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Abstract: In this paper we disprove part of a conjecture of Lieb and Thirring concerning
the best constant in their eponymous inequality. We prove that the best Lieb–Thirring
constant when the eigenvalues of a Schrödinger operator −� + V (x) are raised to the
power κ is never given by the one-bound state case when κ > max(0, 2− d/2) in space
dimension d ≥ 1. When in addition κ ≥ 1 we prove that this best constant is never
attained for a potential having finitely many eigenvalues. The method to obtain the first
result is to carefully compute the exponentially small interaction between twoGagliardo–
Nirenberg optimisers placed far away. For the second result, we study the dual version
of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al.
(The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground
states. Arch. Rat. Mech. Anal, 2021. https://doi.org/10.1007/s00205-021-01634-7). In
a different but related direction, we also show that the cubic nonlinear Schrödinger
equation admits no orthonormal ground state in 1D, for more than one function.

1. Introduction and Main Results

This paper is a continuation of a previous work [GLN21] where the last two au-
thors together with F.Q. Nazar studied the existence of ground states for the nonlinear
Schrödinger equation (NLS) for systems of orthonormal functions. In the present paper,
we exhibit a connection between the corresponding minimisation problem and the fam-
ily of Lieb–Thirring inequalities [LT75,LT76,LS10], which enables us to prove results
both for the Lieb–Thirring inequalities and the NLS equation studied in [GLN21].

1.1. Lieb–Thirring inequalities. The Lieb–Thirring inequality [LT75,LT76] is one of
the most important inequalities in mathematical physics. It has been used by Lieb and
Thirring [LT75] to give a short proof of the stability ofmatter [DL67,LD68,Lie90,LS10]
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and it is a fundamental tool for studying large fermionic systems. It is also a source of
many interesting mathematical questions.

1.1.1. The finite rank Lieb–Thirring constant Let d ≥ 1, κ ≥ 0 and N ≥ 1, and let
L(N )

κ,d be the best constant in the finite rank Lieb–Thirring inequality

N∑

n=1

|λn(−� + V )|κ ≤ L(N )
κ,d

∫

Rd
V (x)

κ+ d
2− dx (1)

for all V ∈ Lκ+ d
2 (Rd), where a− = max(0,−a) and λn(−� + V ) ≤ 0 denotes the

nth min-max level of −� + V in L2(Rd), which equals the nth negative eigenvalue
(counted with multiplicity) when it exists and 0 otherwise. The constant L(1)

κ,d is finite
by the Gagliardo–Nirenberg inequality, under the assumption that

⎧
⎪⎨

⎪⎩

κ ≥ 1
2 in d = 1,

κ > 0 in d = 2,
κ ≥ 0 in d ≥ 3.

(2)

These restrictions on κ are optimal in the sense that L(1)
κ,d = ∞ for 0 ≤ κ < 1/2 in

d = 1 and for κ = 0 in d = 2. Note that L(N )
κ,d is finite under the same restrictions as for

L(1)
κ,d , since L(N )

κ,d ≤ N L(1)
κ,d . Moreover, from the definition we have L(N )

κ,d ≤ L(N+1)
κ,d . The

Lieb–Thirring theorem states that the limit is finite:

Lκ,d := L(∞)
κ,d = lim

N→∞ L(N )
κ,d < ∞ for κ as in (2). (3)

This was proved by Lieb and Thirring [LT75,LT76] for κ > 1/2 in d = 1 and for κ > 0
in d ≥ 2. The critical cases κ = 0 in d ≥ 3 and κ = 1/2 in d = 1 are respectively due
to Cwikel–Lieb–Rozenblum [Cwi77,Lie76,Roz72] and Weidl [Wei96].

