with the same total number of

samples as in SubSim. The mean values of Monte Carlo estimates for the execution

probability p̂MCS
E and the option price P̂MCS

0 = P̂MCSe−rT , with their CVs are pre-

sented in Table 1. The mean values of p̂MCS
E and P̂MCS

0 are approximately the same as

those of p̂SubSimE and P̂ SubSim
0 , which confirms that SubSim estimates are approximately
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unbiased. The CVs, however, differ drastically. Namely, δ(p̂SubSimE ) and δ(P̂ SubSim
0 ) are

substantially smaller than δ(p̂MCS
E ) and δ(P̂MCS

0 ), respectively. This effect is more

pronounced the larger the volatility. For example, if σ = 0.40, then SubSim is approx-

imately 20 times more efficient than MCS, i.e., on average, SubSim produces 20 times

more accurate estimates, where the accuracy is measured by the CV. As explained at

the end of Section 4, this result stems from the fact that SubSim is more efficient than

MCS in estimating small probabilities of rare events, and if volatility is large, then the

event of having a positive payoff is rare.

To visualize how SubSim outperforms MCS as the volatility increases, in the left

plot of Figure 6 we plot the ratios of CVs δ(p̂MCS
E )/δ(p̂SubSimE ) and δ(P̂MCS

0 )/δ(P̂ SubSim
0 )

versus σ. Since the mean values of SubSim and MCS estimates are approximately the

same, the ratios of CVs are approximately the ratios of the corresponding standard

errors. Graphically, the cases where SubSim outperforms MCS for the estimation of

the execution probability and the option price are those for which the corresponding

value of δ(p̂MCS
E )/δ(p̂SubSimE ) or δ(P̂MCS

0 )/δ(P̂ SubSim
0 ) lies above the horizontal line y = 1

(dotted line in Figure 6). At that level, both methods would exhibit the same level of

accuracy measured by the CV, since δMCS would equal δSubSim. We notice that SubSim

outperforms MCS in every examined case as both lines (for P̂0 and p̂E) lie above the

y = 1 level.

In the second of our simulation tests, we again assume that the price St of the

underlying asset evolves according to the GBM in Eq. (1), but we consider different

monitoring frequencies for the price of the barrier option. Specifically, the upper panel

of Table 2 shows numerical results for two monitoring frequencies (i.e., N = 25 or

N = 125), and seven different volatility levels ranging between 0.10 and 0.40, while

the CV, standard errors and CPU times for SubSim and MCS are also reported. At

first, we immediately observe the impact of the monitoring frequency on the price of

the barrier option; not surprisingly, as the number of monitoring points increases, the

option becomes cheaper. This stems from the increased probability of capturing the

asset price trajectory in the area either above the upper or below the lower barrier,
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Table 2: Simulation results for the GBM. Barrier option prices, CV and CPU running times
for MCS and SubSim are presented in the top panel. Results from SubSim and MLMC for the case
of a single and double barrier option are presented in the bottom panel.

Monitoring Frequency
N = 25 N = 125

option price CV CPU time option price CV CPU time
σ MC SubSim MC SubSim MC SubSim MC SubSim MC SubSim MC SubSim

0.10 0.8506 0.8486 0.0096 0.0095 7s 17s 0.6978 0.6983 0.0114 0.0125 22s 81s
(0.0008) (0.0008) (0.0008) (0.0008)

0.15 0.3010 0.3023 0.0183 0.0150 10s 45s 0.1944 0.1941 0.0230 0.0165 20s 214s
(0.0005) (0.0004) (0.0004) (0.0003)

0.20 0.0891 0.0898 0.0332 0.0228 6s 42s 0.0375 0.0375 0.0562 0.0322 21s 217s
(0.0003) (0.0002) (0.0002) (0.0001)

0.25 0.0230 0.0229 0.0698 0.0330 7s 77s 0.0053 0.0053 0.1479 0.0412 20s 329s
(1.609e-04) (7.564e-05) (7.931e-05) (2.174e-05)

0.30 0.0054 0.0054 0.1381 0.0432 6s 70s 5.363e-04 5.628e-04 0.4319 0.0709 21s 450s
(7.554e-05) (2.328e-05) (2.316e-05) (3.9919e-6)

0.35 1.180e-03 1.197e-03 0.3081 0.0564 6s 96s 3.932e-05 4.704e-05 1.5331 0.0893 19s 573s
(3.637e-05) (6.763e-6) (6.029e-6) (4.203e-7)

