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Classical proofs of quantum knowledge

Thomas Vidick∗ Tina Zhang†

Abstract

We define the notion of a proof of knowledge in the setting where the verifier is classical, but the
prover is quantum, and where the witness that the prover holds is in general a quantum state. We
establish simple properties of our definition, including that nondestructive classical proofs of quantum
knowledge are impossible for nontrivial states, and that, under certain conditions on the parameters in
our definition, a proof of knowledge protocol for a hard-to-clone state can be used as a (destructive)
quantum money verification protocol. In addition, we provide two examples of protocols (both inspired
by private-key classical verification protocols for quantum money schemes) which we can show to be proofs
of quantum knowledge under our definition. In so doing, we introduce new techniques for the analysis of
such protocols which build on results from the literature on nonlocal games. Finally, we show that, under
our definition, the verification protocol introduced by Mahadev (FOCS 2018) is a classical argument of
quantum knowledge for QMA relations.

1 Introduction

The notion of a proof of knowledge was first introduced in the classical setting [GMR89, BG92] as a useful
strengthening of the idea of an interactive proof. Intuitively, a proof of knowledge protocol allows a prover
to convince a verifier that it ‘knows’ or ‘possesses’ some piece of secret information (a ‘witness’, w) which
satisfies a certain relation R relative to a publicly known problem instance x. (Symbolically, we might say
that the prover wants to convince its verifier that, for a particular x, it knows w such that R(x,w) = 1.)
For example, the witness w might be a private password corresponding to a particular public username x,
and a proof of knowledge protocol in this setting could allow the prover to demonstrate that it possesses the
credentials to access sensitive information or make monetary transactions.

While the idea of a proof of knowledge is very natural, defining it formally is somewhat delicate, because
the question arises of what exactly it means for a program or a machine to ‘know’ a piece of information.
An interactive proof allows a prover to convince a verifier that some witness w exists such that R(x,w) = 1;
however, this is insufficient for the password application, because (for a valid username x) a password w
always exists such that the authenticating party accepts. We would like, instead, for the verifier to be
convinced that the prover personally knows the relevant information w. But what does it mean for a
machine to ‘know’ w? If w is sufficiently short, and the machine is sufficiently complicated, we will with
high probability find that w is written in the machine’s programming in some form, even if only by chance.
This definition of ‘knowing’ is clearly also unsatisfactory for the password application.

The now-canonical formal definition of a classical proof of knowledge was settled in a series of works (see
[BG92] for a summary) in the 1990s. The resolution is as follows: the prover P is said to ‘know’ a witness
w if there is an extractor E which, given black-box access to P (including the ability to rewind P and run
it again on different inputs), can efficiently compute w. The applications of classical proofs of knowledge
include identification protocols [FFS88], signature schemes [CL06], and encryption schemes secure against
chosen-ciphertext attack [SJ00].

In this work, we consider a particular generalisation of the classical concept of a proof of knowledge to the
quantum setting. We imagine a situation where the verifier remains classical, but the prover is quantum,
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and where the witness w is in general a quantum state; and we ask the prover to ‘convince’ the verifier
that it knows that state. We call this type of protocol a classical proof of quantum knowledge. Recently,
there have been works which show how a fully classical verifier can, under cryptographic assumptions,
delegate a quantum computation on encrypted data to a quantum server [Mah18a], verify that such a server
performed the computation correctly [Mah18b], delegate the preparation of single-qubit states to the server
in a composable fashion [GV19], and test classically that the server prepared an EPR pair in its own registers
[MV20]. In short, as long as classical computational resources and classical communication channels remain
considerably less expensive than their quantum counterparts, it will be natural to wish to use classical devices
to test quantum functionality. Although we focus here on information-theoretic rather than computational
security, the current paper can be considered a new stone in the preceding line of work.

Quantum proofs of quantum knowledge have recently been explored by [BG19] and [CVZ19]; these two
papers give a joint definition for quantum proofs of quantum knowledge, and exhibit several examples which
meaningfully instantiate the definition. However, if we are interested in testing quantum functionality with
classical devices, as we are here, then we must approach the subject differently. The reason is that, if we
allow the extractor only black-box access to the prover (as is done in [BG19] and [CVZ19], as well as in the
classical literature) in the setting where the verifier is classical but the prover is quantum, the problem the
extractor faces becomes one of reconstructing a witness ρ based entirely on classical measurement outcomes,
which seems as if it may be as hard as quantum state tomography. To give an idea of the difficulty of
the problem, information-theoretic bounds have been proven which show that reconstructing a full classical
description of a quantum state ρ from measurement outcomes requires (in general) measuring exponentially
many copies of ρ [HHJ+17], even when the the extractor is free to choose the measurements which are
performed. To allow this seems excessive, and yet it may be hard to prove anything resembling knowledge
extraction if we demand that the prover and extractor be efficient in this black-box setting. It would be
more reasonable to relax the black-box requirement in some way so that we can reasonably expect efficient
extractors to be found.

Our first contribution is to provide a workable definition of a proof of quantum knowledge for the setting
where the only communication between verifier and prover is classical. In order to circumvent the difficulty
described in the preceding paragraph, we do not require that the extractor uses the prover as a black box,
but permit it to make use of the prover’s internal state. Specifically, we define a new abstract party that we
call the intermediary, and for any protocol P between a classical verifier and a quantum prover, we define a
mediated version of that protocol, P ′, in which the prover does not directly compute its own messages, but
is instead required to provide to the (trusted) intermediary any quantum state σ that it might wish to use in
the protocol P, in addition to a black box C that implements unitaries which represent the actions the prover
would have performed in the protocol P in response to the verifier’s challenges.1 The intermediary then
interacts with the verifier according to the prover’s instructions, and at the end the verifier either accepts
or rejects. The purpose of the intermediary is to make explicit the resources which the extractor has access
to; we stress that it is only a formalism, and does not restrict in any way the range of malicious actions
which the prover may take, or indeed alter its behaviour at all from its behaviour in the real protocol.2 We
then say the protocol P is a proof of knowledge for a quantum state ρ if there exists an extractor which can,
for any prover P which passes with high probability in the mediated protocol P ′, extract from the σ and C
that P gave its intermediary a quantum state that is close in trace distance to ρ.

There are two elementary but potentially interesting properties of this definition that can be simply
proved, and we provide proofs of these properties in section 4. The first property is that, loosely speaking,
nondestructive classical proofs of quantum knowledge are impossible for nontrivial states: that is, if a
classical proof of quantum knowledge leaves the witness state intact, then the witness state can be cloned.

1Forcing the black box C to be unitary ensures, for example, that the extractor need not worry about the prover making a
destructive measurement of its internal state for no reason other than to prevent the extractor from looking at it, because the
extractor is able to decide whether to implement that measurement or not. See Section 3 for a more precise description of the
nature of C, and see Section 7 for an example of how its unitarity is used.

2Gheorghiu and Vidick consider a similar model to this intermediary-based model in [GV19]; their model served as part of
the inspiration for ours.
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Since arbitrary quantum states cannot be cloned, we conclude that only a restricted set of relatively simple
states can have nondestructive classical proofs of knowledge (for example, classical strings). The second
property is that, under certain conditions on the parameters in the definition, a proof of knowledge protocol
for a hard-to-clone state can also be used as a quantum money verification protocol. Intuitively, we might
expect this to be the case, and indeed quantum money verification was one of the motivations which shaped
our definition of a proof of quantum knowledge.

Our second main contribution is to provide two examples of protocols which can be shown to be proofs of
knowledge under our definition, and in so doing introduce new techniques that may be used in the analysis
of such protocols. As we have mentioned, quantum money verification protocols are natural candidates
for proof-of-quantum-knowledge protocols: in a quantum money protocol, there is a prover who holds a
purported money state, and who wishes to demonstrate to the verifier (who might be the bank or an
independent citizen) that it does indeed ‘hold’ or ‘possess’ the quantum money state. The first person to
describe quantum money was Wiesner [Wie83], who proposed money states that are tensor products of n
qubits, each qubit of which is chosen uniformly at random from the set {|0〉 , |1〉 , |+〉 , |−〉}. Wiesner’s states
can be described classically by 2n classical bits, and in a quantum money scheme this classical description
is kept secret by the bank; a typical classical description is the pair of strings (x, θ), where the money state
can be described (denoting by Hi a Hadamard gate on the ith qubit of the state) as |$〉x,θ =

∏

iH
θi
i |x〉. We

choose to analyse a private-key, destructive classical money verification protocol between a prover and the
bank for Wiesner’s quantum money states which has been described previously in [MVW12]. The protocol
is simply as follows: the verifier issues a uniformly random challenge string c to the prover, which encodes
the bases (standard or Hadamard) in which the prover should measure the money state; the prover measures
the ith qubit of the state in the standard basis if ci = 0, or in the Hadamard basis if ci = 1, and sends
all the measurement outcomes as a string m to the verifier; and the verifier checks that, whenever ci = θi,
mi = xi. The property which makes this protocol and these states interesting, of course, is that no prover
who is given only one copy of the money state can pass verification twice.

Perhaps surprisingly, showing even that this simple protocol is a proof of knowledge according to our
definition turns out to be a non-trivial task. (Note that the proof-of-knowledge property is either stronger
than or incomparable to the property of being a money verification protocol, depending on parameter choices.
The protocol under consideration was already shown to be a money verification protocol by [MVW12].) We
may examine the following illustration of the difficulty. Consider, firstly, the following näıve approach to
designing an extractor for the protocol described in the preceding paragraph. The extractor could, having
access to the prover’s initial internal state σ and entire circuit (implemented as a black box), pick a challenge
c at random, apply the unitary which the prover would have applied in response to challenge c up until (and
not including) the point where the prover would have measured the state, and then apply some unitary to
‘correct’ for the challenge bases in order to recover the original money state. However, the prover (upon
receipt of the challenge) may take its honest money state and decide to apply X gates to some arbitrary
subset of the qubits of the state which it was told to measure in the Hadamard basis, and Z gates to a subset
of the qubits which it was told to measure in the standard basis. If the prover now measures this modified
money state in the bases encoded by c, it will pass with probability 1—but, since it is with overwhelming
probability the case that c 6= θ (the correct basis choice for the money state), the state that it measures in
this scenario is almost certainly not the same state as the original money state.

A little thought will show that this is a fairly general obstacle to finding the money state in the prover’s
registers immediately before it performs the measurement whose outcomes it will send to the verifier. Since
we know very little about what the prover might be doing to the money state at any other stage in its circuit,
meanwhile, it is difficult to reason about finding the money state in the prover’s registers at other points
in its operation. This simple argument shows that, in order to design an effective extractor, it is crucial to
consider the prover’s responses to all challenges c at once—the question, of course, is one of how.

