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We present a systematic comparison of the binary black hole BBH signal waveform reconstructed by
two independent and complementary approaches used in LIGO and Virgo source inference: a template-
based analysis and a morphology-independent analysis. We apply the two approaches to real events and to
two sets of simulated observations made by adding simulated BBH signals to LIGO and Virgo detector
noise. The first set is representative of the ten BBH events in the first gravitational wave transient catalog
(GWTC-1). The second set is constructed from a population of BBH systems with total masses and signal
strengths in the ranges that ground based detectors are typically sensitive. We find that the reconstruction
quality of the GWTC-1 events is consistent with the results of both sets of simulated signals. We also
demonstrate a simulated case, where the presence of a mismodeled effect in the observed signal, namely
higher order modes, can be identified through the morphology-independent analysis. This study is relevant
for currently progressing and future observational runs by LIGO and Virgo.
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I. INTRODUCTION

The first gravitational wave transient catalog (GWTC-1)
[1] published by the LIGO and Virgo Collaboration [2,3]
includes signals from ten binary black hole (BBH) sources
and one binary neutron star (BNS) system. Along with
neutron star-black hole (NSBH) binaries, these sources are
referred to as compact binary coalescences (CBCs).
Ground based detectors are most sensitive to transient
signals from CBC systems with total masses MT in the
stellar mass range (10 M⊙ ≲MT ≲ 100 M⊙). The gravi-
tational wave (GW) emission becomes loudest in the
sensitive frequency band (20–1000 Hz) [4] milliseconds
to minutes before the merger, just as the GW emission
reaches peak amplitude.
There are two main types of transient GW analysis:

targeted template-based matched-filter “CBC” analyses,
which use physically motivated waveform models [5], and
morphology-independent “burst” analyses [6,7]. Themodels
used in CBC analyses [8,9] are semianalytical solutions of
general relativity (GR) that combine aspects of analytical
post-Newtonian theory to model the inspiral, and numerical
relativity (NR) [10–12] to capture the highly nonlinear late
inspiral andmerger phases [13]. The CBC templates account
for the dominant ðl; jmjÞ ¼ ð2; 2Þ mode in the spherical
harmonic formulation of GW radiation. Burst analyses

model GWs as a superposition of a number of suitable basis
functions parametrized by observable quantities, such as
amplitude and frequency [14,15]. The inexact match of the
basis functions with underlying GW signals results in
generally lower intrinsic sensitivity than targeted CBC
searches but the larger number of degrees of freedom allows
for the recovery of unmodeled waveform phenomenology
and, potentially, new physics. Burst methods are also used to
search for GW signals from sources such as supernovae [16]
and the postmerger phase of binary neutron star coalescence,
where the physics is too uncertain to develop a sufficiently
robust matched-filter template [17–20].
Following the detection of a GW signal in the data,

parameter estimation (PE) analysis is performed by
LALInference [21], which uses CBC models to sample the
posterior probability distribution (PDF) of the physical
parameters, e.g., masses and spins, using stochastic sam-
plers, such as Makov chain Monte Carlo (MCMC) [22–28]
and nested sampling [29,30]. The resulting PDF is used in
studies including formation scenarios, rates, and tests
of GR.
A “burst”PEanalysis is performedbyBayesWave [31,32].

BayesWave models the signal waveform as a sum of Morlet
Gabor wavelets [33] and uses a transdimensional reversible
jumpMarkov chain Monte Carlo (RJMCMC) to sample the
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parameters as well as the number of the wavelets [34].
BayesWave will reconstruct any feature in the data that is
coherent across the detector network if the feature is loud
enough compared to the background noise. This makes the
wavelet model flexible enough to fit a wide range of signal
morphologies. For the case of BBH signals, it is most
sensitive to times close to the merger where the ampli-
tude peaks.
Wavelets and CBC waveforms provide complementary