0.40 2.634e-04 2.599e-04 0.5847 0.0703 7s 124s 5.960e-6 3.1783e-6 4.006 0.1519 20s 827s
(1.540e-05) (1.827e-6) (2.384e-6) (4.832e-8)

Single Barrier Double Barrier
option price CV CPU time option price CV CPU time

σ SubSim MLMC SubSim MLMC SubSim MLMC SubSim MLMC SubSim MLMC SubSim MLMC

0.10 9.1972 9.0358 0.0044 0.0004 80s 150s 0.6977 0.7060 0.0112 0.0058 56s 37s
(0.0040) (0.0004) (0.0008) (0.0004)

0.15 8.6094 8.2155 0.00711 0.0005 81s 279s 0.1937 0.2250 0.0164 0.0174 140s 36s
(0.0061) (0.0004) (0.0003) (0.0003)

0.20 8.2011 7.720 0.0088 0.0004 83s 332s 0.0378 0.0748 0.0329 0.0583 140s 37s
(0.0072) (0.0003) (0.0001) (0.0004)

0.25 7.9791 7.7022 0.0095 0.0004 82s 505s 0.0052 0.0278 0.0497 0.1559 213s 35s
(0.0075) (0.0003) (2.630e-05) (4.347e-04)

0.30 7.8412 7.3905 0.0115 0.0005 85s 788s 5.598e-04 5.742e-03 0.0648 0.2203 317s 37s
(0.0090) (0.0004) (3.629e-6) (1.265e-04)

0.35 7.803 7.4265 0.0125 0.0005 84s 1,058s 4.685e-04 2.971e-03 0.0973 0.2299 420s 36s
(0.0097) (0.0004) (4.559e-7) (6.831e-05)

0.40 7.7991 7.5367 0.0150 0.0005 85s 1,445s 3.198e-6 9.937e-04 0.1446 0.2466 550s 36s
(0.01170) (0.0004) (4.627e-8) (2.450e-05)

which subsequently drives the survival probability pE significantly lower. Evidently,

our main finding remains valid: as volatility increases the efficiency benefit obtained

by the SubSim against MCS becomes larger. This result is insensitive to whether

we consider the CV or standard errors (stated in parentheses below the option price

estimates in Table 2) as again, both methods seem to produce unbiased estimates.

In terms of computational times (CPU times), direct MCS exhibits a relatively

stable behaviour across all volatility values, while the CPU time of SubSim increases

with volatility as the estimation problem converts to the rare event estimation case. In

essence, MCS does not come with any provision regarding whether we are faced with

a rare event estimation problem or not; a typical MCS algorithm will follow the same
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Figure 6: Ratios of CVs. The ratios δ(p̂MCS
E )/δ(p̂SubSimE ) and δ(P̂MCS

0 )/δ(P̂ SubSim
0 ) versus the

volatility σ are presented on the left panel. The right panel shows the total number of samples
used in Subset Simulation against volatility σ when L = 90 and U = 110.
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simulation steps for any volatility level as in fact the only factor it can vary is the

number of samples it draws for every numerical experiment. On the contrary, when

SubSim is confronted with a rare event estimation scenario, it attempts to sample

more efficiently and moves to higher simulation levels in order to derive a much more

reliable estimate for the survival probability, compared to that of MCS, simply because

the method is designed for this purpose. This technicality underlies SubSim’s higher

computational cost compared to that of direct MCS. A potential remedy to this could

be a more efficient coding of the simulation functions using a parallelized set of routines.
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Table 3: Simulation results for the double exponential jump diffusion model. Barrier
option prices, CV and CPU running times for the case of double exponential jump diffusion with
jump rates λ = 1 (i.e., one jump expected between zero and T ) and λ = 3 and two different
monitoring frequencies, n = 25 and n = 125 times between zero and T . Volatility σ ranges between
0.10 and 0.40 where the benefits from using the SubSim method over Monte Carlo are more evident.