Our way of overcoming these difficulties introduces a novel technique which builds on results from the
literature on nonlocal games. While this connection may be surprising at face value, it is not hard to see
why a rigidity result from the self-testing literature might end up being a useful tool for extracting quantum
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states from uncooperative provers who only output classical strings. Rigidity results guarantee that, up
to local isometry, two or more non-communicating players exhibiting certain correlations in their classical
measurement outcomes must be performing particular quantum operations on a particular entangled state.
The key idea of our proof for the Wiesner money verification protocol is as follows. Let the party which
chooses and prepares the money state |$〉x,θ =

∏

iH
θi
i |x〉 that the prover receives be known as Alice, and

let the prover be known as Bob. Consider the following thought experiment: instead of preparing |$〉x,θ,
Alice could prepare n EPR pairs and send half of each one to Bob. Let E(θ) = {|$〉〈$|x,θ | x ∈ {0, 1}n} be
a POVM. Then, if Alice measures E(θ) on her side of the state, and obtains the outcome x, Alice’s and
Bob’s joint state will collapse to two copies of |$〉x,θ. Note that, from Bob’s perspective, the protocol is the
same regardless of whether Alice sent EPR pairs and then measured E(θ), or whether she chose x and θ
uniformly at random and sent him |$〉x,θ to begin with. However, if Bob succeeds with high probability in
the money verification protocol, then he also succeeds with high probability at recovering a subset of the
string x which represents Alice’s measurement outcomes after she measures the POVM E(θ), and which also
forms part of the classical description of the money state |$〉x,θ. This observation makes it possible to apply
a theorem from [NV16], which states that, if two noncommunicating parties exhibit correlations like those
which Alice and Bob exhibit in this thought experiment, then they must once have shared EPR pairs, up
to local isometry. Since Alice is honest and did nothing to her shares of the EPR pairs, the local isometry
on her side is the identity map. Then, in order to recover the original money state, the proof-of-knowledge
extractor simply has to compute the correct isometry on Bob’s side (which can be done efficiently) and apply
it to the state that Bob submits to the intermediary. A more detailed justification of this last sentence is
given in section 5.

Wiesner states were the earliest and are the best-known kind of quantum money states, but there are
other kinds, and one sort which has received some recent attention is the class of subspace states introduced
in a quantum money context by [AC12]. Subspace states are states of the form 1√

|A|
∑

x∈A |x〉 for some n/2-

dimensional subspace A ∈ Z
n
2 , and they have similar no-cloning properties to those of Wiesner states; they

are also of additional interest because they have been used in several schemes which make steps toward the
goal of public-key quantum money [AC12], [Zha19], and in constructions of other quantum-cryptographic
primitives such as quantum signing tokens [BDS16]. We were not able to find a simple classical verification
protocol for subspace states that we could show to be a proof of quantum knowledge. Nonetheless, in
Section 6, we propose a classical verification protocol for what we call one-time-padded subspace states (that
is, subspace states which have had random Pauli one-time-pads applied to them by the bank), and we are
able to show under our new definition, using similar techniques to those which we applied to Wiesner states,
that this simple verification protocol is a proof of knowledge for one-time-padded subspace states. This
verification protocol is remarkable for having a challenge from the verifier that is only one bit long.

Our final contribution is to show that, under our definition, a classical argument of quantum knowledge
exists for any relation in the class QMA.3 The notion of a QMA relation was formalised jointly by [BG19] and
[CVZ19], as a quantum analogue to the idea of an NP relation which was described in the first paragraphs
of this introduction. [BG19] and [CVZ19] show that any QMA relation has a quantum proof of quantum
knowledge. The protocol that we show to be a classical argument of quantum knowledge for QMA relations,
meanwhile, is the celebrated verification protocol introduced recently by [Mah18b]. Mahadev [Mah18b]
shows, under cryptographic assumptions, that quantum properties (in her case, any language in BQP)
can be decided by a classical polynomial-time verifier through classical interaction alone with a quantum
polynomial-time prover. We note in retrospect that the proofs of the main results in [Mah18b] include
statements which can be used to make the verification protocol which [Mah18b] introduces into a classical
proof of quantum knowledge, in the same sense in which we have defined the latter. (In comparison, our
proofs that specific quantum money schemes satisfy our definition of a proof of quantum knowledge do not
use any cryptographic assumptions, and the protocols which we consider are very simple compared with
the [Mah18b] protocol.) The [Mah18b] verification protocol can be shown to be an argument of quantum

3Argument systems differ from proof systems only in that the honest prover must be efficient, and that soundness is required
to hold only against efficient provers. In this case, ‘efficient’ means quantum polynomial-time.
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knowledge for any QMA relation; the only caveat, which was also a caveat for the quantum proofs of quantum
knowledge for QMA exhibited by [BG19] and [CVZ19], is that an honest prover in the protocol may require
multiple copies of a witness in order that the extractor can succeed in extracting one copy. We refer the
reader to Section 7 for details.

Related and further work. Unruh [Unr12] was one of the first to consider the notion of a proof of
knowledge in the quantum setting. In his work, as in the classical literature, a ‘proof of knowledge’ is a
classical protocol which aims to establish that a prover ‘knows’ a classical string w satisfying an NP relation
R(x, ·). Unruh’s work was novel because it was the first to consider the possibility that an adversarial prover
may have quantum capabilities. This makes the design of an extractor more difficult, but Unruh shows
that, under specific conditions, a classical proof of knowledge is automatically also sound against quantum
adversaries.

As we have already mentioned, the notion of a proof of knowledge for a quantum relation was introduced
recently in [BG19] and [CVZ19]. In these papers, the authors give a natural extension of the classical
definition of a proof of knowledge to proofs of knowledge for quantum states ρ that ‘satisfy’ a QMA relation
Q. (The statement ‘ρ satisfies Q’ here means that Q(ρ, x) ≥ α for some parameter α, where Q is a quantum
circuit, x is a classical problem instance, and Q(ρ, x) is the probability that Q accepts witness ρ on input
x.) These authors also show, building on earlier work by Broadbent et al. [BJSW16], that every QMA
relation has a (quantum) proof of quantum knowledge. The main protocol from either paper can be made
non-interactive (assuming the appropriate trusted setup), but all the protocols considered by these papers
necessarily involve the exchange of quantum information between the verifier and the prover.

Other constructions for quantum money may yield to similar analyses to those by which we have ap-
proached the two examples we considered in sections 5 and 6; the construction based on the hidden matching
problem by Gavinsky [Gav12] is one such candidate. As we noted in section 4, the connection that we make
between proofs of quantum knowledge and quantum money protocols is somewhat unsatisfying in terms of
parameters. We expect that Claim 4.4 can be tightened by considering sequential or parallel repetition, and
we leave this question to further work. It would be interesting to find other quantum states (or collections
of quantum states) in the space between quantum money states and witnesses for arbitrary QMA relations
which admit simple proofs of quantum knowledge, with or without cryptographic assumptions. Looking
toward applications, meanwhile, a natural candidate application for (non-interactive) proofs of quantum
knowledge would be turning CPA-secure encryption schemes for quantum data into CCA-secure schemes.
(Quantum CCA-secure schemes have already been constructed directly in [ABF+16].)

It is also natural to consider zero-knowledge proofs of quantum knowledge. In our two examples in
sections 5 and 6, the verifier is provided with secret classical information which completely specifies the
state that the prover holds, so the notion of a zero-knowledge proof in this context is meaningless. However,
for general QMA relations, and some applications, the idea of safeguarding the state against the verifier
becomes more relevant. In prior work [VZ19], we showed that the protocol introduced in [Mah18b] can
be made zero-knowledge. Since we show in the current work that [Mah18b] is an argument of quantum
knowledge for any QMA relation, we believe zero-knowledge classical arguments of quantum knowledge can
also be constructed for any QMA relation.

Organisation. The organisation of this paper is as follows. In section 2, we introduce some preliminary
concepts. In section 3, we give our definitions of proofs of quantum knowledge, along with some intuition
for our choices. In section 4, we prove some elementary properties of the definitions in section 3. In sections
5 and 6, we give proofs that a classical private-key quantum money verification protocol for Wiesner money
states and a classical private-key verification protocol for one-time-padded subspace states, respectively, are
proofs of quantum knowledge. Finally, in section 7, we show that any QMA relation has a classical argument
of quantum knowledge.

Acknowledgements. We thank Andru Gheorghiu for useful feedback. Thomas Vidick is supported by
NSF CAREER Grant CCF-1553477, AFOSR YIP award number FA9550-16-1-0495, a CIFAR Azrieli Global

5



Scholar award, MURI Grant FA9550-18-1-0161 and the IQIM, an NSF Physics Frontiers Center (NSF Grant
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2 Preliminaries

2.1 Terminology and notation

For definitions related to quantum circuits and basic quantum complexity classes such as BQP and QMA we
refer to [Wat09]. We use ‘QPT’ as a shorthand for ‘quantum polynomial time’. A quantum polynomial-time
procedure is a polynomial-time uniformly generated family of quantum circuits.

We rely implicitly on Kitaev’s circuit-to-Hamiltonian construction [KSVV02, KR03], which associates
with any language L ∈ QMA and x ∈ {0, 1}∗ an instance of the local Hamiltonian problem. An instance of
the local Hamiltonian problem is specified by a local Hamiltonian operator H and two real numbers α, β
such that β − α ≥ 1/poly(|x|) and H has smallest eigenvalue ≤ α whenever x ∈ L, and ≥ β whenever
x /∈ L. We give the name ‘ground state’ to those states ρ such that Tr(Hρ) takes on its minimum value,
and we may refer to the space of all ground states of H (if there is more than one) as the ‘ground space’ of
H. We call the minimum eigenvalue of H its ‘ground energy’. We say H is ‘gapped’ when H is such that
the gap between its ground energy and the next lowest energy level is a fraction of ‖H‖op which is at least
inverse-polynomial in |x|, where ‖H‖op refers to the operator norm of H.
|u|H denotes the Hamming weight of a string u ∈ {0, 1}n, ‖u‖ denotes the Euclidean norm of a vector

u ∈ C
n, and ‖u‖1 denotes its 1-norm. 1

2‖ρ−ρ′‖1 is the trace distance between two density matrices ρ and ρ′.
We use the notation d|ψ〉(A,B) to denote the distance (pseudo)metric ‖(A−B) |ψ〉 ‖2 between two operators
A and B with respect to a specific state |ψ〉.

We use ◦ to denote composition: for example, if F and G are two circuits, F ◦ G(x) denotes firstly
running G on x, and then running F on the output of G on x.

We use the notation negl(λ) to denote any negligible function of λ ∈ N, i.e. a function f such that for
any polynomial p, p(λ)f(λ)→λ→∞ 0.

2.2 Quantum money

Public-key quantum money has received more recent attention than its private-key sibling, owing perhaps
to the fact that the question of how to construct it is, at the time of writing, considered an interesting open
problem. In our paper, however, we will focus on private-key quantum money, and so we provide only the
definition of private-key quantum money here. The exposition below is taken with some modification from
[AC12].

Definition 2.1. A private-key quantum money scheme S consists of three polynomial-time quantum algo-
rithms:

• KeyGen, which takes as input a security parameter λ, and probabilistically generates a key kprivate.

• Bank, which takes as input kprivate, and probabilistically generates a quantum state $ called a banknote.
(Usually $ will be an ordered pair (s, ρs), consisting of a classical serial number s and a quantum money
state ρs, but this is not strictly necessary.)

• Ver, which takes as input kprivate and an alleged banknote /c , and either accepts or rejects.

We say S has completeness error ε if Ver
(

kprivate, $
)

accepts with probability at least 1−ε for all keys kprivate
and valid banknotes $. If ε = 0 then S has perfect completeness.