An important question is to determine the value of the optimal Lieb–Thirring constant
Lκ,d . This plays for instance a central role in Density Functional Theory [LLS20]. One
possibility is that it is attained for an optimal potential V having N < ∞ bound states,
that is, Lκ,d = L(N )

κ,d . An opposite scenario is that a sequence VN of optimal potentials

for L(N )
κ,d tends to be very spread out and flat as N → ∞ so as to have more and more

bound states. In this case Lκ,d is equal to the semi-classical constant

Lsc
κ,d := � (κ + 1)

2dπ
d
2 � (κ + d/2 + 1)

. (4)

Indeed, recall that if we scale a fixed nice potential V with V− �= 0 in the manner V (�x),
we obtain in the limit � → 0

lim
�→0

∑
n≥1

∣∣λn
( − � + V (�·))∣∣κ

∫
Rd V (�x)

κ+d/2
− dx

= lim
�→0

�
d ∑

n≥1

∣∣λn(−�
2� + V )

∣∣κ
∫

Rd V (x)
κ+d/2
− dx

=
∫∫

R2d

(|p|2 + V (x)
)κ
−dx dp

(2π)d
∫

Rd V (x)
κ+d/2
− dx

= (2π)−d
∫

Rd
(|p|2 − 1)κ−dp = Lsc

κ,d .
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Lieb and Thirring conjectured in [LT76] that the best constant should be given either by
the one bound state case, or by semi-classical analysis:

Lκ,d
?= max

{
L(1)

κ,d , Lsc
κ,d

}
. (5)

This conjecture has generated a huge interest in mathematical physics. Although the
conjecture is still believed to hold in dimension d = 1, it is now understood that the
situation is more complicated in dimensions d ≥ 2. In Sect. 1.1.3 below we will give
a precise account of what is known and what is not as of today. Most of the previous
works have focused on determining when Lκ,d equals the semi-classical constant Lsc

κ,d .

Much fewer works have studied the plausibility that Lκ,d equals L(1)
κ,d or even L(N )

κ,d for
some N ≥ 1. In the next section we state our results in this direction.

1.1.2. Results on the non-optimality of the finite rank Lieb–Thirring constant Our first
theorem states that for an appropriate range of κ , the optimal constant in the Lieb–
Thirring inequality can never be attained by a potential having finitely many bound
states.

Theorem 1 (Non optimality of the finite-rank case). Let d ≥ 1 and
⎧
⎪⎨

⎪⎩

κ > 3
2 for d = 1,

κ > 1 for d = 2,
κ ≥ 1 for d ≥ 3.

(6)

Then there exists an infinite sequence of integers N1 = 1 < N2 = 2 < N3 < · · · such
that

L(Nk−1)
κ,d < L(Nk )

κ,d for all k ≥ 1.

In particular, we have

L(N )
κ,d < Lκ,d for all N ≥ 1.

In addition, for any N ≥ 2 there exist optimisers VN for L(N )
κ,d . When N = Nk we have

λN (−� + VN ) < 0, that is, −� + VN has at least N negative eigenvalues.

As we will discuss below, this result, in particular, disproves the Lieb–Thirring con-
jecture (5) in dimension d = 2 in the range 1 < κ � 1.165 and suggests a new scenario
for the optimal Lieb–Thirring constant.

It is unclear whether the passage to a subsequence is really necessary or whether the
conclusion holds also for Nk = k.

The proof of Theorem 1 proceeds by studying the dual formulation of the Lieb–
Thirring inequality (1) in a similarmanner aswhatwas done in [GLN21] for the nonlinear
Schrödinger equation. This is explained in detail in the next section,wherewe also collect
more properties of VN . This duality argument requires the assumption κ ≥ 1. It is an
interesting open questionwhether Theorem 1 is valid for all κ > max{0, 2−d/2} instead
of (6). The value of the critical exponent max{0, 2 − d/2} will be motivated later. In
Sect. 4 we provide a direct proof for N = 2 which covers this range of κ , as stated in
the following result.
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Theorem 2 (Non optimality of the N = 1 case). Let d ≥ 1 and

κ > max

{
0, 2 − d

2

}
. (7)

Then we have

L(1)
κ,d < L(2)

κ,d ≤ Lκ,d .