means to study GW signals. Figure 1 shows the waveform
reconstructions and their 90% credible intervals given by
LALInference using the precessing, dominant mode approx-
imant IMRPhenomPv2 [35] from the Phenomwaveform family,
and by BayesWave for GW150914 [36]. Waveform recon-
struction plots that similarly illustrate the agreement between
CBC and burst reconstructions and have been used in works
on GW150914 [37], GW170104 [38], GW170814 [39],
GW170729 [40], and GWTC-1 [1]. Comparing wavelet-
based andwaveform-based signal reconstructions serves as a
consistency check for the signal morphology. A general
feature of these plots is that the reconstructions agree at times
close to the merger where the signal is strong but do not
necessarily have to agree where the signal is weak. This is
because the accuracy of BayesWave’s reconstruction of a feature
depends on the loudness of the feature. We also note that
the BayesWave credible intervals are broader than the
LALInference credible intervals since the former allows for
more flexibility in the waveform morphology.
Reference [37] studies the agreement between a set of

simulated GW signals injected into real data and the
reconstructions obtained using BayesWave. A related test
of signal consistency is the residuals test which uses
BayesWave to analyze the residual obtained by subtracting
from the detector data the reconstructed CBC signal. The
result is then compared to the same analysis on surrounding
noise to quantify the evidence for any residual excess. This
test has been employed in [38,42,43].

This paper presents a systematic performance compari-
son of the two algorithms applied to BBH systems. It
provides the context in which the reconstructions of future
gravitational wave events can be evaluated, which is
particularly timely given the approximately weekly BBH
detections during the third LIGO and Virgo observing run.
Instead of qualitative plot comparisons, we use a quanti-
tative comparison metric that is the overlap, which is the
noise weighted inner product of waveforms reconstructed
by each algorithm. Simulated BBH GW signals are added
to detector noise from the LIGO and Virgo detectors. These
“injections” are then analyzed using LALInference and
BayesWave. We perform two types of injections: in the first,
we inject populations of signals whose physical parameters
are drawn from the posterior probability distributions
inferred from GWTC-1 events [44]. We also analyze a
population of BBH injections whose masses are drawn
uniformly from ranges that explore ground based detector
sensitivities and signal durations.
We find that the waveform reconstructions of events in

GWTC-1 are consistent, within 90% credibility, with
expectations based on our simulations of similar signals.
Analysis of signals drawn from across the mass spectrum
also illustrates that BayesWave performs significantly better
for higher mass systems, while the template-based
LALInference reconstructions are relatively insensitive to
the mass ranges explored in this study. This is to be
expected, since signals with shorter durations and fewer
cycles most closely resemble the wavelet basis used by
BayesWave, bringing the analysis closer to matched filtering.
There remain known physical effects, such as precession,

orbital eccentricity, extreme mass ratios which have histor-
ically been difficult to incorporate into analytical models
for BBH GW waveforms. Less certain effects, such as
deviations from GR, are still more difficult to model. With
developments in technology such as LIGO Aþ [45], and
third generation detectors such as the Einstein Telescope

FIG. 1. LALInference IMRPhenomPv2 (red) [35] and BayesWave (blue) reconstructions of GW150914 [36] using publicly released data
from GWTC-1 [41]. The left and right panels, respectively, show the waveform in LIGO Hanford and LIGO Livingston. The x axis
represents the time in seconds before the coalescence. The y axis represents the strain amplitude whitened using a filter which is the
inverse amplitude spectral density (ASD). The units are in multiples of the standard deviation of the noise.
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and Voyager [46,47], the network of ground based detec-
tors will reach sensitivities where these effects will in
principle, be loud enough to cause significant disagreement
between the reconstructions given by the CBC and model-
independent analyses. As an illustration of such a scenario,
we analyze a numerical relativity waveform from the
Georgia Tech catalog [48]. In this system, higher order
modes (HOMs) contribute a substantial fraction of the total
signal-to-noise ratio [49]. While there now exist waveform
templates which accurately model HOMs [50,51], analysis
of this signal with a more rudimentary waveform model
[35] is a convenient way to highlight what a disparity in
LALInference and BayesWave reconstructions would look like.
We analyze the performance of LALInference and BayesWave

when this waveform is injected into data and find that the
latter is able to reconstruct the waveform more accurately
due to its flexibility.
Section II delves into the details of LALInference and

BayesWave, their waveform models, sampling techniques,
and calculation of the overlap. Section III describes the
set of injections in detail. Section IV discusses the results
and inferences. Section V briefly discusses the performance
comparison of the two algorithms when HOMs are
included in the injection. Section VI concludes the paper
and discusses possible future work.

