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Abstract—This paper presents an energy-and-area-efficient AC-
coupled front-end for multichannel recording of wideband neural signals.
The proposed unit conditions local field and action potentials using an
inverter-based capacitively-coupled low-noise amplifier, followed by a per-
channel 10-bit asynchronous SAR ADC. The adaptation of unit-length
capacitors minimizes the ADC area and relaxes the amplifier gain so
that small coupling capacitors can be integrated. The prototype in 65nm
CMOS achieves 4× smaller area and 3× higher energy-area efficiency
compared to the state of the art with 164 µm×40 µm footprint and 0.78
mm2×fJ/conv-step energy-area figure of merit. The measured 0.65 µW
power consumption and 3.1 µVrms input-referred noise within 1Hz-10kHz
bandwidth correspond to a noise efficiency factor of 0.97.

Index Terms—AC coupling, front-end, inverter-based amplifier, mono-
tonic switching, neural recording, successive approximation register
analog-to-digital-converter, unit length capacitor.

I. INTRODUCTION

Recording and decoding high-frequency neural features through
intracortical brain-computer interfaces has allowed accurate control
of complex actuators [1]. Moving from laboratory demonstrations to
widespread use of such systems requires combining signal acquisition
and processing in an implantable system on chip [2], [3], under
stringent energy and size constraints. Therefore, accommodating the
maximum number of electrodes requires the lowest energy-area cost
per recording channel.

Neural signals bear information within frequency bands called local
field potentials (LFP) up to ∼300 Hz, and action potentials (AP)
between 300 Hz and 10 kHz, with amplitudes typically ranging from
a few µV to a few mV [4]. A generic neural recording front-end
boosts, filters, and digitizes these signals using a low-noise amplifier
(LNA) followed by an analog-to-digital converter (ADC) as depicted
in Fig. 1(a). Traditionally, the electrodes are AC-coupled to the front-
end to reject large and variable DC offsets building on the tissue-
electrode interface [5]. The coupling capacitor also presents a high
input impedance to the electrode, and serves as an isolation layer
against static device currents and short circuits [6]. Nevertheless, the
capacitor area becomes a bottleneck when a high gain and a low high-
pass pole is required [7], limiting the scalability of this approach.

Several DC-coupled techniques have been proposed to eliminate
bulky coupling capacitors at the expense of other circuit qualities.
Direct digitization (Fig. 1(b)) by removing the LNA results in
excessive input-referred noise [8]. Canceling the offset through a
mixed-signal feedback loop (Fig. 1(c)) [7] has a digital power and
area overhead that scales up with the desired input range. Delta
modulating the input with switched capacitors (Fig. 1(d)) can achieve
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Y. Leblebici is with École polytechnique fédérale de Lausanne, 1015
Lausanne, Switzerland, and Sabanci University, Istanbul, Turkey

A. Emami is with California Institute of Technology, 91125 Pasadena CA.

ADC

∫ 

∫ 

∫ 

LNALNA

∫ DAC

ADC

LNALNA ADC LNALNA

∫ DAC

ADC

(a) (b) (c)

(d) (e)

...

Fig. 1. (a) AC-coupled front-end architecture and DC-coupled area reduction
techniques using (b) direct digitization, (c) mixed-signal offset cancellation,
(d) switched-capacitor delta modulation, and (e) electrode multiplexing.

rail-to-rail cancellation at the cost of reduced input impedance and
increased noise at high sampling rates [9], which is also the case
when the electrodes are multiplexed into a shared front-end (Fig. 1(e))
[10]. Moreover, the injection of switching currents into the neural
tissue raises safety concerns which has not yet been addressed. Due
to these fundamental limitations of DC coupling, AC-coupled front-
ends are still favorable for wideband recording thanks to low noise,
passive offset rejection, and high input impedance. However, the
area efficiency of this approach has to be improved to allocate more
resources to other implant features.