Let Count (the money counter) take as input kprivate as well as a collection of (possibly-entangled)
alleged banknotes /c1, . . . , /cr, and output the number of indices i ∈ {1, . . . , r} such that Ver

(

kprivate, /ci
)

accepts. Then we say S has soundness error δ if, given any quantum circuit C
(

kprivate, $1, . . . , $q
)

of size
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poly (λ) (called the counterfeiter), which maps q = poly (λ) valid banknotes $1, . . . , $q to r = poly (λ)
(possibly-entangled) alleged banknotes /c1, . . . , /cr,

Pr
(

Count
(

kpublic, C
(

kpublic, $1, . . . , $q
)

)

> q
)

≤ δ .

Here the probability is over the key choice kprivate, valid banknotes $1, . . . , $q generated by Bank
(

kprivate
)

,
and the behavior of Count and C.

We call S secure if it has completeness error ≤ 1/3 and negligible soundness error.

Remark 2.2. By Theorem 16 in [AC12], it is sufficient for the security of a quantum money scheme to
require that no counterfeiter C which attempts to map one valid banknote into two can succeed in causing
the money counter to output 2 with more than negligible probability.

Remark 2.3. By Theorem 41 in [AC12], the completeness error 1/3 can be amplified to 1− exp(n) without
materially affecting the other properties of the scheme, except that the soundness error will increase by a
small amount.

3 Proofs of quantum knowledge

In the traditional view of an interactive protocol between a prover P and a verifier V , the two parties
interact sequentially through a classical communication channel, and any party’s (for example, the prover’s)
ith message mP,i is a function of the messages {mV,1, . . . ,mV,i−1} it has received so far from the other party
as well as its internal state. When one of the parties is quantum (again, for example, the prover), the
function that computes mP,i may involve a measurement on a private quantum state. As we stated in the
introduction, in order to allow an efficient extractor E to extract a quantum state from a prover that only
exchanges classical messages with the verifier, we intend to grant E non-black-box access to the prover, since
black-box extraction in the setting where all communication is classical seems as if it may be as hard as
quantum state tomography. To make precise what the extractor has access to, we introduce an additional
abstract party which we call the ‘intermediary’. The intermediary allows the extractor to manipulate the
state and measurements used by a real prover in the protocol in order to extract a certain state that the
prover can then be argued to ‘know’.

Specifically, for any real protocol P, we define a mediated protocol P ′ between classical verifier and prover
in the following form. In such a protocol, the prover does not directly compute its own messages, but is
instead required to provide to the intermediary the following at the start of the protocol:

• a register X containing any state σ it might wish to use,

• a quantum black-box unitary C that takes as input a tuple (i,m, f, τ), where i is interpreted as a
round number (each round consists in general of two classical messages, one from the verifier and one
from the prover, in that order), m as the last message that the verifier sent (m might be ⊥ for i = 1 if
the prover sends the first message), f ∈ {−1, 1} is an “inverse” flag, and τ is a quantum state. On all
inputs of the form |i,m, f〉 |ϕ〉 (where |ϕ〉 is a pure state having the same length in qubits as the size
of the register X), C implements the transformation

C : |i,m, f〉 |ϕ〉 7→ |i,m, f〉 (Ui,m)f |ϕ〉 ,

where Ui,m represents the unitary that the prover would have implemented on its private space in the
ith round of the protocol P upon reception of message m. For each i, it is understood that the prover’s
response in the ith round of the protocol P ′ will be obtained as follows. Starting from σ the prover
applies U1,m1

, where m1 is the verifier’s first message, and then measures the first k1 qubits to obtain
its first message m′1.

4 Then, the prover applies U2,m2
, where m2 is the verifier’s second message, on the

4The number of qubits measured by the prover in each step is part of the specification of the protocol, and known to all
parties and, for simplicity, assumed independent of the verifier’s messages.
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post-measurement state obtained after the first round, and measures the first k2 qubits to obtain its
second message m′2. The same process is then continued until the ith round in the obvious manner. We
may sometimes refer to the combined operation of applying Ui,m to the state in X and then measuring
the first ki,m qubits of X as the act of performing the measurement operator Mi,m.

5 (Note that this
formulation does not prevent the prover’s strategy from depending on the verifier’s messages other
than its last: if it wishes to, the prover can record the verifier’s historical messages in X.)

For the case of a QPT prover, we require that the prover pass to the intermediary an explicit
polynomial-size quantum circuit that implements the black box C.

The intermediary then executes P with the verifier according to the prover’s instructions (i.e., for each
round i and each message m from the verifier, it applies Mi,m to those qubits which the prover wishes Mi,m

to act on, and sends the classical measurement results to the verifier). After all the rounds of interaction
are over, the verifier outputs 0 (reject) or 1 (accept).

Remark 3.1. In the definitions which follow, we make the requirement that the extractor E runs in polynomial
time, if executing the prover’s unitary C on any input counts as a unit-time procedure. This requirement
is analogous to a standard requirement in classical definitions of proofs of knowledge, where running the
prover only counts as a single timestep in the accounting of the extractor’s complexity so that the notion
of an efficient extractor is still well-defined when the prover is unbounded. For technical clarity, we require
that (when the prover is unbounded) C is implemented as a black box. When the prover is QPT, meanwhile
(which is always the case when the protocol in question is an argument instead of a proof, meaning that
the extractor is only required to succeed on QPT provers), we can allow the extractor to have an explicit
description of the circuit C, since C will be efficient when the prover is QPT, although in practice this will
very rarely make a difference.

Remark 3.2. We stress that the intermediary exists only as an abstract formalism which allows us to precisely
define the resources to which the extractor in Definitions 3.3, 3.5 and 3.8 has access. It does not constrain
the prover’s behaviour in any way—in fact, from the verifier’s viewpoint, the protocols P and P ′ are exactly
the same. In [GV19], a similar intermediary is introduced so that a particular classical protocol between
quantum parties can be shown to be universally composable. If one wanted to use our definition of a proof
of quantum knowledge in a composable framework, then it would likely prove necessary to make use of the
intermediary in a similar way. We do not study composability questions in this paper.

We now proceed to introduce our definitions of classical proofs (and arguments) of quantum knowledge.
We give multiple definitions that account for different settings in which the notion may prove useful. First,
in Section 3.1 we give two definitions, Definition 3.3 and Definition 3.5, that introduce proofs of quantum
knowledge for a single state and a collection of states respectively.6 These definitions do not refer to any
complexity classes, and ask that the extractor has the ability to recover a state that is close in trace distance
to the target state. This choice of definitions is motivated by the applications to quantum money given in
Section 5 and Section 6.

Second, in Section 3.2 we give a definition, Definition 3.8, that applies to QMA relations. Informally, a
QMA relation is a quantum analogue for an NP relation; see Section 3.2 for the definition (which is due to
[BG19] and [CVZ19]). In Definition 3.8 the extractor is not required to recover a specific state, but rather
any valid witness according to the relation. In Section 7, we give an application of Definition 3.8 by showing
that the measurement protocol introduced by [Mah18b] for classically verifying BQP statements can be
considered an argument of quantum knowledge for any QMA relation.

5Formally, Mi,m is specified by the collection of Kraus operators {Ki,m,z}z∈{0,1}ki where Ki,m,z = (|z〉〈z| ⊗ Id)Ui,m.
6In fact, Definition 3.3 is a special case of Definition 3.5; however, as we find that the notation and terminology that come

along with Definition 3.5 can be somewhat cumbersome, we introduce Definition 3.3 as a simpler formulation about which useful
properties (such as Claim 4.2) can still be proved. (Note that Claim 4.2 generalises easily to Definition 3.5 and Definition 3.8.)
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3.1 Classical proofs of quantum knowledge for individual quantum states

In the following, words in square brackets should be excluded for a definition of a proof of quantum knowledge,
and included for a definition of an argument of quantum knowledge.

Definition 3.3 (Classical proof [argument] of quantum knowledge for a state ρ). Let {ρλ} be a family of
quantum states indexed by a security parameter λ. Let c, δ and κ be functions of λ. Let P be a protocol
between a verifier V and a prover P (where both parties are given λ as input). We say that the protocol P
is a (c, δ)–proof [argument] of knowledge with knowledge error κ for the quantum states {ρλ} if:

• There exists a [QPT] prover P given ρλ as input such that the verifier accepts P with probability at
least c, and

• There exists an extractor E satisfying the following: for any [QPT] prover P ∗ such that the verifier
outputs 1 in the mediated version P ′ of P with probability 1 − ǫ > κ, E is able, given the C and σ
that define P ∗ in P ′, to output a state ρ′λ such that

1

2
‖ρλ − ρ′λ‖1 ≤ δ,

for a function δ of ǫ and λ such that δ < 1 if 1 − ǫ > κ. Moreover, E runs in time polynomial in
|x|/(1 − ǫ− κ), if executing the prover’s unitary C on any input counts as a unit-time procedure.

Remark 3.4. The reader may wonder why, since Definition 3.3 refers to a single fixed ρ (for every value of
the security parameter), the extractor E cannot simply look at the description of ρ and output ρ without
reference to the prover’s state σ or circuit C. In fact, it could, if—for example—ρ were specified by a classical
description of a circuit which builds ρ; however, this is not necessarily the case. For example, ρ might be
specified only by an obfuscated verification circuit (alternatively, a Hamiltonian) that accepts only states
similar to ρ and rejects most others. Another useful intuitive formulation is to think of a protocol satisfying
Definition 3.3 as a proof that the prover ‘held onto’ ρ: the prover may have received ρ from some trusted
source some time ago, without knowing its description or anything about it except what it might be able
to find out through minimally perturbative measurements. In performing the protocol with the verifier, the
prover tries to demonstrate that it has not damaged ρ since it received the state or given it away.

Definition 3.5 (Classical proof [argument] of quantum knowledge for a finite collection Q of quantum states
with respect to distribution D). Let Qλ = {ρ1, ρ2, . . . , ρn(λ)}λ be a family of collections of quantum states
(one collection Qλ for each value of the security parameter λ). From now on, we assume that λ is given as
input to all parties, and omit the security parameter in the notation whenever its presence can be inferred
from context.

Let D be a probability distribution over the set Q with density f , so that Prσ←D(σ = ρi) = f(i). In
addition, let P be a protocol between a verifier and a prover. Consider the following game involving prover,
verifier, and intermediary.

1. The prover receives a state ρj sampled according to D.

2. After having received ρj, the prover executes P ′, the mediated version of P, with the intermediary,
who in turn interacts with the verifier. Let the state that the prover sends to the intermediary in P ′
after having received ρj be denoted by σj , and let the (black-box) circuit that it sends be denoted
by C. [When the prover is computationally bounded, we require that, for all j, there is an efficient
quantum operation T , also given to the extractor as a quantum circuit, which maps ρj to σj.] Let the
verifier’s eventual output in the mediated protocol P ′ be denoted by bj.

The protocol P involving a verifier and a prover is a (c, δ)–proof [argument] of knowledge with knowledge
error κ for the family of states Q with respect to the distribution D if:

• There exists a [QPT] prover P such that
∑n

j=1 f(j)bj ≥ c in the mediated interaction between P and
the honest verifier, and
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• There exists an extractor E satisfying the following: for any [QPT] prover P ∗ such that

n
∑

j=1

f(j)Pr[bj = 1] = 1− ǫ > κ,

E is able, for any state ρj ∈ Q, and given the C, [T ] and σj that define the behaviour of P ∗ on input
ρj , to output a state ρ′j such that

n
∑

j=1

f(j)
1

2
‖ρj − ρ′j‖1 ≤ δ,

for a function δ of ǫ and λ such that δ < 1 if 1 − ǫ > κ. Moreover, E runs in time polynomial in
|x|/(1 − ǫ− κ), if executing the prover’s unitary C on any input counts as a unit-time procedure.