II. METHODOLOGY

The properties of a detected signal are inferred
by modeling the detector data d with the parametrized
waveform hðθÞ. The boldface here is to emphasize that d
and h represent quantities in multiple detectors. Here,
θ ¼ fθ1; θ2;…; θNg represents a point the parameter space
of the underlying CBC system in the case of LALInference such
as masses and spins, or the parameter space of wavelets in
the case of BayesWave such as the central frequency, ampli-
tude, and number of wavelets. The data d are assumed to be
a time series that contains the true GW signal, plus additive
stationary Gaussian noise characterized by the one-sided
noise power spectral density (PSD) SnðfÞ. We are interested
in sampling the posterior probability distribution function of
h given d. According to Bayes’ theorem [52,53],

pðhjdÞ ¼ pðhÞpðdjdÞ
pðdÞ ; ð1Þ

where pðhÞ is the prior knowledge about the system. pðdjhÞ
is the likelihood function, the probability of obtaining data d
given the signal h,

pðdjhÞ ∝ exp

�
−
1

2
hd − hjd − hi

�
; ð2Þ

where h·j·i on quantities with boldface indicates the
noise weighed inner product over the network of detectors
given by

hajbi ¼
Xn
i

haijbii; ð3Þ

where i sums over all n detectors in the network, and haijbii
is the inner product in an individual detector defined in as

haijbii≡ 4ℜ
Z

∞

0

ãiðfÞb̃i�ðfÞ
SinðfÞ

df; ð4Þ

where ãiðfÞ is the Fourier transform of time series ai, and
the superscript � denotes the complex conjugate. SinðfÞ is the
PSD of the ith detector. Dividing by the PSD effectively
reweighs the integral towards frequencies, where the detec-
tors are most sensitive. The optimal signal to noise ratio
(SNR) is defined as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hdjdi

p
ð5Þ

and is often used as a figure of merit for the strength of the
signal in the detector.
The signal in the ith detector, hi, is obtained by projecting

the “plus” (hþ) and “cross” (h×) using the sky-location
dependent antenna pattern functions Fiþ and Fi

×,

hi ¼ Fiþðθ;ϕ;ψÞhiþ þ Fi
×ðθ;ϕ;ψÞhi×: ð6Þ

The computational cost of estimating the likelihood
function using deterministic methods is high, as the number
of valuations required to explore the parameter space on a
fixed grid grows exponentially with the number of dimen-
sions. This can become prohibitively expensive beyond a
few dimensions. Therefore, sampling-based methods such
as Markov chain Monte Carlo (MCMC) [22–28] and nested
sampling [29,30] are often used.

A. LALInference

LALInference [21] models the signal d in the detector data
as a CBC GW signal described by GR. It uses analytical or
semianalytical approximants to construct the signal wave-
form. To sample the parameter space, it uses two main
techniques: nested sampling [29,30] and MCMC [22–28].
The parameter samples of GWTC-1 use the precessing,

dominant mode approximants from the two main families:
IMRPhenomPv2 [35] from the Phenom family, and SEOBNRv3
[54,55] from the EOB-NR family. For this paper, we use the
IMRPhenomPv2 samples to perform injections and use a
reduced order quadrature (ROQ) [56] of IMRPhenomPv2 to
compute the likelihood while analyzing with LALInference.
The ROQ reduces the computational cost of parameter
estimation by reducing redundant computations. We do
not use the SEOBNRv3 approximant for recovery as it is
computationally more expensive. Studies such as [1] have
shown that IMRPhenomPv2 and SEOBNRv3 samples for
BBH systems in GWTC-1 broadly agree with each other.
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B. BayesWave