In this work, we present an AC-coupled neural recording front-end
architecture which permits high integration density without compro-
mising power efficiency or sampling frequency. Our adaptation of
unit-length capacitor (ULC)-based successive approximation register
(SAR) ADC [11] minimizes the ADC area and relaxes the LNA gain
requirement, which in turn makes room for small coupling capacitors.
The inverter-based LNA achieves high noise efficiency thanks to cur-
rent reuse. The constant common-mode monotonic ADC switching
scheme further improves the energy efficiency. Our prototype in 65nm
CMOS process achieves the smallest AC-coupled footprint reported
in the literature with 6560 µm2, which is also smaller than or compa-
rable to the recent DC-coupled implementations. The overall energy-
area figure of merit (E-A FoM) measuring 0.78 mm2×fJ/conv-step,
as well as the noise efficiency factor (NEF) measuring 0.97 within
1 Hz-10 kHz bandwidth, are below the state of the art.

II. DESIGN DETAILS

The proposed front-end follows the conventional approach depicted
in Fig. 1(a). A capacitively-coupled LNA (CC-LNA) boosts and filters
neural signals within LFP and AP bands, followed by a 10-bit 20 kS/s
ULC-based SAR ADC. The following subsections provide detailed
descriptions of each part.

A. Capacitively-Coupled Low-Noise Amplifier

Fig. 2(a) shows the CC-LNA schematic. The nominal gain of the
amplifier is set by the capacitor ratio CAC/CFB as 40 dB, based on
the ADC input range and the expected recording site noise as will
be discussed in Section II-B. We choose CAC as 2 pF, and CFB
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Fig. 2. (a) Fully-differential capacitively-coupled LNA. (b) Transistor-level schematic of the two-stage inverter-based OTA.
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Fig. 3. (a) Detailed schematic of the ULC-SAR ADC showing the bootstrapped switch and constant common-mode ULCDAC circuits explicitly.
(b) ULC dimensions following the naming convention in [11]. (c) Physical implementation of the differential constant common-mode ULCDAC.

can be configured from 15 fF to 65 fF corresponding to 30 to 40
dB programmable gain. Diode-connected PMOS feedback resistors
(simulated nominal RFB = 50 TΩ) ensure that the high-pass cut-off at
1/(2πRFBCFB) stays below 1 Hz for all configurations of CFB across
corners. The low-pass cut-off can be adjusted by changing the bias
current (IB) of the operational transconductance amplifier (OTA).

The fully-differential OTA employs the two-stage inverter-based
topology shown in Fig. 2(b). This topology has high noise efficiency
thanks to current being reused by the complementary differential
pairs. All pairs are constructed with thick-oxide transistors and
operate in weak inversion regime, hence the open-loop gain depends
mostly on transistor lengths. The first stage provides 38 dB gain,
the second stage adds 25 dB and drives the ADC input. The output
common-mode is sensed via diode-connected transistors and set
nominally to VDD/2 by a simple common-mode feedback (CMFB)
amplifier. Compensation capacitors (CC1=240 fF, CC2=35 fF) and the
ratio of tail currents ensure stability in all corners.

B. ULC-based Asynchronous SAR ADC

The amplified signals are digitized by the 10-bit 20 kS/s asyn-
chronous SAR ADC shown in Fig. 3(a). The key area advantage of
the ADC is the unit-length capacitor-based digital-to-analog converter
(ULCDAC), first proposed in [11]. A ULC relies on the difference of
two metal capacitors (C - C' = 2C∆) with unit length difference ∆,
such that a binary weight can be realized by adjusting C∆ rather than
multiplying the capacitor structure. As a result, the total array requires

N ULCs instead of 2N unit capacitors. Moreover, the ULCDAC can
be constructed using few metal layers and placed above the other
circuits. Fig. 3(b) illustrates the ULC used in this implementation
with its construction parameters following the conventions in [11].
The plates are constructed in M6 and M7 layers in parallel, which
results in 0.1 fF C∆.

Our adaptation of ULCDAC shown in Fig. 3(c) leverages the
constant common-mode monotonic switching scheme [12] to reduce
the switching activity while maintaining a constant common-mode
voltage for the comparator input. This requires a second ULCDAC
switching in the opposite direction, but brings no area overhead as
the single ULCDAC size is halved thanks to monotonic switching.
As a result, the overall differential DAC consists of 4 single-ended
ULCDACs, each of which is partitioned into 4-bit binary LSB and
4-bit unary MSB arrays to keep mismatch under control as explained
in [11]. The remaining two bits are implicit as the first comparison is
performed on the sampled input, and the last two bits are implemented
single-ended. Although the benefit of energy-efficient switching on
the small capacitance of ULCDAC is negligible [11], we observe
10% reduction in total simulated ADC power thanks to less activity
in the asynchronous logic block.