Finally, we introduce a definition which is related to Definitions 3.3 and 3.5, and for which we have not
yet considered concrete applications, but which we believe may prove useful in time. Definition 3.6 defines an
object which we call a proof of possession. The motivation for this object is as follows. Intuitively, Definition
3.3 guarantees that any prover who passes with high probability in a protocol satisfying the definition for a
particular state ρ must still hold, in its entirety, some state close to the state ρ. This is formalised by the
existence of an extractor which can construct a state close to ρ by making use of that prover’s (black-box)
circuit and internal state. However, as we show in the proof of Claim 4.2, classical proofs of quantum
knowledge must be destructive. For some applications, it may therefore be useful to consider a protocol
which does not guarantee that the prover still holds ρ, but only that it must once have come into contact
with ρ—that is, that it can produce sensitive information which it is impossible or intractable to obtain
without having measured ρ at some point before. To give an example, one protocol which would satisfy the
definition of a proof of possession would be a version of Protocol 5.1 in which the challenge is chosen by the
prover instead of uniformly at random by the verifier. Intuitively, we can hardly expect to prove that the
prover has the entire money state |$〉x,θ if all it can do is pass in one challenge. However, we also expect that
it is intractable to pass on any challenge c in Protocol 5.1 without having measured the state |$〉x,θ before.
Definition 3.6 attempts to formalise this idea.

Definition 3.6 (Proof [argument] of possession). Let λ be a security parameter given as input to all parties.
Suppose that there exist a family of states {ρλ}, a quantum circuit Vρ,λ, and a family of states {ρ′λ} such
that:

• Vρ,λ(ρ′λ) = 1,

• for any [QPT] adversary A granted black-box access to Vρ,λ, and any state σλ output by A,

Pr[Vρ,λ(σλ ← A) = 1] = negl(λ),

• there exists a [QPT] procedure B which receives ρλ as input such that

Pr[Vρ,λ(τλ ← B) = 1] = 1− negl(λ).

Given ({ρλ}, {Vρ,λ}, {ρ′λ}) which satisfy the above properties, we call a proof [argument] of knowledge for
the family of states {ρ′λ} a proof [argument] of possession for the family {ρλ}.

3.2 Classical proofs of quantum knowledge for QMA relations

We start by recalling the definition of a QMA relation, following [CVZ19, BG19]. Fix a uniformly generated
family of polynomial-size quantum circuits Q = {Qn}n∈N such that for every n, Qn takes as input a string
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x ∈ {0, 1}n and a quantum state σ on p(n) qubits (for some polynomial p(n)) and returns a single bit as
output. For any 0 ≤ γ ≤ 1 define

RQ,γ =
⋃

n∈N

{

(x, σ) ∈ {0, 1}n ×D(Cp(n))
∣

∣ Pr(Qn(x, σ) = 1) ≥ γ
}

and
NQ,γ =

⋃

n∈N

{

x ∈ {0, 1}n
∣

∣ ∀σ ∈ D(Cp(n)) , Pr(Qn(x, σ) = 1) < γ
}

.

Definition 3.7 (QMA relation). A QMA relation is specified by a triple (Q,α, β) where Q = {Qn}n∈N is a
uniformly generated family of quantum circuits such that for every n, Qn takes as input a string x ∈ {0, 1}n
and a quantum state |ψ〉 on p(n) qubits and returns a single bit, and α, β : N → [0, 1] are such that
α(n)− β(n) ≥ 1/p(n) for some polynomial p and all n ∈ N. The QMA relation associated with (Q,α, β) is
the pair of sets RQ,α and NQ,β.

We say that a language L = (Lyes, Lno) is specified by a QMA relation (Q,α, β) if

Lyes ⊆
⋃

n∈N

{

x ∈ {0, 1}n|∃σ ∈ D(Cp(n)) s.t. (x, σ) ∈ RQ,α
}

, (1)

and Lno ⊆ NQ,β.
Note that, whenever α − β > 1/poly(n), a language L that is specified by (Q,α, β) lies in QMA.

Conversely, any language in QMA is specified by some QMA relation (of course such a relation is not
unique).

In the following, words in square brackets should be excluded for a definition of a proof of quantum
knowledge, and included for a definition of an argument of quantum knowledge.

Definition 3.8 (Classical proof [argument] of quantum knowledge for a QMA relation). Let (Q,α, β) be a
QMA relation. Let c, δ and κ be functions of a security parameter λ. Let P be a protocol between a verifier
V and a prover P (where both parties are given λ and an instance x ∈ {0, 1}∗ as input). We say that the
protocol P is a (c, δ)–proof [argument] of knowledge with knowledge error κ for the QMA relation (Q,α, β)
if:

• Whenever (x, σ) ∈ RQ,α there exists a [QPT] prover P that is given σ as input and such that on
common input (λ, x) the verifier accepts P with probability at least c;

• There exists an extractor E satisfying the following: for any [QPT] prover P ∗ such that the verifier
outputs 1 in the mediated version of P on common input (λ, x) with probability 1− ǫ > κ, E is able,
given the C and σ∗ that define P ∗ in the mediated version of P, to output a state σ′ such that

Pr
(

Q|x|(x, σ
′) = 1

)

≥ 1− δ ,

for a function δ of ǫ and λ such that δ < 1 if 1 − ǫ > κ, and such that 1 − δ > β. Moreover, E runs
in time polynomial in |x|/(1 − ǫ − κ), if executing the prover’s unitary C on any input counts as a
unit-time procedure.

Remark 3.9. Definition 3.3 can be considered a special case of Definition 3.8: if Q(x, ·) is designed such that
it only accepts states that are close in trace distance to a particular state (which could happen, for example,
if Q(x, ·) measured a Hamiltonian which was gapped and had a nondegenerate ground state), then Definition
3.8 reduces to Definition 3.3. We preserve both definitions for clarity and ease of use. In particular, note that
Definition 3.3 does not require any classical problem instance x to be provided to the prover; this is more
convenient in an application to quantum money, because in a quantum money setting the natural problem
instance associated with a quantum money state is usually a description of the Hamiltonian of which the
money state is a ground state, and giving this to the prover would allow for easy copying.

11



4 Simple properties

4.1 Nondestructive proofs of quantum knowledge are impossible for nontrivial states

In this section, we state and prove two simple properties of our definitions in section 3. The first of
these is that nondestructive classical proofs of knowledge do not exist for nontrivial states (for the sense
of ‘nondestructive’ made more precise by Definition 4.1). This is a simple no-go theorem which precludes
certain types of classical proofs of quantum knowledge, and in particular makes it certain that classical
proofs of quantum knowledge cannot be repeated (for example, for amplification purposes) unless the prover
holds multiple copies of the state of interest.

Definition 4.1. If a measurement operator M acting on a quantum state ρ is such that ρ is left unchanged
after the measurement M has been performed, we say that the measurement M was ‘nondestructive’. A
nondestructive protocol P is a protocol in which all the measurements Mi,m that the intermediary performs
for the prover in the mediated version of the protocol, P ′, are nondestructive for all possible m.

Claim 4.2. If there is a prover P which is able to succeed in a classical nondestructive (c, δ)–proof (or
argument) of knowledge for a family of states {ρλ} with probability 1 − ǫ, then there is a procedure A
7 which, given one copy of the state ρλ, can produce polynomially many copies of a state ρ′λ such that
1
2‖ρ′λ − ρλ‖1 ≤ δ(ǫ).

Proof. Suppose there is an efficient prover P which is able to succeed in a classical nondestructive proof
of knowledge for {ρλ} with probability 1 − ǫ. In each round, the prover performs a general measurement
Mi,mi

on its quantum state (where mi is the verifier’s ith message) and sends the classical measurement
outcome to the verifier. Let the prover’s initial quantum state be σ, and let the response it sends to the
verifier in the ith round be ri. Since the extractor E exists, there must be an efficient isometry Φ (which
can be constructed from the prover’s circuit C) that acts on σ and produces ρ′λ ∈ Hmain ⊗Haux, where ρ′λ
is a state such that Traux(ρ

′
λ) is at trace distance at most δ away from ρλ. From now on, we will use the

notation ρλ ≈ ρ′λ to indicate that ρλ and Traux(ρ
′
λ) have trace distance at most δ.

We claim that, since the measurements Mi,mi
which produced r1, . . . , rn (where the protocol has n

rounds) were nondestructive, A can construct a state τ from only the classical messages r1, . . . , rn such that
Φ(τ) ≈ Φ(σ). Firstly, note that, because all of the measurements Mi,mi

were nondestructive, the outcomes
ri are entirely determined by the verifier’s messages mi and the prover’s initial state σ. For any sequence of
messages m1, . . . ,mn, consider the sequence of subspaces Sr1(m1), . . . , Srn(mn), where ri(mi) is the response
the prover gives to message mi, and Sri(mi) is the eigenspace of the measurement operator Mi,mi

· · ·M1,m1

with eigenvalue ri. Note that, since the protocol is nondestructive for all m, the prover’s initial state σ
must lie in the intersection Tr(m) =

⋂

i Sri(mi) for all possible sequences of messages m = m1, . . . ,mn. This
means that σ must lie in the intersection

⋂

m Tr(m). Conversely, if A constructs a state τ which lies in the
intersection

⋂

m Tr(m), and then gives τ to a prover P ′, along with the (black-box) circuit C associated with
P , P ′ can succeed in the protocol with probability 1− ǫ by applying C to τ in the same way that the original
prover P would have applied it to σ. The protocol is a proof (or argument) of knowledge for {ρλ}, and P ′
is efficient when P is efficient, so we conclude that Φ(τ) ≈ ρλ.

We conclude that A can be used to clone the states {ρλ}: for any value of λ, it can copy r1, . . . , rn into
a new register, construct some state τ from them, and apply an isometry to τ to get a state ρ′λ such that
ρ′λ ≈ ρλ.

Remark 4.3. It is straightforward to see that, while Claim 4.2 is stated as a property of Definition 3.3, it
generalises to Definition 3.5 and Definition 3.8.

7
A is in general not efficient. This is acceptable because the no-cloning theorem for general states holds information-

theoretically.
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4.2 Proofs of quantum knowledge are also quantum money verification protocols

The other simple property which we prove is that, under certain assumptions on the parameters in Definition
3.5, any protocol satisfying Definition 3.5 can be used as a quantum money verification protocol. Intuitively,
one might expect this to be the case, and Claim 4.4 shows that it is. What may be less easy to see at first
sight is that the requirements on the parameters of Definition 3.5 which Claim 4.4 makes are very demanding,
considering that naive sequential repetition may not be an option for a quantum money verification protocol
(owing to the fact that giving out multiple copies of a money bill could compromise no-cloning security). In
fact, for example, the parameters we get from the proofs in sections 5 and 6 do not satisfy these requirements.
We leave the consideration of how these requirements may be relaxed, or else how a version of sequential
repetition might be developed for quantum money schemes, to the realm of future work.