BayesWave [31,32] models the signal d in the detectors
as a summation of Morlet Gabor wavelets, the number
and parameters of which are marginalized over using the
RJMCMC sampler.
The signal model consists of a variable number of

wavelets, where each wavelet, Ψ, is described by five
parameters: the central time t0, the central frequency f0, the
quality factor Q, the amplitude A, and the phase offset ϕ0.
In the frequency domain, the wavelet is given by

Ψ̃ðf;A;Q; f0; t0;ϕ0Þ

¼
ffiffiffi
π

p
Aτ
2

e−π
2τ2ðf−f0Þ2eiðϕ0þ2πðf−f0Þt0Þ; ð7Þ

where τ ¼ Q=2πf0 and ·̃ represents the frequency domain
version of any quantity. Assuming an elliptically polarized
GW signal, the plus component (hþ) of the GW strain is
given by h̃þ ¼ P

N
j¼0Ψj, whereN is the number of wavelets

that describe the signal model. The cross component (h×) is
given by h̃× ¼ ieh̃þ, where e is the ellipticity paramter
which is also sampled over. Details of the wavelet model
used in BayesWave can be found in [31]. A generalization of
the wavelet model is the chirplet model which includes a
time dependent frequency component [57].
Sincewe are testing the infrastructure as employedby past

LIGO and Virgo Collaboration papers, we limit our analysis
to the wavelet model. Past studies such as [40] have shown
that the wavelet and chirplet models have similar levels of
agreement with CBC waveforms for the observed BBH
systems. We also limit ourselves to the frequency indepen-
dent ellipticity (e) assumption. BayesWave was initially
developed using the elliptical polarization assumption since
the early era of GWastronomy had only two nearly aligned
LIGO detectors, which resulted in poor polarization sensi-
tivity. Recent works such as [58] show that HOMs are
measurable with the current detector network sensitivities,
and it is important to relax the ellipticity constraint, where
the parameters of h̃þ and h̃× are independently sampled. At
the time of preparing this work, development towards this
independent polarization model is complete and has been
demonstrated to work. It will be discussed in future works.

C. Overlap

To quantify the agreement between LALInference and
BayesWave, we use point estimates of the signal waveform
from each. In the case of LALInference, we use the posterior
sample for which the likelihood function described in
Eq. (2) is maximum, which we will call the maximum
likelihood LALInference waveform (MLW). We caution that
this is a good approximation of, but not necessarily, the true
maximum, as LALInference is a posterior distribution infer-
ring algorithm, rather than a peak finding algorithm. For
BayesWave, we use the estimate obtained by taking the

median of the waveform value at every time index from
the whole set of samples. We call this the median BayesWave

waveform (MBW). We do not use the maximum likelihood
BayesWave waveform since unlike CBC waveforms, the
wavelets are “nuisance parameters” that do not have any
physical meaning themselves. Instead, it is the fit waveform
that is fundamentally of interest. The MBW is a collective
estimate across samples that is stable because it is relatively
immune to the stochastic fluctuations of the variable
dimensional sampler.
We quantify the agreement between the MLW (hLI)

and the MBW (hBW) by computing the overlap over the
network of detectors [59],

OB;L ≡ hhLIjhBWiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhLIjhLIihhBWjhBWi
p : ð8Þ

We use the parametrized version given by the BayesLine
[32] algorithm, which is a fully integrated in BayesWave.
BayesLine models the PSD with two components: a cubic
spline to fit the broadband noise, and a sum of Lorentzians
to fit the narrow band spectral lines. The number and
location of Lorentzians and cubic spline control plots are
again determined with a RJMCMC. This PSD estimate is
completely determined by the data segment under analysis,
which is more robust to slowly varying nonstationary noise
compared to off-source spectral estimation using, e.g.,
Welch’s method. Details of the BayesLine algorithm can
be found in [32], and an in-depth study describing its merits
over using the Welch’s method can be found in [60].