As we will discuss below, this result, in particular, disproves the Lieb–Thirring con-
jecture (5) in dimension d = 3 in the range 1/2 < κ � 0.8627. Thus, together with
a result of Helffer-Robert [HR90] recalled below, the Lieb–Thirring conjecture (5) in
dimension d = 3 is now disproved in the range 1/2 < κ < 1.

The conclusion L(1)
κ,d < Lκ,d for the appropriate range of κ is new for all dimensions

2 ≤ d ≤ 7. Let us briefly sketch an alternative way of arriving at this strict inequality for
d ≥ 8. It is shown in [GGM78] that the best Cwikel–Lieb–Rozenblum constant satisfies
L0,d > Lsc

0,d > L(1)
0,d in dimensions d ≥ 8; see also [Fra21]. Here, the constant L(1)

0,d is
defined in terms of the Sobolev optimiser. A variation of themonotonicity argument from
[AL78] shows that L(1)

κ,d/Lsc
κ,d is strictly decreasing (see Theorem 3 and Lemma 9 below).

This implies that Lκ,d ≥ Lsc
κ,d > L(1)

κ,d for all κ ≥ 0 and all d ≥ 8, as claimed. In contrast
to this argument, our Theorem 2 is not only valid in all dimensions, in the mentioned
range of κ , but it gives the additional information that the two-bound states constant L(2)

κ,d

is above L(1)
κ,d . The mechanism used in our proof is completely different from [GGM78].

There, the authors increased the coupling constant in front of the potential to reach
the semi-classical limit. On the other hand, the proof of Theorem 2 consists of placing
two copies of the one-bound state optimiser far away in the appropriate manner, and
computing the resulting exponentially small attraction.

Our proof of Theorem 2 does not work for κ = 0 in dimensions d = 5, 6, 7 (where
one still has 2 − d/2 < 0). Understanding this case is an open problem.

1.1.3. Discussion We now discuss in detail the consequences of Theorems 1 and 2 with
regard to the Lieb–Thirring conjecture (5).

There are many results on the Lieb–Thirring constants Lκ,d . The best estimates
currently known are in [FHJN21]. We mention here a selection of results pertinent to
our theorem and refer to [Fra21] for a detailed discussion of known results and open
problems. We recall the following known properties:

• (Lower bound [LT76]) For all d ≥ 1, κ ≥ 0, we have

Lκ,d ≥ max
{

L(1)
κ,d , Lsc

κ,d

}
; (8)

• (Monotonicity [AL78]) For all d ≥ 1 and all 1 ≤ N ≤ ∞, the map κ �→ L(N )
κ,d /Lsc

κ,d

is non-increasing;1

• (κ = 3/2 in d = 1 [LT76]) In dimension d = 1 with κ = 3
2 , we have, for all N ∈ N,

L3/2,1 = L(N )
3/2,1 = Lsc

3/2,1; (9)

1 Only the case N = ∞ is considered in [AL78] but the argument applies the same to any finite N ≥ 1.

For N = 1, we will see in Theorem 3 that κ �→ L(1)
κ,d/Lsc

κ,d is in fact strictly decreasing.
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• (κ = 3/2 in d ≥ 1 [LW00]) For all d ≥ 1 with κ = 3
2 , we have L3/2,d = Lsc

3/2,d ;• (κ < 3/2 is not semi-classical in 1D [LT76]) For d = 1 and κ < 3/2, we have
Lκ,1 > Lsc

κ,1;• (κ < 1 is not semi-classical [HR90]) For all d ≥ 1 and κ < 1, we have Lκ,d > Lsc
κ,d ;

• (κ = 0 in d ≥ 7 [GGM78], see also [Fra21]) We have L0,d > Lsc
0,d > L(1)

0,d in

dimensions d ≥ 8 and L0,d > L(1)
0,d > Lsc

0,d in dimension d = 7.

These properties imply that there is a critical number 1 ≤ κsc(d) ≤ 3
2 such that

Lκ,d

{
= Lsc

κ,d for κ ≥ κsc(d),

> Lsc
κ,d for κ < κsc(d).

The exact value of κsc(d) is unknown and of course it also remains to determine what is
happening below this value.