Another feature of ULCDAC useful for our application is that,
due to the total capacitance (Σ(C +C′)) being higher than the total
effective differential capacitance (Σ(C − C′)) [11], the input range
of the ADC decreases from 2 V to 0.65 V peak-to-peak differential
without needing a separate supply or dedicated reference generators.
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Fig. 4. Asynchronous logic for monotonic switching algorithm.
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Fig. 5. The annotated micrograph of the 164 µm × 40 µm prototype.

The resulting 0.6 mV quantization step allows us to choose 40 dB
LNA gain to capture signal content above the 5 µVrms expected
measurement noise floor [6].

The switches, comparator, and DAC drivers are placed below
the ULCDAC with shielding in M4 and M5 layers. To reduce
sampling nonlinearity, bootstrapped track and hold switches were
used where a PMOS precharge capacitor is used to save area. The
comparator employs a dynamic double-tail architecture [11]. Fig. 4
shows the asynchronous logic for the proposed ADC. Upon a rising
external clock edge, the input is sampled (Φs), and the chain of
10 stages is initiated. Each stage clocks the comparator (Φc), then
monotonically switches the ULCDAC depending on the decision. The
conversion takes about 100 ns, and the ADC remains idle until the
next clock edge which displays a low average power consumption
when sampling rate is in the order of kS/s. The circuit is a hybrid
implementation of dynamic and static CMOS logic to achieve low-
power and robustness.

III. MEASUREMENT RESULTS

The annotated micrograph of the fabricated prototype in 65nm
6X1Z1U LP CMOS process is given in Fig. 5. The total channel
area is 164 µm×40 µm (6560 µm2) and the ULC-based SAR ADC
takes 45 µm×35 µm (1575 µm2).

Fig. 6(a) and Fig. 6(b) verifies the desired amplifier response for
different gain and bandwidth settings, respectively. The gain can be
modified between 30.8 dB to 40.1 dB by trimming the feedback
capacitor CFB. The high-pass cut-off frequency is around 0.05 Hz.
The bandwidth can be adjusted between 500 Hz and 10 kHz by
changing the bias current, which corresponds to 30 nA and 600 nA
total supply current from 1 V supply, respectively. The total harmonic
distortion (THD) is 1.1% when 8 mV peak-to-peak differential input
applied with maximum gain, and the common mode rejection ratio
(CMRR) is 56 dB. As shown in Fig. 7, the input-referred noise (IRN)
over the maximum bandwidth is 3.1 µVrms.

� � � � � � � � � � � � � � � � � �

� �

� �

� �

� �

� �

�
�

�	
��

�
�

�

� 
 � 	 � � � � � � � �  �

� �
� �

� � � � � � � �

� �
� �

� � � � � � � � �

(a)

� � � 	 � � � � � � � � � � �

� �

� �

� �

� �

� �

� 

� � �

� � � � � � 	

� 

� � �

� � � � � � � 	

� 

� � �

� � � � � � � 	

� 

� � �

� � � � � � � 	

�
�

�	
��

�
�

�

� 
 � 	 � � � � � � � �  �

(b)

Fig. 6. Measured LNA Bode plots for different (a) gain and (b) bandwidth
configurations.
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Fig. 7. Measured input-referred noise spectrum of the front-end.
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Fig. 8. Measured output frequency spectrums for (a) the ADC alone (b) and
the overall channel.

The ADC consumes 47 nW when operating at 20 kS/s, and the
consumption scales linearly with the sampling rate. The input range of
the ULC array was measured to be 0.69 V peak-to-peak differential.
The standalone ADC is able to achieve 75 dB spurious-free dynamic
range (SFDR) and 9.2 effective number of bits (ENOB) over the
entire bandwidth up to 2.5 MS/s.

The output spectrum of the complete channel in comparison
with the standalone ADC response is given in Fig. 8. The channel
performance reduces to 8.1 ENOB and 68 dB SFDR when the LNA
is connected. This is due to the LNA increasing the overall noise
floor, and the increased nonlinearity due to the settling of the LNA
output being slightly slower than expected. The histogram in the inset
of Fig. 8 depicts the interdie variation of ENOB across 15 measured
samples which reflects the ULC mismatch. These could be improved
with a small resource penalty by increasing the LNA drive strength
and increasing ULC ∆ if necessary, but the measured worst-case
performance still facilitates the 50 dB neural dynamic range [7].