Monitoring Frequency
N = 25 N = 125

option price CV CPU time option price CV CPU time
σ MC SubSim MC SubSim MC SubSim MC SubSim MC SubSim MC SubSim

jump intensity λ = 1

0.10 0.3669 0.3656 0.0155 0.0162 9s 28s 0.2943 0.2943 0.0148 0.01812 39s 139s
(0.0006) (0.0006) (0.0004) (0.0005)

0.15 (0.1324 0.1323 0.0262 0.0293 8s 29s 0.0826 0.0823 0.0356 0.0350 39s 153s
(0.0003) 0.0004) (0.0003) (0.0002)

0.20 0.0399 0.0395 0.0542 0.0510 8s 27s 0.0161 0.0162 0.0862 0.0686 39s 133s
(0.0002) (0.0002) (0.0001) (0.0001)

0.25 0.0103 0.0103 0.1053 0.1023 7s 29s 0.0022 0.0023 0.2326 0.1290 38s 980s
(0.0001) (0.0001) (4.99e-05) (3.11e-05)

0.30 0.0025 0.0026 0.2346 0.1563 8s 197s 2.185e-04 2.629e-04 0.7007 0.1959 36s 985s
(5.7523e-05) (4.0405e-05) (1.531e-05) (5.1525e-6)

0.35 5.344e-04 5.834e-04 0.4801 0.1678 9s 198s 2.868e-05 2.353e-5 2.013 0.2963 37s 976s
(2.567e-05) (9.9581e-6) (4.555e-6) (2.515e-7)

0.40 1.3750e-04 1.3665e-04 0.99672 0.22101 8s 205s – 6.3643e-7 NaN 0.43878 37s 990s
(1.37e-05) (3.02e-6) – (2.7925e-8)

jump intensity, λ = 3

0.10 0.0774 0.0775 0.0349 0.03710 9s 28s 0.0530 0.05346 0.0414 0.0404 38s 130s
(0.0003) (0.0003) (0.0002) (0.0002)

0.15 0.0287 0.02904 0.0554 0.0542 8s 28s 0.0150 0.0151 0.0912 0.0779 38s 136s
(0.0002) (0.0002) (0.0001) (0.0001)

0.20 0.0087 0.0086 0.10691 0.11138 8s 27s 0.0021 0.0015 0.21829 0.1491 35s 970s
(9.407e-05) (9.679e-05) (4.586e-05) (2.266e-05)

0.25 0.0023 0.0024 0.2199 0.1518 8s 198s 4.110e-04 3.505e-04 0.5081 0.2484 36s 974s
(3.9374e-6) (5.027e-05) (2.089e-05) (8.4622e-6)

0.30 5.898e-04 5.2492e-04 0.4166 0.2141 8s 200s 7.663e-05 5.139e-05 1.1297 0.7291 36s 1,617s
(2.457e-05) (1.102e-05) (8.657e-6) (3.747e-6)

0.35 1.360e-04 1.371e-04 0.8468 0.2212 8s 195s 3.545e-6 2.083e-7 5.3177 0.6942 36s 2,400s
(1.152e-05) (3.034e-6) (1.885e-6) (1.446e-8)

0.40 2.212e-05 1.439e-05 2.3702 0.42937 8s 372s – 6.833e-9 NaN 0.7677 36s 2,412s
(5.2443e-06) (6.1812e-08) – (2.658e-9)

Focusing our attention on the case of jump diffusion, Table 3 shows that the results

obtained for the GBM case hold for the former of our price dynamics equations too.

Specifically, in the third of our numerical experiments, we estimate barrier option

prices for two jump intensities, λ = 1 or λ = 3 and the same volatility levels as in

the GBM. Not surprisingly, the barrier option under the double exponential jump

diffusion in Eq. (3) is cheaper than that in GBM case. When jumps are involved in the

determination of the asset price trajectory, the probability of trajectory to cross either

of the two barriers increases and as a result the (already small) survival probability pE

decreases further. Nevertheless, this does not stop SubSim from providing us with a
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Figure 7: Ratios of CVs and CPU times of MCS and SubSim. Ratios of the CVs δ for the
option price P0 (solid line) and the CPU times (dashed line) for the two simulation methods and
the two price dynamics. The CPU(PMCS

0 )/CPU(P SubSim
0 ) ratio expresses the percentage of time

required by the MCS for the same number of simulation runs, relative to that of SubSim. The
trade-off between efficiency and execution time is clear: as efficiency of SubSim over MCS increases
so does the CPU time of the former over the latter.
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significantly more efficient pricing in terms of the observed CV(s) and standard errors,

compared to that produced by MCS. Moreover, in line with the findings for the GBM

case, the impact of the monitoring frequency on the price of the barrier option is again

evident, while CPU times again follow a similar trend to that in the GBM case. In

Fig. 7 we plot the trade-off between efficiency and computational cost for the two

methods to show that they move to the same direction; the more efficient the pricing

becomes, the higher the computational cost by SubSim as a result of its provision to

deal with small survival probabilities very efficiently.