Next we discuss the one-bound state constant L(1)
κ,d . In Sect. 2 we will prove the

following result, which provides some new properties of the function κ �→ L(1)
κ,d/Lsc

κ,d .

Theorem 3 (Comparing L(1)
κ,d with Lsc

κ,d).

(i) For every d ≥ 1, the function κ �→ L(1)
κ,d/Lsc

κ,d is strictly decreasing on its interval of
definition (2).

(i i) In dimensions 1 ≤ d ≤ 7 there is a unique 0 < κ1∩sc(d) < ∞ such that
⎧
⎪⎨

⎪⎩

L(1)
κ,d > Lsc

κ,d if κ < κ1∩sc(d) ,

L(1)
κ,d = Lsc

κ,d if κ = κ1∩sc(d) ,

L(1)
κ,d < Lsc

κ,d if κ > κ1∩sc(d) .

(i i i) In dimensions d ≥ 8, one has L(1)
κ,d < Lsc

κ,d for all κ ≥ 0.
(iv) Finally, we have for d ≥ 2,

L(1)
κ,d

Lsc
κ,d

<
L(1)

κ,d−1

Lsc
κ,d−1

for all κ ≥ max

{
0, 2 − d

2

}
. (10)

In particular, κ1∩sc(d) is decreasing with the dimension.

That the two curves κ �→ (L(1)
κ,d , Lsc

κ,d) cross at a unique point was part of the Lieb–
Thirring conjecture [LT76]. In Fig. 1 we display a numerical computation of the curves
κ �→ L(1)

κ,d/Lsc
κ,d for d ∈ {2, . . . , 7} and of the crossing points κ1∩sc(d), which confirm the

results of Theorem 3. In fact, the monotonicity with respect to the dimension (10) seems
to hold in thewhole domain of definition for d ∈ {2, 3}. These computations complement
those of Barnes in [LT76, App. A] who only considered dimensions d ∈ {1, 2, 3}.

The Lieb–Thirring conjecture (5) meant that κsc(d) = κ1∩sc(d) and that Lκ,d = L(1)
κ,d

for κ ≤ κsc(d). This is still believed to hold in dimension d = 1, but not in dimensions
d ≥ 2. In particular, Theorem 2 implies already that

κ1∩sc(d) < κsc(d) in dimensions 2 ≤ d ≤ 7.

The inequality is strict because otherwise we would have Lκ,d = Lsc
κ,d = L(1)

κ,d at
κ = κ1∩sc(d) which cannot hold by Theorems 1 and 2 . We now discuss some further
consequences of our results, mostly in the physical dimensions d ≤ 3.
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Fig. 1. Numerical computation of the curves κ �→ L(1)
κ,d/Lsc

κ,d for d ∈ {2, . . . , 7}. The curves are ordered
according to the dimension, with the d = 2 curve above the others. The points κ1∩sc(d) at which they take
the value 1 are provided in the table

• In dimension d = 1, we have κsc(1) = κ1∩sc(1) = 3/2. In addition, at κ = 1/2,
the constant is L1/2,1 = L(1)

1/2,1 = 1/2 as proved in [HLT98], with the optimal V
being a delta function. The remaining part of the Lieb–Thirring conjecture, namely,
the equality Lκ,1 = L(1)

κ,1 for all 1/2 < κ < 3/2, has been confirmed by numerical
experiments in [Lev14] but it is still open.

• In dimension d = 2, we have 1.165 
 κ1∩sc(2) < κsc(2) ≤ 3/2 and this is the
best we can say at present. Numerical simulations in [Lev14] did not provide any
hint of what is happening in the region 1 ≤ κ � 1.165. However, our Theorem 1 in
dimension d = 2 shows that Lκ,2 > L(N )

κ,2 for all κ > 1 and N ≥ 1. In particular, for
1 < κ � 1.165, we disprove the Lieb–Thirring conjecture that the constant is
given by the N = 1 optimiser in 2D. It can indeed not be given by any finite rank
optimiser.