Claim 4.4. Let λ be a security parameter. Let P be a protocol between a prover and a verifier, and let the
prover’s success probability in this protocol be 1− ǫ. Suppose there is a negligible function ν(·) and a function
δ(·, ·) such that

1. δ(ǫ, λ) <
(

δ0 =
2

3+
√
5

)

for all (λ, ǫ) such that

(a) 1− ǫ = f(λ) is a non-negligible function of λ, and

(b) λ > Mf , where Mf ∈ N is a bound that is allowed to depend on f ;

2. P is a (c = 2/3, δ)–proof of knowledge protocol with knowledge error ν(λ) for a collection of states
Qλ = {ρ1, . . . , ρn(λ)}λ such that, given one copy of a state ρ chosen from distribution D over Qλ,
it is [computationally intractable / impossible] to produce two states σ1 and σ2 which both pass in a
verification protocol Verρ with non-negligible probability.

Then P is also a quantum money verification protocol for a money scheme secure against [computationally
bounded / all] counterfeiters.

Remark 4.5. Claim 4.4 can be used in its stated form when we already have a verification protocol Verρ for
the family of money states Q and we wish to prove that a different protocol is also a verification protocol for
Q. If we are worried that Claim 4.4 is not particularly useful when we already have a verification protocol
Verρ, we can alter the property Q must satisfy into the following: given one copy of a state ρ chosen from
distribution D over Qλ, it is [computationally intractable / impossible] to produce two states σ1 and σ2
which are both [computationally / statistically] indistinguishable from ρ. Then, if we require δ = negl(λ) as
well as δ < δ0, and note that we can replace Verρ in the proof below with any [computationally bounded]
adversary, we will get the modified claim.

Alternatively, we can also require that no [efficient] procedure can generate σ1 and σ2 which are both
within a certain trace distance of ρ. This case is actually easier to prove (given the nature of Definition 3.5)
than the case we have worked out in the proof below and the case of [computational] indistinguishability
whose proof we have sketched in the previous paragraph: it comes directly out of the definition of the
extractor’s success. (The reason there is a difference between the other two cases and this one is that this
case does not preclude entanglement between σ1 and σ2 which causes σ2 to fail with higher probability when
σ1 succeeds, or vice versa.)

Proof. We prove Claim 4.4 by contradiction: we assume that there is a prover P who can pass twice in the
proof-of-knowledge protocol P with sufficiently high probability, given only one copy of the state ρ drawn
from D, and then we show a reduction to an adversary who can produce σ1 and σ2 which both pass with
non-negligible probability in Verρ. Let there be a prover P who receives one copy of ρ and who can pass
twice in the protocol P with probability greater than ν(λ) = κ in each execution. Note that, although
Definition 3.5 states that the prover receives ρ each time the protocol is run, we can model a prover P who
only receives one copy of ρ and must pass in the protocol twice as two communicating provers, P1 and P2,
who play the game in Definition 3.5 sequentially, and specify that P2 discards its copy of ρ without using
it, but that P2 is allowed to receive communications in the form of a quantum state σm from P1. Consider
an adversary A for no-cloning which proceeds as follows.
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1. A runs the extractor E guaranteed by Definition 3.5 on the state σ which P1 provides to its inter-
mediary. (We can assume, without loss of generality, that E is an isometry, i.e. it does not trace
out any qubits.) Since P is a (1 − µ(λ), δ)–proof of knowledge, the extractor is able to output a
state τ1 ∈

(

H = Hσ ⊗ Hwork = Hmain ⊗ Haux
)

(where Hσ is the Hilbert space containing P1’s state
σ, and Hwork is the extractor’s workspace, and Hmain and Haux repartition H into a space contain-
ing the extractor’s useful output and auxiliary output) such that, on average over the choice of ρ,
1
2‖ρ−Traux(τ1)‖1 ≤ δ. (From now on, we omit the qualifier ‘on average over the choice of ρ’ when its
presence can be inferred from context.)

2. A submits Traux(τ1) to Verρ for quantum money verification. Let the state inside Hmain ⊗ Haux
after verification occurs be τ2. Verρ must accept with probability at least 1 − δ; then, by the gentle
measurement lemma, 1

2‖τ1 − τ2‖1 ≤
√
δ if Verρ accepts.

3. A runs the extractor E backwards on the state τ2. Let E
−1(τ2) = τ3.

4. A gives Trwork(τ3) back to P1, allows P1 to finish executing and pass its quantum message to P2,
and then runs the extractor on P2. Let σm denote the message that P2 would have received from P1

if step 2 in this list had never happened, and let σ′m denote the message that P2 does receive. By
Definition 3.5, E ◦P2(σm) is at trace distance at most δ from ρ. Then, by the contractivity of the trace
distance, 1

2‖E ◦ P2(σm) − E ◦ P2(σ
′
m)‖1 ≤ 1

2‖τ1 − τ2‖1 ≤
√
δ, and, applying the triangle inequality,

1
2‖ρ− E ◦ P2(σ

′
m)‖1 ≤

√
δ + δ. A then submits E ◦ P2(σ

′
m) for quantum money verification.

As long as δ < δ0,
√
δ + δ < 1, and the probability that E ◦ P2(σ

′
m) passes verification is 1 − (

√
δ + δ),

which can be lower-bounded by the nonzero constant 1− (
√
δ0 + δ0). The adversary A will then pass twice

in quantum money verification with probability at least (1− δ)(1− (
√
δ + δ)) on average over the choice of

ρ, which completes the reduction.

5 PoQK for Wiesner money states

Our first concrete example of a proof of quantum knowledge protocol is a verification protocol for Wiesner’s
quantum money states. As we recalled in the introduction, quantum money states in Wiesner’s scheme are
n-qubit states such that each qubit is chosen uniformly at random from the set {|0〉 , |1〉 , |+〉 , |−〉}. Any
such state can be described classically by 2n classical bits; a typical classical description is the pair of strings
(x, θ), where the money state can be described (denoting by Hi a Hadamard gate on the ith qubit of the
state) as |$〉x,θ =

∏

iH
θi
i |x〉. Here, n is equated with the security parameter λ in Definition 3.5, and the

distribution D is taken to be uniform over all |$〉〈$|x,θ for x, θ ∈ {0, 1}n.
We now describe our proof of knowledge protocol.

Protocol 5.1. The following is a destructive verification protocol for Wiesner money states.

1. The verifier sends an n-bit uniformly random string c to the prover, where n is the length of the money
state ρ = |$〉〈$|x,θ in qubits.

2. If the ith bit of c is 0, the prover measures the ith qubit of its money state in the standard basis;
and if it is 1, the prover measures the ith qubit in the Hadamard basis. The prover sends all of the
measurement outcomes it obtains in this way to the verifier.

3. Let s be an n-bit string representing the bases in which the money state has been measured nonde-
structively. That is, si = 1 if and only f ci = θi. The verifier checks that, whenever si = 1, the outcome
is what it should be, i.e. xi.

Lemma 5.2. Fix some n ∈ N. There is a constant κ < 1 such that Protocol 5.1 is a (c = 1, δ = O(ǫ1/4))–
proof of knowledge with knowledge error κ for the family of states F = {|$〉〈$|x,θ |x, θ ∈ {0, 1}n} with respect
to the uniform distribution over F .
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Proof. Suppose that we are given a prover who passes in Protocol 5.1 with probability 1− µ. Let the party
which chooses and prepares the Wiesner money state that the prover receives in step 1 of Definition 3.5 be
known as Alice, and let the prover be known as Bob. Consider the following thought experiment: instead
of preparing |$〉x,θ, Alice prepares n EPR pairs and sends half of each pair to Bob. For any θ ∈ {0, 1}n let
E(θ) = {|$〉〈$|x,θ |x ∈ {0, 1}n} be a POVM. Then, if Alice measures E(θ) on her remaining n half-EPR pairs
and obtains the outcome x, Alice’s and Bob’s joint state collapses to two copies of |$〉x,θ. Note that, from
Bob’s perspective, the protocol is the same regardless of whether Alice sent EPR pairs and then measured
E(θ), or whether she sent him |$〉x,θ to begin with.

Suppose that we associate a register A with Alice’s n qubits, and a register B with Bob’s n qubits. Let
T : HB → HB′ be the map applied by Bob upon reception of his n qubits from Alice. Let the shorthand
σZ(a), for some string a ∈ {0, 1}n, denote the n-qubit observable that is a tensor product of single qubit
observables, and which is σZ on those qubits i such that ai = 1, and I otherwise. Let σX(a) be defined
similarly. Define ZA(b) ≡ σZ(b), XA(a) ≡ σX(a).

For Bob, meanwhile, we assume WLOG that the data he submits to the intermediary consists of the
first n+m qubits of HB′ , together with a circuit that, upon receipt of challenge c ∈ {0, 1}n, applies (again,
without loss of generality) an arbitrary unitary Uc on those n+m qubits and then measures the first n qubits
of HB′ in the basis indicated by c (computational basis if ci = 0 and Hadamard basis if ci = 1). For any
c ∈ {0, 1}n, therefore, we define ZB(c) ≡ U∗c̄ (σZ(c)⊗ Id)Uc̄, and X

B(c) ≡ U∗c (σX(c)⊗ Id)Uc, where c̄ denotes
the bitwise complement of c, and where the identities act on the last m qubits (so that the σ operators act
on the first n only).

Suppose that Alice measures E(b̄) on her side of the state, for some b ∈ {0, 1}n, and obtains the outcome
x. (This is equivalent to creating |$〉x,b̄.) By hypothesis, we know that Ub̄ applied to TrA(|ψAB〉) must
produce a state that, when measured in the standard basis, will yield xi whenever bi = 1, except with
probability µ over the choice of b. Let β be the outcome that Bob obtains from measuring his state in the
standard basis after applying Ub̄. Then, except with probability µ,

∀i, bixi = biβi

=⇒
⊕

i

bixi =
⊕

i

biβi.

Since E(b̄) commutes with ZA(b) ≡ σZ(b), and Bob’s standard basis measurement commutes with ZB(b) ≡
U∗
b̄
σZ(b)Ub̄, it must be the case that

E
b
Tr

(

〈ψ|ZA(b)⊗ ZB(b) |ψ〉
)

= E
b
Tr

(

〈ψ| σZ(b)⊗ U∗b̄ σZ(b)Ub̄ |ψ〉
)

≤ (1)(1 − µ) + (−1)µ = 1− 2µ , (2)

where the expectation is taken under the uniform distribution over b ∈ {0, 1}n.
Now suppose instead that Alice measures E(a), for some a ∈ {0, 1}n, and obtains the outcome x. Then

Ua applied to TrA(|ψAB〉) must produce a state that, when measured in the Hadamard basis, will yield xi
whenever ai = 1, except with probability µ. Similarly, then, we have

E
b
Tr

(

〈ψ|XA(a)⊗XB(a) |ψ〉
)

= E
b
Tr

(

〈ψ| σX(a)⊗ U∗āσZ(a)Uā |ψ〉
)

≤ 1− 2µ . (3)

At this point we are ready to apply the following lemma, whose proof is given at the end of the section. (The
lemma is an adaptation of results that appeared in [NV16].) In the lemma, we let |EPR〉 = 1√

2
(|00〉+ |11〉)

denote an EPR pair.