III. INJECTIONS

To understand the variation of the overlap hhLIjhBWi as a
function of the system properties, we run LALInference and
BayesWave on simulated GW signals added to noise from the
LIGO and Virgo detectors. A simulated signal that is added
to noise is also called an “injection”. To perform injections,
the instrument noise from the LIGO and Virgo detectors is
combined with the simulated CBC waveform to make the
simulated observation data stream d. This is then analyzed
by the BayesLine algorithm, which computes the median
PSD, SnðfÞ, that is used in the likelihood computations
described in Eq. (2). SnðfÞ and d are then fed into
LALInference and BayesWave for analysis. This is exactly the
same procedure as is used in LIGO and Virgo data off-line
PE follow-up analyses on actual GW event detections. We
compute the overlap between hLI and hBW using Eq. (8).
We apply the above analysis to two types of injections.

The first type, “GWTC-1 injections” are injections of
signals from systems whose parameters are drawn
from the posterior distribution samples of GW events in
GWTC-1. The purpose of these injections is to establish an
expectation of the overlap for a each event in GWTC-1,
which we then use to compare with the overlap on the
actual event observation data. The second type, referred to
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as “population injections”, are injections of signals from
systems with total massMT in the range 10 M⊙ to 120 M⊙.
These help us establish typical trends in the overlap over a
broad range of systems.
The two types of injections yield complimentary infer-

ences. GWTC-1 injections focus on CBC systems specific
to events in GWTC-1 and are designed to gauge the
reconstruction performance of the catalog, whereas the
population injections are designed to infer the trends in
the overlap over the range of systems thatwe expect to detect
in ground based detectors.

A. Reconstruction of detected signals

To test the reconstruction fidelity for real events, we
design a set of 500 injections, 50 for each of the tenGWTC-1
events. The parameters of these injections are sampled from
their measured IMRPhenomPv2 [35] posterior probability
density functions. We use the LALInference posterior samples
files available on the gravitational wave open science center
(GWOSC) [44] and for each of the above injections,
compute the “off source” overlap (OOFS ¼ hhLIjhBWi).
We then compare the distribution resulting from these
50 OOFS values with the “on source” overlap (OONS ¼
hhLIjhBWi) obtained from the data containing the real event.
Since the parameters of these events are mostly con-

sistent with nearly equal mass, spin-aligned systems with
little to no evidence for precession, we expect the OONS
value(s) to be no worse than the OOFS overlaps(s).
We quantify this consistency using the p value, which we

define as the fraction of OOFS that are less than or equal to
OONS, i.e., p ≔ PðOOFS ≤ OONSÞ. A smaller p value
indicates a smaller chance that the on source reconstruction
performance is consistent with what we expect. This could
point to features in the on source data that corrupt the
reconstruction performance. These artifacts could be astro-
physical or terrestrial in nature.

B. Reconstruction fidelity

Past studies have shown that the agreement between burst
and CBC waveforms is most sensitive to the total mass MT
of the GW source and the SNR of the GW signal, and
monotically increases for both these quantities [37]. To
systematically study the trends in the overlap as a function
of these quantities, we analyze injections of a population of
IMRPhenomPv2 waveforms using LALInference and BayesWave.
We inject into noise from the second observing run of the
LIGOdetectors [44].Wedivide these “population injections”
into four different subsets based on their total mass MT :
(i) 10 M⊙ < MT < 30 M⊙, (ii) 30 M⊙ < MT < 60 M⊙,
(iii) 60M⊙<MT <90M⊙, (iv) 90M⊙<MT <120M⊙,
the typical mass ranges we expect to observe in ground
based detectors. The mass ratios, spins, orientations, and sky
locations were distributed uniformly. For each of the mass
ranges, we created five population sets of SNRs: 10, 20, 30,
60, 90. To strike a balance between computational cost and

number of sample points, we perform 50 injections per SNRs
range per mass range, for a total of 1000 injections.