• In dimension d = 3, a systemwith 5 bound states was numerically found in [Lev14]
to be better than the one bound state for κ � 0.855, showing that the one bound state
case ceases to be optimal before the critical value 0.8627 in Fig. 1. Our Theorem 2
implies that the one-bound state constant L(1)

κ,d can indeed not be optimal for all
κ > 1/2. This disproves the Lieb–Thirring conjecture that the constant is given
by the N = 1 optimiser for 1/2 < κ � 0.8627 in 3D.

• In dimension d ≥ 3, a common belief is that κsc(d) = 1 for all d ≥ 3. The validity of
this conjecture would have some interesting physical consequences, for instance an
exact lower bound involving the Thomas-Fermi kinetic energy in Density Functional
Theory [LLS20]. Our Theorem 1 does not contradict this belief, since we prove that
the optimal Lieb–Thirring potential cannot have a finite number of bound states. But
many other situations are still possible, as we now discuss.
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Theorem 1 suggests to interpret the Lieb–Thirring inequality within the framework
of statistical mechanics. For an optimal potential VN for L(N )

κ,d , we can think of the
corresponding N first orthonormal eigenfunctions of−�+VN as describing N fermions
in R

d [GLN21, Rmk. 8]. Theorem 1 says that in the limit N → ∞, the N particles
always attract each other, at least along a subsequence Nk . We conjecture that for
κ > max{2 − d/2, 0} they will form a large cluster of size proportional to N 1/d (if∫

Rd (VN )
κ+d/2
− is, for instance, normalised to N ) and that VN will converge in the limit to a

bounded, but non-decaying potential V∞. Therewould then be no optimiser for the Lieb–
Thirring constant Lκ,d . The semi-classical constant Lsc

κ,d corresponds to the case where

the limiting potential V∞ is constant over R
d , that is, the system is translation-invariant.

In statistical mechanics, this is called a fluid phase. In principle, the limiting potential
V∞ could also be a non-trivial periodic function, which is then interpreted as a solid
phase. We see no obvious physical reasons for discarding this possibility, in particular
in low dimensions where periodic systems are ubiquitous [BL15]. This mechanism does
not seem to have been considered before in the context of Lieb–Thirring inequalities.
In particular, it seems natural to conjecture that the system is in a solid phase for all
2 − d/2 < κ < κsc(d) in dimensions d = 2, 3. In [FGL21] we shall discuss this new
point of view in detail.

Remark 4. In dimension d = 2, some preliminary numerical tests suggest that the dif-
ference Lκ,2 − L(1)

κ,2 might be very small in the region 1 < κ � 1.165. This makes the
problem difficult to simulate as we need high precision.

1.2. Dual Lieb–Thirring inequalities. Our strategy to prove Theorem 1 is to study the
dual version of the Lieb–Thirring inequality (1). This dual version is well known for
κ = 1 and it is often used in practical applications. The dual inequality for κ > 1 appears,
for instance, in [LP93], but is less known and we briefly recall it in this subsection.
There is no known dual problem for κ < 1, except for a certain substitute for κ = 0 in
dimensions d ≥ 3 [Fra14].

Let 0 ≤ γ = γ ∗ be a self-adjoint non-negative operator of Rank(γ ) ≤ N , of the
form γ = ∑N

j=1 n j |u j 〉〈u j | with u1, . . . , uN an orthonormal family in L2(Rd). For
1 ≤ q < ∞, we denote by

‖γ ‖Sq := (Tr|γ |q)1/q =
⎛

⎝
N∑

j=1

nq
j

⎞

⎠
1/q

its q-th Schatten norm [Sim05], and use the convention that ‖γ ‖S∞ = ‖γ ‖ is the
operator norm. The density of γ is the function ργ ∈ L1(Rd) defined by

ργ (x) :=
N∑

j=1

n j |u j (x)|2,

and the kinetic energy of γ is

Tr(−�γ ) :=
N∑

j=1

n j

∫

Rd
|∇u j |2(x)dx
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with the convention that Tr(−�γ ) = +∞ if u j /∈ H1(Rd) for some j . Let 1 ≤ p ≤ 1+ 2
d

with d ≥ 1, and let

q :=
{

2p+d−dp
2+d−dp for 1 ≤ p < 1 + 2

d ,

+∞ for p = 1 + 2
d .