By the same token, in our final the simulation comparison tests between SubSim

and MCS we increase the number of samples to m = 200, 000 using also different levels

for the lower and the upper barrier, while the assumed underlying price dynamics is

the GBM. The reason we consider more samples is to compare SubSim against not
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Figure 8: Ratios of CVs of the option price P0. The results are plotted with respect to
asset volatility, for SubSim against MC (top) and SubSim against MLMC (bottom). Four different
barrier levels are presented (to perform the simulations we use mainly the codes provided by Mike
Giles at https://people.maths.ox.ac.uk/gilesm/mlmc/ doing the necessary adjustments in file
mcqmc06.m).
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only MCS but also multilevel Monte–Carlo (see Subsection 6.3), where m = 200, 000 is

considered in the original barrier option numerical experiments. Here, our interest is

on the impact of different barrier levels on the barrier option price. Interestingly, the

only barrier specification that leads to an actual rare event estimation problem is the

one with barriers set at L = 90 and U = 110. In any other setup, the benefits obtained

by SubSim are rather negligible, except for the case where L = 80, U = 120 and the

volatility of the underlying asset takes a very large value (i.e., σ ≥ 0.30) (see Fig. 8).

In general, as volatility increases, SubSim outperforms naive MCS at all barrier lev-

els, but especially in the case of L = 90 and U = 110 (barriers close to S0) and σ ≥ 0.40
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(a high–volatility asset), SubSim is up to 50 times more efficient than standard MCS;

for lower levels of σ, SubSim still outperforms MCS. The benefit of adopting SubSim

is even more evident when observing Fig. 9. This plots the kernel-smoothed empiri-

cal density of the option prices after 100 runs of the MCS and the SubSim routines.

Evidently, in the high-volatility scenario (σ = 0.35), the range of the distribution of

the prices exported by SubSim is remarkably smaller than that of MCS, under both

asset price dynamics, while prices derived by SubSim are more concentrated around

the mean value.

Figure 9: Probability density of option prices. Distribution of barrier option prices for both
price dynamics. The solid line shows how option prices are distributed after 100 runs of the SubSim
while the dashed shows results for MCS. The benefits of using SubSim over MCS are tangible when
volatility is high and consequently execution probability is low; in this case, the range of the
distribution is significantly smaller and prices are concentrated around the mean option price.
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6.3 Simulation results for SubSim vs MLMC

In this section, we compare the performance of SubSim against the MLMC simulation

method of Giles (2008a,b), both for pricing single and double barrier knock-out call

options under a GBM stochastic process. The parameters of this simulation exercise

remain the same as in Section 6.2. The original MLMC simulation method was devel-

oped to price single knock–out barrier options, amongst other exotic derivatives, and

thus we add a component for the second barrier in order to accommodate double barrier

options (see Appendices B and C). Using elements from large deviations theory (Baldi

et al., 1999), we first derive the expression for the minimum of a Brownian bridge and

then assuming that the event of hitting the lower or upper barrier are independent, we

multiply the two corresponding execution probabilities to derive the option’s execution

probability at maturity.

The bottom panel of Table 2 reports results for the simulation experiments con-

ducted to compare the performance between SubSim and MLMC. First, in the pricing

of a single down-and-out barrier option with the barrier set at B = 95, MLMC out-

performs SubSim both in terms of the resulted CV(s) and the corresponding standard

errors. In essence, when we price a single barrier option, we are not faced with a rare

even estimation problem, as the absence of a second barrier does not force the option

to expire worthless before maturity when the underlying asset moves sharply upwards.

This can be further corroborated by observing the CPU time of SubSim, which remains

constant across all volatility levels. SubSim does not recognize a rare event simulation

problem in any of the cases, hence it does not attempt to sample more efficiently at

higher levels – which would result in larger CPU times– and subsequently its computa-

tional times are far lower than those required by MLMC for the same estimation. When

it comes to pricing a double down-and-out barrier option, the estimate for the barrier

option price derived by the SubSim exhibits smaller CV compared to that exported by

the MLMC, especially when the underlying asset is highly volatile. MLMC appears to

be a robust computational method, even when volatility increases, as its CPU time re-

mains stable. However, SubSim’s CV, although increasing with volatility, still remains
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lower than that of the option prices derived by the MLMC. Again, efficiency comes at

a higher computational cost; in both experiments (single or double barrier) the more

efficient the pricing, the larger the CPU time required by the simulation method.

