Movie 1 Movie of an air bubble collapsing onto a wall showing numerical schlieren (left) and log-scale pressure field (right). Gas volume fraction α_g is shown as a shaded area of decreasing opacity with decreasing α_g (left), while the $\alpha_g = 0.5$ isoline is shown as a solid curve (right) representing a pseudo-phase-interface. Time and pressure correspond to a bubble with $R_0 = 400\mu m$ exposed to a driving pressure of $p_\infty = 10^7$ Pa. Note that the frame rate is ten times higher at the beginning of the movie. Movie 1 shows the configuration with a smooth wall (no crevice, $R_C = 0$) and an attached bubble with the stand-off distance $S/R_0 = 0.1$.

Movie 2 Smooth wall (no crevice, $R_C = 0$), attached bubble $S/R_0 = 0.35$. See caption Movie 1.

Movie 3 Smooth wall (no crevice, $R_C = 0$), attached bubble $S/R_0 = 0.6$. See caption Movie 1.

Movie 4 Smooth wall (no crevice, $R_C = 0$), detached bubble $S/R_0 = 1.1$. See caption Movie 1.

Movie 5 Small crevice ($R_C/R_0 = 0.15$), attached bubble $S/R_0 = 0.1$. See caption Movie 1.

Movie 6 Small crevice ($R_C/R_0 = 0.15$), attached bubble $S/R_0 = 0.35$. See caption Movie 1.

Movie 7 Small crevice ($R_C/R_0 = 0.15$), attached bubble $S/R_0 = 0.6$. See caption Movie 1.

Movie 8 Small crevice ($R_C/R_0 = 0.15$), detached bubble $S/R_0 = 1.1$. See caption Movie 1.

Movie 9 Large crevice ($R_C/R_0 = 0.75$), attached bubble $S/R_0 = 0.1$. See caption Movie 1.

Movie 10 Large crevice ($R_C/R_0 = 0.75$), attached bubble $S/R_0 = 0.35$. See caption Movie 1.

Movie 11 Large crevice ($R_C/R_0 = 0.75$), attached bubble $S/R_0 = 0.6$. See caption Movie 1.

Movie 12 Large crevice ($R_C/R_0 = 0.75$), detached bubble $S/R_0 = 1.1$. See caption Movie 1.