We denote by K (N )
p,d the best (that is, largest possible) constant in the inequality

K (N )
p,d

∣∣∣∣ργ

∣∣∣∣
2p

d(p−1)

L p(Rd )
≤ ||γ ||

p(2−d)+d
d(p−1)

Sq Tr(−�γ ) (11)

valid for all 0 ≤ γ = γ ∗ with Rank(γ ) ≤ N . The fact that K (N )
p,d is well-defined with

K (N )
p,d > 0 is a consequence of the next result, together with the Lieb–Thirring theorem.

Lemma 5 (Duality). Let 1 ≤ N ≤ ∞, d ≥ 1 and 1 ≤ p ≤ 1 + 2
d , and set

κ := p

p − 1
− d

2
, so that

κ

κ − 1
= q.

Then,

K (N )
p,d

(
L(N )

κ,d

) 2
d =

(
κ

κ + d
2

) 2κ
d (

d

2κ + d

)
. (12)

The lemma says that the inequality (11) is dual to the finite-rank Lieb–Thirring
inequality (1). This is because the density ργ is the variable dual to the potential V
whereas the density matrix γ can be interpreted as the dual of the Schrödinger operator
−� + V . Hence p is the dual exponent of κ + d/2 and q the one of κ . The proof
of Lemma 5, provided in Appendix A, also shows how to relate the corresponding
optimisers, assuming they exist. A similar argument, but without the constraint on the
rank, can be found for instance in [LP93].

We denote

K p,d := lim
N→∞ K (N )

p,d = inf
N≥1

K (N )
p,d .

This constant is related to the constant Lκ,d in (3) by

K p,d
(
Lκ,d

) 2
d =

(
κ

κ + d
2

) 2κ
d (

d

2κ + d

)
(13)

and is the best constant in the inequality

K p,d
∣∣∣∣ργ

∣∣∣∣
2p

d(p−1)

L p(Rd )
≤ ||γ ||

p(2−d)+d
d(p−1)

Sq Tr(−�γ ) (14)

valid for all 0 ≤ γ = γ ∗.
In Sect. 3, we study the dual problem (11) and prove the following result which,

together with Lemma 5, immediately implies Theorem 1.
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Theorem 6 (Existence of optimisers and properties). Let d ≥ 1 and 1 ≤ p ≤ 1 + 2/d.

(i) Existence. For every finite N ≥ 1, the problem K (N )
p,d in (11) admits an optimiser γ .

(i i) Equation. After an appropriate normalisation, any optimiser γ for K (N )
p,d has rank

1 ≤ R ≤ N < ∞ and can be written in the form

γ =
R∑

j=1

n j |u j 〉〈u j |

with

n j =

⎧
⎪⎪⎨

⎪⎪⎩

(
2p

d(p−1)

) 1
p−1 2p+d−dp

d(p−1)
|μ j |

1
q−1

∑R
k=1 |μk |

q
q−1

for p < 1 + 2
d ,

2
d

( d
d+2

) 1
p−1 1∑R

k=1 |μk | for p = 1 + 2
d ,

(15)

where the corresponding orthonormal system (u1, . . . , u R) solves the nonlinear
Schrödinger equation

∀ j = 1, . . . , R,
(

−�−ργ (x)p−1
)

u j = μ j u j , with ργ =
R∑

j=1

n j |u j |2. (16)

Here μ j are the R first negative eigenvalues of Hγ := −� − ρ
p−1
γ . In particular,

this operator has at least R negative eigenvalues. If R < N, then it has exactly
R negative eigenvalues. Finally, the potential V = −ρ

p−1
γ is an optimiser for the

finite-rank Lieb–Thirring problem L(N )
κ,d in (1).