Lemma 5.3. Let |ψ〉AB′ = (Id⊗ΓB)(|EPR〉⊗nAB), for an arbitrary CPTP map ΓB : HB → HB′ . Suppose
that for every a, b ∈ {0, 1}n there exist observables {XB(a)}, {ZB(b)} on HB′ such that

∀W ∈ {X,Z} , E
a

∥

∥

(

σAW (a)−WB(a)
)

|ψ〉
∥

∥

2 ≤ ε , (4)
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for some 0 ≤ ε ≤ 1. Then there exists an isometry ΦB : HB′ → ((C2)⊗n)B ⊗HB̂ ⊕HB̂′ and a state |aux〉B̂
on HB̂ such that

Tr
(

(

〈EPR|⊗nAB ⊗ 〈aux|B̂
) (

Id⊗ΦB(|ψ〉 〈ψ|AB′)
)(

|EPR〉⊗nAB ⊗ |aux〉B̂
)

)

= 1−O
(

ε1/2
)

. (5)

Moreover, given black-box implementations for unitaries C1 and C2 that apply XB(a) and ZB(b) to a state
τ , given as input τ as well as strings a and b respectively, it is possible to construct an explicit quantum
circuit that implements ΦB by making a constant number of calls to C1 and C2 and uses O(n) additional
gates. Finally, the lemma also holds, with the same conclusion (but weaker implied constants), if (4) holds
when the expectation is restricted to those strings a such that |a|H = n

2 .

Setting ε = 4µ, it follows from (2) and (3) that equation (4) of Lemma 5.3 is satisfied. Suppose now
that Alice measures E(θ) after preparing the EPR pairs, and obtains the outcome x. Eq (5) implies (by the
contractivity of the trace distance, and the equality ‖ρ− σ‖1 =

√

1−Tr(ρσ) that holds when ρ, σ are pure)
that

‖ΦBTrA
(

|$〉〈$|x,θ ⊗ T (|$〉〈$|x,θ)
)

− |$〉〈$|x,θ ⊗ |aux〉〈aux|B̂ ‖1 = O(ε1/4) .

It follows that the extractor can apply ΦB (which, according to Lemma 5.3, has an explicit circuit description
as a function of the circuits that the prover gave to the intermediary) to σ and trace out B̂ in order to recover
a state O(ε1/4) close to |$〉x,θ. This completes the proof.

We conclude the section by giving the proof of Lemma 5.3. The proof uses the following general lemma,
that is based on [GH17]. See e.g. [CS17, Lemma 4.7] for a proof. In the lemma, U(H) denotes the group of
unitaries acting on Hilbert space H.

Theorem 5.4. Let G be a finite group. Let f : G 7→ U(HB′) and |ψ〉AB′ ∈ HA ⊗HB′ be such that

E
x,y∈G

〈ψ| IdA⊗f(x)f(yx)†f(y) |ψ〉 ≥ 1− δ , (6)

for some δ > 0. Then there exists an isometry V : HB′ → HB′′ and a representation g : G 7→ U(HB′′) such
that

E
x∈G

∥

∥ IdA⊗
(

f(x)− V †g(x)V
)

|ψ〉
∥

∥

2 ≤ 2δ . (7)

In this paper we are particularly concerned with the Pauli group G = Pn, which can be defined as the
2 · 4n-element matrix group generated by the n-qubit Pauli matrices σX and σZ , i.e.

Pn =
{

± σX(u)σZ(v)
∣

∣ u, v ∈ {0, 1}n
}

. (8)

We represent each element of Pn by a triple (ε, u, v) ∈ {±1} × {0, 1}n × {0, 1}n in the natural way. In
particular, the identity element is e = (1, 0n, 0n). For x = (ε, u, v) ∈ Pn, let f(x) = εX̂B(u)ẐB(v).

In this case and under the additional assumption that f(−x) = −f(x) for all x ∈ Pn the isometry V
promised in Theorem 5.4 takes a particularly simple form: for |ϕ〉 ∈ HB′ , we have HB′′ = C

2n ⊗ C
2n ⊗HB

and (as can be verified from e.g. the proof given in [CS17])

V |ϕ〉 = 1√
2 · 22n

∑

x=(ε,u,v)∈Pn

((

εσX(u)σZ(v)
)

⊗ Id |EPR〉⊗n
)

⊗ f(x) |ϕ〉 .

In particular, an efficient circuit for V is easily constructed from an efficient circuit for applying f controlled
on x.
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Proof of Lemma 5.3. Since the “finally” part of the lemma, where (4) is only promised to hold on average
over strings of Hamming weight n

2 , implies the initial statement of the lemma, we directly show that part.
For a string u ∈ {0, 1}n define two random strings (a, b) of Hamming weight n/2 as follows. First assume

that the Hamming weight of u is even. Let S ⊆ {1, . . . , n} denote the location of the ’1’ entries in u. Let
S1 be a uniformly random subset of S of size |S|/2, and S2 a uniformly random subset of S of size |S|/2.
Set all entries of a in S1 ∪ S2 to ’1’, and all other entries to ’0’. Set b = u⊕ a. Then it is clear that a and b
both have Hamming weight n

2 . Furthermore, if u is uniformly distributed then a and b are each uniformly
distributed over all strings of Hamming weight n

2 . If the Hamming weight of u is odd, a similar construction,
flipping an additional coin to decide if |S1| = (|S| ± 1)/2, applies.

For u ∈ {0, 1}n define X̂B(u) = XB(a)XB(b), where a and b are generated according to the process
described above, independently for each u. Similarly, for v ∈ {0, 1}n define ẐB(v) = ZB(a)XB(b), with a, b
generated independently for each v. Then {X̂B(u)} and {ẐB(v)} are unitaries on HB′ .

For x = (ε, u, v) ∈ Pn, let f(x) = εX̂B(u)ẐB(v).

Claim 5.5. The following holds:

E
x,y,z∈Pn

〈ψ| IdA⊗f(x)f(yx)†f(y) |ψ〉 ≥ 1−O(ε) , (9)

where the expectation is over three uniformly random group elements.

Proof. First we observe that the claim holds, with no error, in case f is replaced by fA(x) = εσAZ (v)σ
A
X(u),

for x = (ε, u, v). Next we note that for all W ∈ {X,Z} it holds that

E
u∈{0,1}n

∥

∥

(

σAW (u)− ŴB(u)
)

|ψ〉
∥

∥

2
= O(ε) . (10)

Indeed, this follows by two applications of (4), the triangle inequality, and the fact that the marginal
distributions of a and b for u chosen uniformly at random are both uniform. Applying (10) twice, once for
W = Z and once for W = X, we get

E
ǫ∈{±1},u,v∈{0,1}n

∥

∥

(

fA(ε, u, v) − f(ε, u, v)
)

|ψ〉
∥

∥

2
= O(ε) . (11)

Given that fA satisfies (9), this concludes the proof.

Claim 5.5 shows that the function f satisfies the assumption of Theorem 5.4, for some δ = O(ε). Let g
be the representation promised by the theorem. Let g = g+ ⊕ g− where g+(−e) = Id and g−(−e) = − Id
(recall that e denotes the neutral element of Pn). The only irreducible representation of Pn that does not
send −e to the identity is the Pauli matrix representation τP that we used to define the group in (8). Thus
g− = τP ⊗ Idd, for some integer d. Let d′ be the dimension of g+ and Π+ the projection on its range. Using
that by definition f(−x) = −f(x) for all x ∈ G, we get from (7) using the triangle inequality that

E
x∈Pn

∥

∥ IdA⊗V †2Π+V |ψ〉
∥

∥

2
= E

x∈Pn

∥

∥ IdA⊗V †
(

g(x) + g(−x)
)

V |ψ〉
∥

∥

2

= O(ε) . (12)

In particular, it then follows from (7) that

E
x∈Pn

∥

∥ IdA⊗
(

f(x)− V †
(

(τP(x)⊗ Idd)⊕ 0d′
)

V |ψ〉
∥

∥

2
= O(ε) . (13)

Let |ψ′〉 = (Id⊗V ) |ψ〉. Using the assumption (4) twice and (13) we get that for W ∈ {X,Z},
E

u∈{0,1}n
〈ψ′| σAW (u)⊗

(

(σBW (u)⊗ Idd)⊕ 0d′
)

|ψ′〉 = 1−O
(√
ε
)

. (14)

It is easy to verify by direct calculation that

E
u,v
σAX(u)σ

A
Z (v)⊗ σBX(u)σBZ (v) = |EPR〉〈EPR|⊗n .

It then follows from (14) that |ψ′〉 = |EPR〉⊗n |aux〉 + |ψ′′〉 for some |ψ′′〉 such that ‖ |ψ′′〉 ‖2 = O(ε). The
lemma follows, setting ΦB(X) = V XV † for all X.
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6 PoQK for subspace money states

Our second example of a proof of quantum knowledge protocol is a verification protocol for a modification
of Aaronson’s and Christiano’s subspace states [AC12]. Aaronson and Christiano present a quantum money
scheme in which an n-qubit money state is specified by a (secret) (n/2)-dimensional subspace A ∈ Z

n
2 , and

defined as |A〉 = 1√
|A|

∑

x∈A |x〉. (We identify n with the security parameter λ in Definition 3.5.) Aaronson

and Christiano give a proof of no-cloning security for a scheme that uses these subspace states as money
bills, in a black-box model where the prover can only access A through a pair of measurement operators
that respectively implement projections on A and A⊥. Their objective in defining such a scheme is to make
progress towards public-key quantum money.

As we mentioned in the introduction, we do not know if it is possible to devise a natural proof of quantum
knowledge for the Aaronson-Christiano subspace states as they have thus far been described. What makes
finding such a protocol challenging is that, in contrast with Wiesner’s money scheme, there is no obvious
classical verification protocol for subspace states in which there can be a single ‘right answer’ to a challenge.
We may consider, for example, a classical verification protocol for these states similar to a protocol which
was considered in [BDS16], where the prover is asked to measure all the qubits of a subspace state in
either the standard or the Hadamard basis, and any vector x ∈ A (resp. y ∈ A⊥) is a valid outcome for
a measurement in the standard (resp. Hadamard) basis. It is difficult to argue that such a protocol is a
PoQK for subspace states using similar techniques to those which we used for Wiesner states, because the
large number of possible ‘right answers’ which the verifier would accept means that the correlations that the
prover and the verifier must share if the prover passes are much weaker than those for which we can argue
in Protocol 5.1. Nonetheless, we are able to give a proof of knowledge for a version of the subspace scheme
in which a (secret) quantum one-time pad has been applied to every subspace state. This protocol has the
noteworthy property that the challenge issued by the verifier is only a single bit long.

Protocol 6.1. Let A be a uniformly random (n/2)-dimensional subspace of Zn2 , and let A⊥ be the orthogonal
complement of A. Let d, e be strings in {0, 1}n, which we identify with elements of Zn2 . Let the shorthand
X(a), for some string a ∈ {0, 1}n, denote the n-qubit unitary that is a tensor product of single qubit
gates, and which is Pauli X on those qubits i such that ai = 1, and I otherwise. Let Z(a) be defined
similarly. The following is a destructive verification protocol for one-time-padded subspace states of the
form X(d)Z(e) |A〉 = 1√

|A|
X(d)Z(e)

∑

x∈A |x〉.

• The verifier sends a single-bit challenge c ∈ {0, 1} to the prover.

• If the challenge is 0, the prover measures the entire subspace state in the standard basis, obtaining
an n-bit string of outcomes m ∈ {0, 1}n, and sends m to the verifier. If the challenge is 1, the prover
measures the subspace state in the Hadamard basis and likewise sends the outcomes m to the verifier.

• If c = 0, the verifier checks that m⊕ d is in A. If c = 1, the verifier checks that m⊕ e is in A⊥.