In the final of the simulation experiments, we examine the impact of different barrier

specifications on the barrier option prices when these are derived either by the SubSim

or the MLMC. The bottom graph of Figure 8 plots the ratio of CV between SubSim

and MLMC for four levels of barriers against asset’s volatility. For barriers which lie far

from the price of the asset at t = 0 (i.e., [60, 140] and [70, 130] represented by the solid

and the dotted line respectively), MLMC produces more accurate results than SubSim.

Nevertheless, we notice that as asset volatility increases the performance of SubSim

improves, approaching that of MLMC without surpassing it. SubSim outperforms

MLMC when L = 90 and U = 110 (dashed/dotted line) and when L = 80 and U = 120

(dashed line) and the volatility of the underlying asset is higher than 25%. In both

cases, the probability of a non–zero payoff at t = T is extremely small (Table 1), and

hence the use of SubSim provides more accurate results compared either to standard

MCS or MLMC. The evidence we obtain here further supports the findings in Section

6.2 that SubSim is an efficient technique to price barrier options with small survival

probabilities.

Exact values for P̂
{MCS,MLMC,SubSim}
0 (option price at t = 0 for each of the three

methods) and CV
{MCS,MLMC,SubSim}
P0

can be found in Tables 4 and 5, respectively. For

visualization purposes, we also plot these results in Figures 10 and 11.

7 Conclusion

In this paper, we develop a new stochastic simulation-based method for pricing barrier

options. The method is based on Subset Simulation (SubSim), a very efficient algorithm

for estimating small probabilities of rare events. The key observation allowing us to

exploit the efficiency of SubSim is that the barrier option price can be written as a

function of the probability of option execution and a certain conditional expectation,
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Figure 10: Barrier option prices. Results reported for the three methods with respect to
volatility. The four graphs correspond to different levels of the upper and lower barrier.
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which can both be estimated efficiently by SubSim. In the case of barrier options

on high–volatility assets and barriers set close to the spot price of the underlying

asset, SubSim is especially advantageous because of the very small probability of the

contract remaining valid until maturity. We first compare the proposed SubSim method

against the standard Monte Carlo simulation (MCS), under either a classical geometric

Brownian motion or Kou (2002)’s double exponential jump diffusion to show that

SubSim always outperforms MCS, confirming this with a series of numerical examples.

Moreover, we show that the higher the volatility of the underlying asset (i.e., the smaller

the probability of option execution), the larger the advantage of SubSim over MCS.

Next, we compare our proposed method with the multilevel Monte–Carlo (MLMC)

simulation introduced in Giles (2008a,b). Although MLMC outperforms SubSim in
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Figure 11: Coefficient of variation (CV). Results reported for the three methods with respect
to volatility for 100 runs of the pricing algorithm. The four graphs correspond to different levels of
the upper and lower barrier.
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general, we find that SubSim can still be more efficient than MLMC in cases where the

volatility of the underlying asset is high and the barriers are set close to the starting

price of the asset, since this combination leads to a rare event estimation problem. As

a result, the method we propose here complements MLMC, handling special cases of

barrier option settings more efficiently.

In the present work, we offer a model-free framework for the pricing of double barrier

options. The strengths of our methodology are its satisfactory efficiency, especially

when it comes to pricing options with very small execution probability and its ability

to deal with almost any underlying process. On the other side, given the focus of

the method on this type of options, the computational times observed in SubSim are
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usually higher than those of alternative simulation-based methods.

In practice, more complicated structures and products than a single or double

barrier option need to be priced and re-priced daily by practitioners in the finance

industry. Options with moving barriers, basket options and option portfolios with un-

derlying assets that evolve according to different stochastic processes or even Bermudan

or American barrier options could be accommodated by the proposed method in this

paper, presumably not after extensive modifications. An additional aspect of the cur-

rent study can also appear with respect to using barrier options to hedge portfolio

exposures, especially in the foreign exchange and commodity markets. Given that the

primary goal of a hedging exercise is to restrict the variability of a future payoff, the

reduced CVs for the option price estimate that result from SubSim, incentivize deeper

research around this question. Finally, an interesting extension of the present research

could arise in the direction of considering an underlying process with time-varying

(stochastic) volatility which is also very frequently met in practice (Cui et al., 2017),

especially in an exotic option pricing problem with foreign exchange instruments used

as underlying assets. The latter, as well as the study of Greeks (i.e., option price

sensitivities with respect to different market factors) in the same context are currently

under investigation by the authors.
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barrier options under time-dependent Lévy processes. Journal of Banking & Finance,

75:167–183, 2017.

J. S. Liu. Monte Carlo strategies in scientific computing. Springer Verlag, New York,

2001.