IV. RESULTS

A. GWTC-1 injections

We plot OONS as a function of OOFS for each BBH in
GWTC-1 in Fig. 2. Due to the variations in the parameter
posteriors and/or noise properties, the distribution of OOFS
has a spread. The overlaid diagonal line here (y ¼ x)
represents the null hypothesis that the OOFS and OONS
are equal. Dots represent the median, and the horizontal
error bars are the 90% credible intervals of the OOFS
distributions. From Fig. 2, we find that all events are
consistent with y ¼ x within 90% credibility. The median
ofOOFS decreases, and its spread increases with decreasing
SNRs and MT of the event. For example, GW150914 with
a SNR ∼ 24 and MT ∼ 65 M⊙ has a larger OOFS median
and a smaller spread compared to GW170823, which has a
similar MT but has a SNR ∼ 11. Similarly, GW170729,
with a MT ∼ 84 M⊙ and a SNR ∼ 10 has a larger median
value and a smaller spread compared to GW151012 with a
similar SNR but MT ∼ 27 M⊙.
We compute the p values and record them in Table I. We

find that the p values are broadly consistent with the null
hypothesis that the on source performance is no worse than
the off source performance. The lowest p value that we
compute is for GW151226 at 0.27. Assuming the null
hypothesis to be true for all events, we expect the p values
to be uniformly distributed between 0 and 1. We follow a
procedure similar to [43] and use the Fisher’s method [61]
to compute the meta analysis p value (pmeta) of the
distribution of p values. A pmeta close to 1 indicates higher
evidence for the meta null hypothesis, and a pmeta less than

FIG. 2. On source overlap (y axis) plotted against the median
off source overlap (x axis) for each of the GWTC-1 events. The
horizontal error bars are the 90% credible intervals in the overlap.
The diagonal black line is y ¼ x.
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0.05 is considered low enough to reject the meta null
hypothesis. We obtain a pmeta ¼ 0.95, which indicates that
there is no evidence for an aberrant behavior in the on
source reconstruction performance as compared to the off
source injections.
We also plot the p values against the cumulative fraction

of events in Fig. 3. The black line represents the null
hypothesis that the p values are uniformly distributed, and
the shaded bands represent the 50% and 90% credible
intervals. The orange curve is consistent with the black line
within the 90% credible interval. Overall, this means that
the agreement between burst and CBC reconstructions for
GWTC-1 events is statistically consistent with what we
expect.

B. Population injections

For each MT range and SNR pair, we compute of
overlaps between hBW and the injected CBC signal, hINJ
(OB;I), and the overlap between the hLI and hINJ (OL;I). As
reconstruction performance improves, the overlaps become
closer to 1. For ease of visual interpretation, we define
Δ ¼ 1 −O, where O is the overlap, and we use the same
subscripts as for the overlap. Δ quantifies the disagreement
between two waveforms. For each MT range, we obtain Δ
distributions.We then plot the medians and 90% confidence
intervals of these distributions as a function of the SNR
in Fig. 4.
We see that at low SNRs, ΔB;I, where the subscripts “B”

and “I,” respectively, represent BayesWave and the injection,
starts off high as BayesWave is unable to recover the full
signal. This is even more pronounced in systems with lower
MT since the signal waveform is longer and the SNR is
spread over a longer duration. We also see that at a
particular SNR, ΔB;I decreases with increasing MT , since
the signal waveform gets increasingly shorter and is more
compactly represented with the wavelet model. ΔB;I falls
steadily as the SNR increases. On the other hand, ΔL;I,
where subscripts “L” and “I” represent LALInference and the
injection, is less than 0.2, even for low SNRs, as LALInference

can reconstruct the CBC signal morphology better than
BayesWave at lower SNR. This is expected, since LALInference

is using templates which predict the signal over the entire
observing band. BayesWave however, can only reconstruct
high amplitude features in the data.ΔB;I becomes smaller as
MT and SNR increase, and BayesWave is able to reconstruct
more and more parts of the signal. Past studies have shown
that we expect ΔB;I and ΔL;I to vary as ∝ 1=SNR2 [62]. We
plot this curve and up to a constant scaling factor, we see
that the slopes of the reconstructions follow this relation-
ship to a large extent.
As an additional test of consistency, we overlay the

values obtained from the on source results of the GWTC-1
events in Fig. 4. Specifically, we plot the ΔB;L, the
complement of the overlap between hBW and hLI against
the SNR of the hLI given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhLI;hLIi
p

, using hLI as a
proxy for the true waveform. We justify this approximation
by noting from Fig. 4 that ΔL;I is less than 0.1 which is an
order a magnitude smaller than ΔB;I. The markers are
colored according to the color scheme of theMT parameter
as shown in Fig. 4. We find that the ΔB;L values fall within
the bounds obtained from the population injections, which
agrees with the inferences we drew in Sec. IVA.