(i i i) Rank. If, in addition, p < 2, then there exists an infinite sequence of integers N1 =
1 < N2 = 2 < N3 < · · · so that

K (Nk)
p,d < K (Nk−1)

p,d

and any optimiser for K (Nk )
p,d must have rank R = Nk. In particular,

K p,d < K (N )
p,d , for all N ≥ 1.

The assertions in (i) and (i i) follow by applying well-known methods from the
calculus of variation adapted to the setting of operators; see, for instance, [Sol91,Bac93,
FLSS07,Lew11]. For (i i i), we use ideas from [GLN21], which consist in evaluating the
exponentially small interaction between two copies of an optimiser placed far from each
other, in order to show that

K (2N )
p,d < K (N )

p,d

whenever K (N )
p,d admits an optimiser of rank N . The proof is provided in Sect. 3 below.

This argument inspired our proof of Theorem 2 for κ < 1 and N = 2, provided in
Sect. 4. There we use the N = 1 Gagliardo–Nirenberg optimiser to construct a trial state
for N = 2 but we do not prove the existence of an optimal potential.
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1.3. Fermionic nonlinear Schrödinger equation. The system of coupled nonlinear equa-
tions (16) has some similarities with that studied in [GLN21], where one has n j = 1
instead of (15). Here we exhibit a link between the two problems and use this to solve a
question left open in [GLN21].

In [GLN21] the authors studied the minimisation problem

J (N ) = inf

{
Tr(−�γ ) − 1

p

∫

Rd
ργ (x)p dx : 0 ≤ γ = γ ∗ ≤ 1, Tr(γ ) = N

}
.

(17)
Under the assumption 1 < p < 1 + 2/d, it is proved in [GLN21] that −∞ < J (N ) < 0
for all N > 0. Under the additional assumption that p < 2, it was also shown that there
is an infinite sequence of integers N1 = 1 < N2 = 2 < N3 < · · · such that J (Nk) has a
minimiser γ of rank Nk . This minimiser is a projector of the form γ = ∑Nk

j=1 |u j 〉〈u j |,
where u1, . . . , uNk form an orthonormal system and solve the fermionic NLS equation

∀ j = 1, . . . , Nk,
(
−� − ργ (x)p−1

)
u j = μ j u j , with ργ =

Nk∑

i=1

|ui |2. (18)

Here againμ1 < μ2 ≤ · · · ≤ μNk < 0 are the Nk first eigenvalues of Hγ := −�−ρ
p−1
γ .

The existence of minimisers for J (Nk) therefore proves the existence of solutions of
the fermionic NLS equation (18), for all 1 ≤ p < min{2, 1 + 2/d} and N = Nk . In
dimension d = 1, this does not cover the case p ∈ [2, 3). In the present paper, we prove
the following result for the case p = 2, which was announced in [GLN21] and actually
also follows from the analysis in [Ld78].

Theorem 7 (Non-existence of minimisers for d = 1, p = 2). Let d = 1 and p = 2.
For all N ≥ 1, we have J (N ) = N J (1). In addition, for all N ≥ 2, J (N ) admits no
minimiser.

The theorem is reminiscent of a similar result for the true Schrödinger (Lieb–Liniger
[LL63]) model in 1D describing N particles interacting with the delta potential. In the
attractive case, only two-particle (singlet) bound states exist [McG64,Yan68,Ld78]. The
same result in the Hartree-Fock case was proved in [Ld78]. The spatial component of
the singlet state coincides with our N = 1 solution.

In the case N = 1 and 1 < p < 1 + 2/d, it is proved in [GLN21, Lem. 11] that J (1)
has the Gagliardo–Nirenberg–Sobolev optimiser γ = |U 〉〈U |, where

U (x) = m− p−1
2(1+2/d−p)

− 1
2 Q

(
m− p−1

d(1+2/d−p) x

)
,

∫

Rd
U (x)2 dx = 1, (19)

and Q is the unique positive radial solution to the NLS equation

−�Q − Q2p−1 + Q = 0, with mass m :=
∫

R

Q2. (20)

When d = 1 and p = 2, we have the explicit formula

U (x) = 1

2
3
2 cosh(x/4)

.
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Our strategy to prove Theorem 7 for d = 1 is to relate J (N ) to the dual Lieb–Thirring
constant K (N )

κ,1 for κ = 3/2, and use K (N )
3/2,1 = K (1)

3/2,1. The proof is given in Sect. 5.1
below.