Table I summarizes the performance of the proposed neural
recording front-end and compares it with the previous works [4],
[7]–[10], [13]–[15]. The silicon footprint is four times smaller than
the smallest AC-coupled front-end reported, and it is comparable to
the recent DC-coupled ones. The power consumption is the lowest
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TABLE I
SYSTEM SUMMARY AND COMPARISON WITH STATE-OF-THE-ART RECORDING ICS

JSSC'12 [7] JSSC'15 [13] JSSC'17 [9] JSSC'18 [4] SSCL'18[14] JSSC'18 [8] TBCAS'19 [15] TBCAS'20 [10] This work

Technology 65nm 65nm 130nm 180nm 65nm 180nm 180nm 65nm 65nm
VDD [V] 0.5 1 1.2 0.5 / 1 0.6 1.8 0.5 2.5 / 0.5 1
Coupling DC AC DC AC DC DC AC DC AC
Multiplexing No Yes No No No No No Yes No
Bandwidth [Hz] 10-10k 10-8k 0.01-500 0.4-10.9k 0.1-500 0-10k 1-6.8k 1-1k 0.05-10k
Sampling rate [kS/s] 20 20 1 1 25 1 20 31.25 2 20
IRN [µVrms] 4.9 7.5 1.13 3.32 2.2 12.07 1 5.4 1.66 3.1
NEF/PEF 5.99/17.96 4.45/12.9 2.86/9.82 1 3.02/4.56 8.7/45.4 29.1 1/1529 1 2.99/4.46 2.21/12.21 1 0.97/0.94
ADC topology VCO SAR Δ-ΔΣ Δ-ΔΣ VCO ΔΣ OTA-C ΔΣ Δ-SAR Δ-SAR SAR
Area/Channel [mm2] 0.013 0.0258 0.013 2 0.058 3 0.01 2 0.0049 2 0.16 3 0.0023 3 0.00656
Power/Channel [µW] 5.04 1.84 0.63 2 3.05 3 3.2 2 39.14 2 0.88 3 2.98 3 0.65
Resolution [ENOB] 7.2 4 8.2 4 11.7 1@130Hz 10.3@1kHz 8.18 1@40Hz 8.2@1kHz 7.7 4 8 5 8.1
ADC FoMW [fJ/c-s] 84 4.25 1 n/a 35.2 n/a n/a 19.6 23.32 1 4.0
Channel FoMW [fJ/c-s] 1713.9 1 312.86 1 189.36 1 108.83 11034 1 7180 135.43 1 5820 1 118.5
E-A FoM [fJ mm2/c-s] 22.28 1 8.07 1 2.46 1 6.34 110.34 1 35.182 2 21.67 1 13.39 1 0.78
1 Estimated from given data. 2 On-chip decimation filter. 3 Off-chip decimation filter. 4 ADC only. 5 Above 200Hz.
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Fig. 9. Energy-area efficiency comparison with prior art.

among the wideband front-ends, which results in channel noise and
power efficiency factors (NEF/PEF) [7] slightly below 1. The Walden
figure of merit (FoMW) for the ADC and the channel align with the
other energy-efficient architectures. The combined energy and area
efficiency improves the E-A FoM (Area×FoMW) [4] by three times
over the state of the art. In other words, the energy-area cost per
sample (power×area/sampling rate) is 12 times lower than that of
other similar resolution front-ends as visualized in Fig. 9.

IV. CONCLUSION

Scaling the area of AC-coupled front-ends has been challenging
but essential for high-density, wideband neural signal recording with
advanced on-chip processing capabilities. In this paper, we have
presented such front-end based on an area-efficient ULC-based asyn-
chronous SAR ADC and a noise-efficient inverter-based CC-LNA.
The prototype fabricated in 65nm CMOS occupies 6560 µm2, con-
sumes 0.65 µW, and achieves 8.1 ENOB with 3.1 µVrms IRN within
the LFP+AP band. As a result, the proposed system achieves better
noise and energy-area efficiency than previously reported front-ends
with 0.97 NEF and 0.78 mm2×fJ/conv-step E-A FoM. The reduction
in the unit energy-area cost points towards higher channel counts and
more integrated functionality within resource-constrained implants.
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