D. Luenberger and R. Luenberger. Pricing and hedging barrier options. Investment

Practice, Stanford University, EES-OR, 1999.

R. C. Merton. Theory of rational option pricing. Bell Journal of Economics and

Management Science, 4(1):141–183, 1973.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21:1087–1092, 1953.

C. E. Phelan, D. Marazzina, G. Fusai, and G. Germano. Fluctuation identities with

continuous monitoring and their application to price barrier options. European Jour-

nal of Operational Research, 271(1):210–223, 2018a.

41

 Electronic copy available at: https://ssrn.com/abstract=3132336 



C. E. Phelan, D. Marazzina, G. Fusai, and G. Germano. Hilbert transform, spectral

filters and option pricing. Annals of Operations Research, pages 1–26, 2018b.

N. Rambeerich and A. A. Pantelous. A high order finite element scheme for pricing

options under regime switching jump diffusion processes. Journal of Computational

and Applied Mathematics, 300:83–96, 2016.

C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, New

York, 2004.

W. Schoutens and S. Symens. The pricing of exotic options by Monte–Carlo simulations
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Appendices

A MMA sampling from the target distribution

fz

To sample from the target distribution fz(z|Ei−1), the MMA generates a Markov chain

with stationary distribution fz(z|Ei−1). Namely, if we let Z(j) ∈ Ei−1 be the current

state, then the next state Z(j+1) is generated as follows:

1. Generate a candidate state Υ = (Υ1, . . . ,ΥN ):

(a) For each k = 1, . . . , N , generate Ψk ∼ q(ψ|U (j)
k ), where q is a symmetric,

q(ψ|u) = q(u|ψ), univariate proposal distribution, e.g. Gaussian distribution

centered at U
(j)
k , the kth component of U (j).

(b) Compute the acceptance probability:

ak = min

{
1,

fk(Ψk)

fk(U
(j)
k )

}
, (48)

where fk is the marginal PDF of Uk, fU (u) =
∏N
k=1 fk(uk), and U1, . . . , UN

are assumed to be independent.

(c) Set

Υk =


Ψk, with probability ak,

U
(j)
k with probability 1− ak.

(49)
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2. Accept or reject the candidate state:

U (j+1) =


Υ, if Υ ∈ Ei−1,

U (j), if Υ /∈ Ei−1.
(50)

B Probability of execution of a barrier option

The pricing of barrier options is a first passage time problem in which we are interested

in the first time that the price trajectory of the underlying asset crosses a prespecified

barrier. Now, assuming that U > S0 and L < S0 are the upper and lower barriers

respectively, the execution indicator function of the barrier option in Eq. (7) can be

approximated via its discrete form

n−1∏
i=0

I{M̂i≤U ∧ m̂i≥L}, (51)

where M̂i and m̂i are the maximum and minimum, respectively, of Eq. (2) in [0, nh]

and T = nh or h = T/n is the size of the timestep on a discrete grid. Eq. (51) takes the

value one if and only if the conditions for M̂i and m̂i are met at every time–step of the

discretized problem, otherwise the product (51) becomes zero and the option expires

worthless. Following Glasserman (2013) (see particularly Section 6.4 and example

2.2.3), we sample the minimum and the maximum of S by formulating the following

problem:

M(t) = max
0≤u≤t

S(u) (52)

with

M̂h(n) = max{S(0), S(h), S(2h), . . . , S(nh)}, (53)

the maximum of the approximation of S on [0, nh], and

m(t) = min
0≤u≤t

S(u) (54)
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with

m̂h(n) = min{S(0), S(h), S(2h), . . . , S(nh)}, (55)

the minimum of a discrete time approximation of S on [0, nh].

In the sampling of the maximum, conditioning on the endpoints S(0) and S(T ),

the process {S(t), 0 ≤ t ≤ T} becomes a Brownian bridge, and thus we sample from

the distribution of the maximum of a Brownian bridge, a Rayleigh distribution, which

results in

M(T ) =
S(T ) +

√
S(T )2 − 2T logX

2
, (56)

where X is a uniformly distributed random variable in [0, 1]. Now, let Ŝih be a discrete

time approximation of the solution of S in Eq. (1), where i = 0, 1, . . . , n, h = T/n.

To obtain a good estimation for M̂h (i.e., the maximum of the interpolating Brownian

bridge) and decrease the error induced by the discretization (i.e., the case where Su

crosses U or L between two grid points), we interpolate over [ih, (i+ 1)h], which given

the end points Si and Si+1 results in

Mi =
S(i) + S(i+ 1) +

√
[S(i+ 1)− S(i)]2 − 2b2h logX

2
(57)

with X ∼ Unif[0, 1].