Lemma 6.2. For any n ∈ N and any subspace A of Zn2 define |A〉 = 1√
|A|

∑

x∈A |x〉. There exists a constant

κ < 1 such that Protocol 6.1 is a (c = 1, δ = O(ǫ1/5))–proof of knowledge with knowledge error κ for the set
{X(d)Z(e) |A〉 : d, e ∈ {0, 1}n,dim(A) = n/2}, with respect to the uniform distribution over this set.

Proof. Suppose that the probability that a given prover passes in Protocol 6.1 is 1−µ. Let the party which
chooses and prepares the subspace state that the prover receives in step 1 of Definition 3.5 be known as
Alice, and let the prover be known as Bob. Instead of preparing X(d)Z(e) |A〉, imagine that Alice prepares
n EPR pairs and sends half of each pair to Bob, keeping the other half. For convenience, we introduce some
notation:

• Let |$〉x,θ be a Wiesner money state representing the string x encoded in bases θ.

• Let {si : i ∈ {1, . . . , n}} = {100...0, 010...0, 001...0, . . . , 000...1} be the standard basis for Zn2 .
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• Let Z = {zi : i ∈ {1, . . . , n}} be a uniformly random basis for Zn2 chosen by Alice.

• Let V be the unitary defined as follows:

V : V |x〉 = V |x1s1 + · · ·+ xnsn〉
= |x1z1 + · · ·+ xnzn〉 . (15)

• Let Lθ for a string θ ∈ {0, 1}n be the subspace of Zn2 whose elements are always 0 in the positions
where θi = 0, and can be either 0 or 1 in the positions where θi = 1.

• Let X(z) for some vector z = (z1, . . . , zn) ∈ Z
n
2 denote the tensor product of n single-qubit gates which

is Pauli X in those positions i where zi = 1, and I otherwise. Define Z(z) similarly. Let XZ(a), for a
basis Z = {zj}, denote the operator

∏

j

(

X(zj)
)aj ,

where zj denotes a particular vector from the basis set Z, and aj denotes the jth bit of a. Define
ZZ(a) similarly.

For θ ∈ {0, 1}n and a basis Z of Zn2 , let E(θ,Z) = {V |$〉〈$|x,θ V ∗ | x ∈ {0, 1}n} be a POVM, where V is
defined as a function of Z in (15). Then, if Alice measures E(θ,Z) on her side of the state, and obtains the
outcome x, Alice’s and Bob’s joint state collapses to two copies of

|$′〉x,θ,Z =
1

√

|Lθ|
∑

λ∈Lθ

XZ(d)ZZ(e) |λ1z1 + · · ·+ λnzn〉 ,

with di = xi for i such that θi = 0, and ei = xi for i such that θi = 1. Note that the distribution of |$′〉 over
uniform x, θ,Z is identical (ignoring global phase) to that of a uniformly random one-time-padded subspace
state. (The global phase enters because the constraint above on di and ei in terms of x and θ only specifies
half of the 2n coordinates of d and e together.)

Suppose that we associate the register A with Alice, and the register B with Bob. For simplicity, we
assume that Alice’s register contains n qubits, and that Bob’s contains n + m for some arbitrary m ≥ 0
ancilla qubits. Alice prepares n EPR pairs and sends half of each one to Bob; Bob then behaves as the prover
in Protocol 6.1 would, applying a CPTP map T to his side of the state. Denote the resulting bipartite state
|ψ〉AB′ .

For a, b ∈ {0, 1}n define ZA(b) ≡ V σZ(b)V
∗, XA(a) ≡ V σX(a)V

∗. For Bob, meanwhile, consider
ZB(b) ≡ U∗0V (σZ(b) ⊗ Id)V ∗U0 (where, for c ∈ {0, 1}, Uc is the unitary that the prover in Protocol 6.1
applies to his side of the state in response to challenge c, and where σZ(b) acts on the first n qubits and Id
acts on the last m), and XB(a) ≡ U∗1V (σX(a)⊗ Id)V ∗U1.

Suppose that Alice measures E(b̄,Z) on her side of the state, and obtains the outcome x. (This is
equivalent to creating |$′〉x,b̄.) If the prover succeeds in Protocol 6.1 with probability 1− µ on average over
the choice of Z then the probability that the prover succeeds conditioned on c = 0 is at least 1 − 2µ, on
average over the choice of Z. ‘Success’ in the c = 0 case means that the prover obtains, after measuring the
state in the standard basis, an outcome m such that m ⊕ (x · b) ∈ A. Equivalently, ‘success’ means that,
if the prover had measured in the basis defined by the POVM {V |x〉〈x|V ∗ | x ∈ {0, 1}n}, it would have
obtained a string β such that, ∀i, bixi = biβi, because elements of the subspace A expressed in the Z basis
have zeroes in the positions i where bi = 1. Then, except with probability 2µ over the choice of b and the
choice of Z,

∀i, bixi = biβi

=⇒
⊕

i

bixi =
⊕

i

biβi .
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E(b̄,Z) commutes with ZA(b), and the POVM measurement {V |x〉〈x|V ∗ | x ∈ {0, 1}n} commutes with
ZB(b). Therefore, it must be the case that

E
Z

[

E
b : |b|H=n/2

Tr
(

〈ψ|ZA(b)⊗ ZB(b) |ψ〉
)

]

≤ (1)(1 − 2µ) + (−1)2µ = 1− 4µ ,

for a uniformly random choice of Z. (From now on, we will omit the qualifier ‘|b|H = n/2’ in the expectation
over b, although it remains implicit.) Using the notation d|ψ〉(A,B) = ‖(A−B) |ψ〉 ‖2 for any A,B, we get

E
Z
E
b
d|ψ〉(Z

A(b), ZB(b))2 = E
b

(

2− 2Tr
(

〈ψ|ZA(b)⊗ ZB(b) |ψ〉
)

≤ 2− 2(1− 4µ)

= 8µ .

Now suppose that Alice measures E(a,Z), and obtains the outcome x. By similar reasoning to the above,
we have

E
Z
E
a
d|ψ〉(X

A(a),XB(a))2 = E
a

(

2− 2 〈ψ|XA(a)⊗XB(a) |ψ〉
)

≤ 2− 2(1 − 4µ)

= 8µ .

Let dZ,X ≡ Ea d|ψ〉(X
A(a),XB(a))2, and let dZ,Z ≡ Eb d|ψ〉(Z

A(a), ZB(a))2. Using Markov’s inequality, for
any k > 1 we have that

Pr
Z

(

dZ,X ≥ kµ
)

≤ 8

k
,

Pr
Z

(

dZ,Z ≥ kµ
)

≤ 8

k
.

It is clear that the assumption (4) of Lemma 5.3 is satisfied (with ǫ = kµ) when dZ,X ≤ kµ and dZ,Z ≤ kµ,
which occurs with probability at least 1 − 16

k over the choice of Z. (Note that here we use the “finally”
part of the lemma, which allows us to restrict the condition to uniform expectation over strings of Hamming
weight n

2 . Note further that the lemma requires Alice’s operators to be exact Pauli operators, while here
they are conjugated by the unitary V . Since this unitary can be shifted to Bob’s system using the relation
(W ⊗ Id) |EPR〉 = (Id⊗W T ) |EPR〉 for any W , the lemma still applies.)

The conclusion of the lemma implies that, if a basis Z is chosen uniformly at random, then with proba-
bility at least 1− 16

k , there exists an isometry ΦBZ such that

Tr
(

(

〈EPR|⊗nAB ⊗ 〈aux|B̂
) (

IdA⊗ΦBZ(|ψ〉 〈ψ|AB′)
)(

|EPR〉⊗nAB ⊗ |aux〉B̂
)

)

= 1−O
(

(kǫ)1/2
)

. (16)

For the moment, let Z be chosen so that such ΦBZ exists. Suppose then that Alice measures E(θ,Z ′) after
preparing the EPR pairs, and obtains the outcome x. Equation (16) implies (by the contractivity of the
trace distance, and the definition ‖ρ− σ‖1 =

√

1− Tr(ρσ) that holds when ρ, σ are pure) that

‖ΦBZTrA
(

|$′〉x,θ,Z′ ⊗ T (|$′〉x,θ,Z′)
)

− |$′〉x,θ,Z′ |aux〉B̂ ‖1 = O((kǫ)1/4). (17)

Then, for the remaining 16
k fraction of Zs where an isometry ΦBZ satisfying equation (16) may not exist,

the trace distance between any state the extractor outputs and |$′〉x,θ,Z′ |aux〉B̂ is still upper bounded by 1.
By the convexity of the trace distance, the trace distance between the density matrix which the extractor
outputs and the state |$′〉x,θ,Z′ |aux〉B̂ is at most

16

k
+

(

1− 16

k

)

O((kǫ)1/4)

≤ 16

k
+O((kǫ)1/4) .

Choosing k = (1/ε)1/5, this expression is O(ε1/5). It follows that the extractor can apply ΦB to σ and trace
out B̂ in order to recover a state O(ǫ1/5) close to |$′〉x,θ.
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7 Arguments of Quantum Knowledge for QMA relations

The main result of this section is Theorem 7.4, which gives a classical argument of quantum knowledge for
any QMA relation. (If we want the completeness property of this argument of knowledge to hold for a prover
that is given a single copy of a witness for the relation, we need to assume a certain structure for the QMA
relation; see the statement of Theorem 7.4 below.) The construction is based on the classical verification
protocol for QMA introduced in [Mah18b], so we start by reviewing that protocol.

7.1 The verification protocol

We recall the high-level structure of the verification protocol from [Mah18b]. In this protocol, which we will
refer to as the verification protocol, the input to the verifier is an n-qubit Hamiltonian H that is expressed as
a linear combination of tensor products of σX and σZ Pauli operators. The input to the prover is a ground
state of H. Both parties also receive a security parameter λ. At a high level, the verification protocol has
the following structure:

1. The verifier selects a basis string h ∈ {0, 1}n according to a distribution that depends on H. The
verifier then randomly samples a pair of keys, (pk, sk), consisting of a public key pk and secret key sk.
(The distribution according to which (pk, sk) is sampled depends on h.) The choice of keys specifies
an integer w = poly(n, λ). The verifier sends pk to the prover.

2. The prover returns an n-tuple of commitment strings y = (y1, . . . , yn), where each yi lies in some
alphabet Y.

3. The verifier selects a challenge bit c ∈ {0, 1} and sends c to the prover.

4. If c = 0 (“test round”), the prover returns a string b ∈ {0, 1}n and x1, . . . , xn ∈ {0, 1}w . If c = 1
(“Hadamard round”), the prover returns a string b ∈ {0, 1}n and d1, . . . , dn ∈ {0, 1}w .

5. In case c = 0 the verifier uses pk, y, b and x1, . . . , xn to make a decision to accept or reject. (In
a test round the verifier never checks any properties of the prover’s state; it only checks that the
prover is, loosely speaking, doing the correct operations.) In case c = 1 the verifier uses sk to decode
y, b and d1, . . . , dn into decoded measurement outcomes (m1, . . . ,mn) ∈ {0, 1}n. (For the case of a
honest prover, the decoded outcomes m correspond to the outcomes of measuring a ground state of
H in the bases indicated by h, with hi = 0 indicating that the ith qubit should be measured in the
computational basis and hi = 1 that the ith qubit should be measured in the Hadamard basis. The
prover remains ignorant throughout the entire protocol of the verifier’s choice of h.)