V. DETECTING DEVIATIONS

Our analysis so far has been focused on the agreement
between LALInference and BayesWave reconstructions. The
results serve as a reference to check for consistency in future
observations, and to identify outliers due to potential dis-
agreements between reconstructions. These disagreements
could arise, for example, due to HOMs, highly precessing
orbits, deviations from GR or noise. We demonstrate one
such example of an injection of BBH GW signal containing
HOMs. In GR, BBH signals are typically dominated by the
ðl; jmjÞ ¼ ð2; 2Þ spherical harmonic mode. This is true for

FIG. 3. p values (P) of GWTC-1 events (orange) plotted against
the cumulative fraction events (p), along with the null hypothesis
(black) and the 50% and 90% credible intervals (shaded regions).

TABLE I. p values of GWTC-1 events computed by comparing
the on source overlap of hhLI;hBWi versus the off source
distribution of the same.

Event p value

GW150914 0.90
GW151012 0.49
GW151226 0.27
GW170104 0.56
GW170608 0.66
GW170729 0.78
GW170809 0.90
GW170814 0.30
GW170818 0.50
GW170823 0.84
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most signals that are detectable by ground based detectors,
and especially for binaries with comparable mass compo-
nents observed face-on. IMRPhenomPv2 waveforms do not
account for the presence of HOMs.
The relative power of HOMs to the dominant mode is

most dependent on the mass ratio and the inclination angle
[49]. To demonstrate this, we consider the case of NR
simulation GT0745 from the Georgia Tech NR catalog
[48]. This system has a component mass ratio of 6∶1. We
place the system in the “edge-on” configuration, where the
angle between the line of sight and the normal vector to the
plane of the orbit, known as the inclination angle, is 90°.
A combination of unequal masses and edge-on inclination
yields a high HOM content in the waveform. We also set
the distance such that SNR ∼ 30.
We inject the waveform into a noise realization set

equal to zero, and analyze the data stream using both
LALInference and BayesWave. Since we assume that the noise is
Gaussian, the expectation value of the noise stream n over

multiple noise realizations is 0. Hence, the performance the
algorithms on zero noise data is the “average” result over
many noise realizations [63].
We compute the overlaps OB;I, OL;I and plot all three

waveforms in Fig. 5. Inspecting the SNR and overlaps in
Table II, we find that BayesWave reconstructions the injection
more faithfully than LALInference that uses a model without
HOM. This is also reflected in the fact that the former is
able to recover a larger SNR compared to the latter. We plot
ΔL;I and ΔB;I (red stars) in Fig. 4. As one can see, the
former is an outlier, while the latter falls within the
confidence band based on expectations from simulated
signals. In case of a real detection with potential unmodeled
effects, it will not be possible to calculate ΔL;I and ΔB;I,
since we cannot know the true waveform. The quantity of
interest is ΔB;L ¼ 1 −OB;L. In this particular case, we
compute the ΔB;L ¼ 0.06, which lies outside the 90%
credible interval of the distribution of ΔB;L obtained from
the population injections.

FIG. 4. Medians (solid lines) and 90% uncertainty bands (shaded regions) of ΔB;I (left) and ΔL;I (right) against the SNR
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhINJ;hINJi
p

) of the CBC signal colored by the total mass rangesMT . The black dashed-dot line represents the curve 1=SNR2, which
is the expected variation of ΔB;I and ΔL;I for a signal. The overlaid “þ”markers indicate the on source values of ΔB;L plotted against the
SNR of the hLI waveforms for each of the GWTC-1 events and are colored by the toMT of the hLI waveform. The overlaid “�”markers
indicate the values inferred from the NR injection described in Sec. V.