Given a barrier U , the probability of survival for the option (the maximum price of

the underlying asset to remain below U) in the fine–path estimation is given by

p̂i,U = P (M̂i ≤ U |Ŝi, Ŝi+1) = 1− exp

(
− 2(U − Ŝi)(U − Ŝi+1)

b2h

)
, (58)

where b is the fixed standard deviation of the underlying asset price and h is the time–

step in the discretization process. The corresponding estimation for a coarse–path is
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equal to

p̂i,U = P (M̂i ≤ U |Ŝi, Ŝi+1) =

{
1− exp

(
−

2(U − Ŝi)(U − Ŝi+1/2)

b2h

)}
×
{

1− exp

(
−

2(U − Ŝi+1/2)(U − Ŝi+1)

b2h

)}
. (59)

C Minimum of Brownian bridge

We now derive analytically the probability of survival for a double barrier option in a

fine path estimation, by calculating also the probability of the minimum of Ŝ to cross

the lower barrier L. Conditioning on endpoints Ŝi and Ŝi+1, the distribution of the

minimum of the Brownian bridge (interpolated over [i, (i+ 1)h]) is given by

mi =
S(i) + S(i+ 1)−

√
[S(i+ 1)− S(i)]2 − 2b2h logX

2
, (60)

where X ∼ Unif[0, 1]. Subsequently, the probability of the minimum mi of Ŝ to cross

the lower barrier L is equal to
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P (m̂i ≤ L|Ŝi, Ŝi+1)

= P

(
Ŝ(i) + Ŝ(i+ 1)−

√
[Ŝ(i+ 1)− Ŝ(i)]2 − 2b2h logX

2
≤ L|Ŝi, Ŝi+1

)
= P

(√
[Ŝ(i+ 1)− Ŝ(i)]2 − 2b2h logX ≥ (Ŝ(i) + Ŝ(i+ 1))− 2L|Ŝi, Ŝi+1

)
= P

(
Ŝ(i+ 1)2 − 2Ŝ(i)Ŝ(i+ 1) + Ŝ(i)2 − 2b2h logX

≥ (Ŝ(i) + Ŝ(i+ 1))2 − 4L(Ŝ(i) + Ŝ(i+ 1)) + 4L2|Ŝi, Ŝi+1

)
= P

(
Ŝ(i+ 1)2 − 2Ŝ(i)Ŝ(i+ 1) + Ŝ(i)2 − 2b2h logX

≥ Ŝ(i)2 + Ŝ(i+ 1)2 + 2Ŝ(i)Ŝ(i+ 1)− 4L(Ŝ(i) + Ŝ(i+ 1)) + 4L2|Ŝi, Ŝi+1

)
= P

(
− b2h logU ≥ 2Ŝ(i)Ŝ(i+ 1)− 2LŜ(i) + 2LŜ(i+ 1) + 2L2|Ŝi, Ŝi+1

)
= P

(
logU ≤ −2Ŝi(Ŝi+1 − L)− 2L(Ŝi+1 − L)

b2h
|Ŝi, Ŝi+1

)
= P

(
logU ≤ −2(Ŝi − L)(Ŝi+1 − L)

b2h
|Ŝi, Ŝi+1

)
= P

(
U ≤ exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)
|Ŝi, Ŝi+1

)
= exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)
. (61)

The probability in Eq. (61) refers to the case of the running minimum crossing the

lower barrier. The probability to remain above the lower barrier is thus equal to its

complement

p̂i,L = 1− exp

(
− 2(Ŝi − L)(Ŝi+1 − L)

b2h

)
, (62)

and the probability of the asset price to remain within the barriers on [0, T ] is equal to

p̂i = p̂i,U p̂i,L =

{
1−exp

(
−2(U − Ŝi)(U − Ŝi+1)

b2h

)}{
1−exp

(
−2(Ŝi − L)(Ŝi+1 − L)

b2h

)}
.

(63)

The calculation of the probability of survival for the coarse path estimation follows

trivially from Eq. (63) by adjusting it using Eq. (59). Then, the option remains alive

until time t = T = nh, when the asset price is bounded between L and U , which in
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the case of a coarse path estimation, using a midpoint equal to i+ 1/2, equals

p̂i =

{
1− exp

(
−

2(U − Ŝi)(U − Ŝi+1/2)

b2h

)}{
1− exp

(
−

2(U − Ŝi+1/2)(U − Ŝi+1)

b2h

)}
(64)

×
{

1− exp

(
−

2(Ŝi − L)(Ŝi+1/2 − L)

b2h

)}{
1− exp

(
−

2(Ŝi+1/2 − L)(Ŝi+1 − L)

b2h

)}
.