6. In case c = 1 the verifier makes a decision based on the decoded measurement outcomes and the
instance x, as described in [Mah18c, Protocol 8.1].

As explained in [Mah18c, Section 2.3.1] the behavior of an arbitrary prover in this protocol can be charac-
terized by a pair of unitaries (U0, U) such that:

1. Upon reception of pk, the prover applies U0 to its initial state (to which |pk〉 has been appended),
measures the first n log |Y | qubits in the computational basis and returns the outcome;

2. Upon reception of c = 0, the prover directly measures the first (remaining) n + nw qubits in the
computational basis and returns the outcome;

3. Upon reception of c = 1, the prover applies the unitary U , measures the first (remaining) n + nw
qubits in the Hadamard basis and returns the outcome.

When executing this protocol as a mediated protocol (see Section 3) we may therefore assume without loss
of generality that the information passed by the prover to the intermediary consists of (i) an initial state σ,
and (ii) an explicit circuit implementation of the unitaries U0 and U .
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7.2 Construction of an extractor

To show that the protocol described in the previous section can be made into an argument of quantum
knowledge for a QMA relation we first explain, in general terms, how to construct the extractor E. We first
quote a claim from [Mah18c]. To make the claim comprehensible we need the following definition.

Definition 7.1. A prover in the verification protocol, represented by an initial state σ and a pair of unitaries
(U0, U), is called “trivial” (implicitly, for a given input Hamiltonian to the protocol) if two conditions hold:
(i) its probability of being accepted in a test round (case c = 0) is negligibly close to 1, and (ii) the prover’s
unitary U commutes with a computational basis measurement of the first n qubits (i.e. the committed
qubits).

Claim 7.2. For all trivial provers P , there exists an n-qubit state ρ [which can be created from the prover’s
initial state using a polynomial-size quantum circuit] such that for all h ∈ {0, 1}n, the distribution over
measurement results produced in the protocol with respect to P for basis choice h is computationally indis-
tinguishable from the distribution which results from measuring ρ in the basis determined by h.

As will soon be made clear, the “polynomial-size circuit” referred to in the statement of the claim is a
circuit that is obtained by small modifications of the provers’ actions in the protocol (i.e. the unitaries U0

and U described in the previous section). The claim of “computational indistinguishability” is based on a
cryptographic assumption, that underlies soundness of the verification protocol from [Mah18b]: informally,
the distribution of outcomes is “indistinguishable” from measurements on ρ to any (classical or quantum)
computationally bounded adversary, assuming that the Learning with Errors (LWE) problem is intractable
for quantum polynomial-time procedures. We refer to [Mah18b] for more details on this computational
assumption.

For our purposes we need a slightly modified version of Claim 7.2, stated below.

Claim 7.3. There exist constants c1, C1 > 0 such that the following holds. Let H be a Hamiltonian. Let P be
a prover that is accepted in the verification protocol associated with H, conditioned on a test round (c = 0),
with probability 1 − ε, for some ε ≥ 0. Then there exists an n-qubit state ρ (which can be created from the
prover’s initial state using a polynomial-size quantum circuit) such that on average over h ∈ {0, 1}n sampled
by the verifier at step 1 of the protocol, the distribution over decoded measurement outcomes obtained by the
verifier at step 5 of the protocol (in case c = 1) is computationally indistinguishable from some distribution
on {0, 1}n that is within statistical distance at most C1ε

c1 from the distribution which results from measuring
ρ in the basis determined by h.

We sketch a proof of this claim by relying on the proof of Claim 7.2 given in [Mah18c]. In the course of
the proof we explain the terminology used in the statement of Claim 7.2.

Proof of Claim 7.3. As shown in [Mah18c], it is straightforward to construct a trivial prover from an arbi-
trary prover that succeeds with probability sufficiently close to 1 in the “test” part of the protocol without
affecting the prover’s answers in the “Hadamard” part by too much (assuming the prover has a high over-
all probability of success in the first place). First, we can obtain (i) because the prover itself can check
if the answer it would provide in a test round would be accepted,8 so a modified prover, if it so desires,
can repeatedly simulate the original prover until it obtains a commitment string y such that the resulting
post-measurement state would lead to acceptance in a test round. The argument to obtain (ii) is slightly
more complicated, and appears as the proof of [Mah18c, Claim 7.3]. There it is argued that, for the case
of a prover that satisfies (i), replacing U by a twirling (conjugation) of it by random Pauli σZ operators
on the first n qubits does not affect the decoded outcomes obtained by the verifier in a way that would be
efficiently noticeable.

In the context of a proof (or argument) of quantum knowledge, we would like the extractor to be able to
turn the arbitrary prover from which it must extract a witness into a trivial prover, so that we can then apply

8This is not the case for answers in the Hadamard round, that require the secret key sk to be verified.
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Claim 7.2. Unfortunately, the modification required for (i) that we have described requires polynomially
many copies of a ground state of H. The intermediary, from which the extractor must be built, only receives
a single copy of the prover’s initial state, so that the modification we have sketched for turning an arbitrary
prover into a trivial prover cannot be applied by the extractor under Definition 3.8.

Fortunately we note that the requirement that the prover succeeds with probability negligibly close to 1
in the test round is not necessary; instead, it is sufficient to require that the prover succeeds with probability
sufficiently close to 1, where “sufficiently” can be an inverse polynomial in the instance size. To see why
this is the case we observe that performing the modification for (ii) to a prover that only succeeds with
probability 1− ε in the test round, as opposed to negligibly close to 1, will only affect the verifier’s decoded
measurement outcomes up to statistical distance poly(ε). This is because, as shown in the proof of [Mah18c,
Claim 7.2] the transformation from a general prover to one that satisfies (i) only affects the internal state
of the prover at the start of step 4 of the protocol to within trace distance at most poly(ε). Since the
twirling operation has a negligible effect on the verifier’s decoded measurement outcomes for the case of a
prover satisfying (i), the same operation cannot lead to outcomes that are distinguishable from the original
outcomes with advantage more than poly(ε) when applied to a prover that succeeds with probability only
1− ε, instead of negligibly close to 1. Removing the assumption that the prover is trivial also requires us to
weaken the statement “for all h” in Claim 7.2 to “on average over h” here; however, this is unimportant as
the verifier can use a distribution on bases h of its choice at the first step of the protocol (and in particular
the distribution can depend on the structure of the local Hamiltonian instance), and the “average” referred
to in the claim is then taken with respect to the verifier’s choice of distribution.

To complete our explanation of Claim 7.2 we describe, following [Mah18c, Protocol 5.8], the construction
of the state ρ. (We adapt the provedure so that it applies to a general prover, as opposed to a trivial prover
in [Mah18c, Protocol 5.8]. The only modification is the twirling of U at step 3.)

1. Sample (pk, sk) as V would for the case when h is the all-1 string, h = 1n;

2. Using pk, apply the prover’s first unitary U0 on the prover’s initial state and measure the first n log |Y|
qubits to obtain commitment strings (y1, . . . , yn);

3. Apply the unitary U , twirled by a random σZ operator on each of the first n qubits. Do not measure the
(remaining) first n qbuits. (These qubits are referred to as committed qubits.) Measure the following
nw qubits in the Hadamard basis to obtain a string d.

4. For i ∈ {1, . . . , n}, apply σdi·(x0,i⊕x1,i)Z to the i-th committed qubit. Here x0,i and x1,i are w-bit strings
that can be inferred from yi using sk, the inner product is taken modulo 2, and σ0Z = Id.

5. Return the state ρ of the n committed qubits.

Given efficient circuits for U0 and U , the entire extractor construction is efficient.

7.3 Arguments of Quantum Knowledge for QMA relations

Combining the observations made in the previous subsections, we show the following.

Theorem 7.4. Let (Q,α, β) be a QMA relation that has the following properties.

1. The completeness parameter α is negligibly close to 1, and the soundness parameter β is bounded away
from 1 by an inverse polynomial.

2. For any x ∈ RQ,α with |x| = n, there is a local Hamiltonian H = Hx, that is efficiently constructible
from x, satisfying the following. First, we assume that H is expressed as a linear combination of
tensor products of Pauli operators such that − Id ≤ H ≤ Id. Second, whenever there is σ such that
(x, σ) ∈ RQ,α, then Tr(Hσ) is negligibly close to −1 and moreover any σ such that Tr(Hσ) ≤ −1 + δ
satisfies Pr(Q|x|(x, σ) = 1) ≥ 1− r(|x|)q(δ) for some polynomials q, r. Third, whenever x ∈ NQ,β then
the smallest eigenvalue of H is larger than −1 by some inverse polynomial in |x|.
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Then under the Learning with Errors assumption the verification protocol presented in Section 7.1 is a
(c, s, δ)-argument of quantum knowledge for the family of states {(x, σ) : (x, σ) ∈ RQ,α} with knowledge
error κ, where: c is negligibly close to 1; κ is bounded away from 1 by an inverse polynomial; δ is a
polynomial in ε (for any ε such that 1− ε > κ).

Before giving the proof of the theorem we comment on the assumptions made on the QMA relation.
The first assumption is benign and follows from standard amplification techniques. The second assumption
is somewhat more restrictive. For any QMA relation (Q,α, β), the existence of Hamiltonians H = Hx

satisfying all claimed properties follows from Kitaev’s circuit-to-Hamiltonian construction, in its amplified
form used in [Mah18c, Protocol 8.3]. However, this construction is not in general “witness-preserving” in
the sense described in the second assumption above: to construct an eigenstate of the Hamiltonian H with
small enough eigenvalue, one may need to use many copies of a witness σ for the QMA verification procedure
Q(x, ·). Hence depending on the structure of the original QMA relation one may or may not in general be
able to obtain, using Theorem 7.4, an argument of quantum knowledge whose completeness property holds
for a prover that is given a single witness for the QMA relation.

Proof. The completeness requirement follows immediately from completeness of the protocol from Sec-
tion 7.1, as shown in [Mah18b]. The construction of the extractor is described at the start of this section.
Fix an (x, σ) ∈ RQ,α and let n = |x|. Suppose that P ∗ is a prover that succeeds with probability 1− ε > κ
in the associated protocol, where κ is as in the theorem statement. In particular, the prover is accepted in a
test round with probability at least 1− 2ε. By Claim 7.3, measurement outcomes obtained on the extracted
state ρ′ are computationally indistinguishable from a distribution on n-bit strings that is within statistical
distance at most poly(ε) from those obtained by the verifier at step 5 of the verification protocol. We claim
that the extractor returns a state ρ′ such that

Pr(Qn(x, ρ
′) = 1) ≥ 1− poly(ε) · poly(|x|) . (18)

The reason is that, as shown in [Mah18c, Section 8] (based on [FHM18]), the verifier’s decision at step
6 of the verification protocol involves an efficient computation on the decoded measurement outcomes.
Moreover, whenever the measurement outcomes are truly obtained from measurements on a state ρ′, then the
verifier’s acceptance probability at step 6. is 1

2(1− Tr(Hρ′)). Therefore, the aforementioned computational
indistinguishability implies that the quantity Tr(Hρ′) is within δ = poly(ε) of the verifier’s acceptance
probability in the verification protocol. By the second property assumed in the theorem statement, this
implies the claimed bound (18). Assuming κ chosen to be sufficiently close to 1, ε is small enough that the
right-and side of (18) is positive.
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