FIG. 5. LALInference (red), BayesWave (blue), and the injected waveform (black) for the injection analysis performed using the
Georgia Tech NR waveform GT0745. The plotting conventions are similar to Fig. 1. Note the disagreement between hLI and hBW,
especially before −0.4 seconds.
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We note that CBC models that include HOMs exist
[50,51,64], and the above is only meant as an exercise to
demonstrate how a disparity between LALInference and
BayesWave would manifest itself.

VI. CONCLUSION AND DISCUSSION

In this paper, we systematically compared the
reconstruction performance of a CBC templated-based
analysis, and a model-independent wavelet-based analysis
for BBH events.
We selected 50 random probability posterior parameter

samples of each GWTC-1 BBH event and injected them into
LIGO and Virgo detector noise. We analyzed the injections
using the LALInference and BayesWave, and checked consistency
of the reconstructed waveforms by computing off source
overlaps. We computed the on source overlap and found that
them to be consistent with the off source overlaps within the
90% credible interval for all events. We also computed the
p values of the null hypothesis that the on source overlap is
no worse than the off source overlap and did not find any
statistically significant evidence that suggests any deviation.
The distribution of p values obtained for all events yielded a
meta analysis p value of 0.95 suggesting that the p values are
consistent with the meta null hypothesis that p values are
uniformly distributed. As a final step, we plotted the p values
in a p-p plot and found the distribution of p values agrees
with the null hypothesis that the p values are uniformly
distributed, within the 90% credible interval. All in all, this
means that the GWTC-1 waveform reconstructions are
consistent with expectations.
We also performed recovery on injections of a popula-

tion of BBH systems divided into bins ofMT and SNR, and
studied the overlap of the reconstructed LALInference and
BayesWave with the true injected waveform and found that as
expected, LALInference is able to reconstruct the waveform
more effectively than BayesWave at all MT and SNR. The
reconstruction performance increases with SNR for both
the algorithms. Specifically, the Δ ∼ 1=SNR2.MT does not
have much effect on the reconstruction performance for
LALInference but the BayesWave performance increases with
increasing MT . This was expected as higher total mass
systems result in high amplitude, short duration signals that
BayesWave is able to compactly represent with the wavelet

model. We found that the on source reconstruction perfor-
mances of the GWTC-1 events are consistent with the
trends inferred from the population injections.
Lastly, we demonstrated an example of potential deviation

from the above trends by injecting a waveform with strong
HOMs and studying its overlap with the LALInference and
BayesWave reconstructions. We found that the LALInference

reconstruction, inferred using the IMRPhenomPv2 approximant,
agrees less with the true waveform than the BayesWave

reconstruction, and stands as an outlier from the trends shown
in Fig. 4. The BayesWave reconstruction is consistent with
trends shown in Fig. 4. This was expected since BayesWave is
agnostic to the physical aspects of thewaveformmorphology
apart from speed of light propagation.
We stress the importance of systematically characteriz-

ing the performance of the two algorithms on such systems
that are challenging to model, for example, where the
ðl; jmj ¼ ð2; 2ÞÞ dominant spherical harmonic mode alone
is insufficient to account for the signal morphology. With
increasing sensitivity of the ground based detector network,
any potential complex or mismodeled effects such as
HOMs, high precession, or deviations from GR could
result in observable consequences and require more com-
plete waveform models.
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TABLE II. SNR and Overlaps for a LALInference and Bayes-
Wave analysis on an injection, Georgia Tech NR waveform
GT0745 with MT ¼ 60 M⊙ and mass ratio, q ¼ 6, that includes
HOMs. BayesWave recovers a larger part of the waveform since
LALInference with IMRPhenomPv2 does not include HOMs.

IFO LI SNR BW SNR Inj SNR hhLI; hINJi hhBW; hINJi
Hanford 14 15 16 0.94 0.96
Livingston 24 26 28 0.92 0.98
Network 28 30 32 0.92 0.98
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