(65)
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Table 4: Barrier option prices. A comparison of the option prices derived by each of the three
methods (MCS, MLMC and SubSim) for four barrier levels against volatility.

Barriers
[60,140] [70,130] [80,120] [90,110]

Volatility (σ) Method

0.05 Standard MCS 9.5559 9.5345 8.3761 1.9009
MLMC 9.5549 9.5339 8.3008 1.7882
SubSim 9.5573 9.5351 8.3728 1.8997

0.10 Standard MCS 9.8679 8.2903 4.5155 0.6617
MLMC 9.8271 8.1682 4.3242 0.5941
SubSim 9.8656 8.2862 4.5137 0.6615

0.15 Standard MCS 8.6454 5.7592 2.3743 0.1712
MLMC 8.4688 5.5283 2.1859 0.1956
SubSim 8.6413 5.7570 2.3734 0.1711

0.20 Standard MCS 6.6578 3.8014 1.2839 0.0290
MLMC 6.3772 3.5392 1.1595 0.0716
SubSim 6.6477 3.7958 1.2839 0.0292

0.25 Standard MCS 4.8993 2.5194 0.6712 0.0033
MLMC 4.5896 2.2841 0.6406 0.0273
SubSim 4.8970 2.5148 0.6707 0.0033

0.30 Standard MCS 3.5877 1.6833 0.3226 0.0003
MLMC 3.2844 1.5152 0.3668 0.0120
SubSim 3.5840 1.6792 0.3223 0.0003

0.35 Standard MCS 2.6423 1.1106 0.1406 1.33E-05
MLMC 2.3811 1.0275 0.2233 5.70E-03
SubSim 2.6414 1.1096 0.1403 1.61E-05

0.40 Standard MCS 1.9638 0.7114 0.0554 1.84E-06
MLMC 1.7620 0.7101 0.1306 3.00E-03
SubSim 1.9604 0.7107 0.0554 7.19E-07

0.45 Standard MCS 1.4525 0.4387 0.0199 5.79E-08
MLMC 1.3312 0.4956 0.0776 1.70E-03
SubSim 1.4501 0.4371 0.0198 2.49E-08
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Table 5: Coefficient of variation (CV). A comparison of the CVs of the barrier option price as
derived by each of the three methods (MCS, MLMC, SubSim) for four barrier levels against asset’s
volatility.

Barriers
[60,140] [70,130] [80,120] [90,110]

Volatility (σ) Method

0.05 Standard MCS 0.0018 0.0016 0.0019 0.0045
MLMC 0.0004 0.0004 0.0005 0.0024
SubSim 0.0011 0.0013 0.0013 0.0031

0.10 Standard MCS 0.0027 0.0026 0.0038 0.0080
MLMC 0.0004 0.0006 0.0010 0.0077
SubSim 0.0018 0.0019 0.0025 0.0059

0.15 Standard MCS 0.0037 0.0040 0.0054 0.0177
MLMC 0.0005 0.0008 0.0017 0.0229
SubSim 0.0027 0.0026 0.0037 0.0092

0.20 Standard MCS 0.0041 0.0053 0.0084 0.0444
MLMC 0.0007 0.0013 0.0044 0.0598
SubSim 0.0032 0.0039 0.0055 0.0156

0.25 Standard MCS 0.0054 0.0066 0.0095 0.1122
MLMC 0.0009 0.0020 0.0063 0.1623
SubSim 0.0042 0.0053 0.0068 0.0219

0.30 Standard MCS 0.0069 0.0089 0.0180 0.4069
MLMC 0.0014 0.0053 0.0104 0.1992
SubSim 0.0043 0.0061 0.0093 0.0347

0.35 Standard MCS 0.0075 0.0099 0.0301 1.9758
MLMC 0.0020 0.0041 0.0310 0.2169
SubSim 0.0061 0.0072 0.0129 0.0652

0.40 Standard MCS 0.0098 0.0126 0.0373 5.6981
MLMC 0.0025 0.0057 0.0288 0.2257
SubSim 0.0067 0.0088 0.0166 0.1047

0.45 Standard MCS 0.0087 0.0106 0.0254 8.2893
MLMC 0.0059 0.0164 0.0538 0.2465
SubSim 0.0077 0.0128 0.0217 0.1808
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