The same argument gives that if the Lieb–Thirring conjecture K (N )
κ,1 = K (1)

κ,1 is true for
some 1 < κ < 3/2, then J (N ) = N J (1) for p = (κ +1/2)/(κ − 1/2); see Remark 14.

Even if J (N ) has no minimiser for N ≥ 2 if d = 1 and p = 2, one may still
wonder whether the fermionic NLS equation (18) possesses orthonormal solutions. We
believe there are no other solutions than the N = 1 case and are able to prove this for
N = 2, using the fundamental fact that the system is completely integrable [Man74].
The following is stronger than Theorem 7 for N = 2.

Theorem 8 (Non-existence of solutions for p = 2, d = 1 and N = 2). Let μ1 ≤ μ2 <

0, and let u1, u2 be two square integrable real-valued functions solving
{

−u′′
1 − (u2

1 + u2
2)u1 = μ1u1,

−u′′
2 − (u2

1 + u2
2)u2 = μ2u2.

(21)

If ‖u1‖L2(R) = ‖u2‖L2(R) = 1, then we have μ1 = μ2 and

u1(x) = ± 1

2 cosh
(
(x − x0)/2

) , u2(x) = ± 1

2 cosh
(
(x − x0)/2

) (22)

for some x0 ∈ R and two uncorrelated signs ±.

The proof can probably be generalised to show that there are no solutions for all
N ≥ 3 at p = 2 but we only address the simpler case N = 2 here. The proof is given in
Sect. 5.2. More comments about the NLS problem (17) can be read in Appendix B.

Structure of the paper. In the next section we recall useful facts about the Lieb–Thirring
constant L(1)

κ,d and provide the proof of Theorem 3. In Sect. 3, we prove Theorem 6, which
implies Theorem 1. Section 4 is devoted to the proof of Theorem 2.We prove Theorem 7
and Theorem 8 in Sects. 5.1 and 5.2 , respectively. The proof of duality (Lemma 5) is
given in Appendix A whereas Appendix B contains more comments on the NLS model
from [GLN21]. Finally, in Appendix C we compare our results with those in [HKY19].

2. The One-Bound State Constant L(1)
κ,d : Proof of Theorem 3

In this section we discuss some properties of the one-bound state constant L(1)
κ,d and

provide the proof of Theorem 3. The Gagliardo–Nirenberg inequality states that

KGN
p,d

(∫

Rd
|u(x)|2p dx

) 2
d(p−1) ≤

(∫

Rd
|∇u(x)|2 dx

)(∫

Rd
|u(x)|2 dx

) (2−d)p+d
d(p−1)

(23)

for all {
1 < p < +∞ for d = 1, 2,
1 < p ≤ d

d−2 for d ≥ 3,
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with the best constant KGN
p,d > 0. In dimension d = 1 one can take p → +∞. The

constants KGN
p,1 and the optimisers are known explicitly in d = 1 [Nag41]. In par-

ticular, the optimiser is unique up to translations, dilations and multiplication by a
phase factor. As explained, for instance, in [Tao06,Fra13,CFL14], by combining the
results on existence [Str77,BL83,Wei83], symmetry [GNN81,ALT86] and uniqueness
[Cof72,Kwo89,McL93] one infers that in any d ≥ 2 as well, there is a unique optimiser
Q, up to translations, dilations and multiplication by a phase factor. This function can be
chosenpositive and to satisfy (20). The integral

∫
Rd Q2 dx will be a dimension-dependent

constant.
For an operator γ of rank one the inequality (11) is equivalent to (23), hence we

obtain

K (1)
p,d = KGN

p,d . (24)

The duality argument from Lemma 5 shows that

L(1)
κ,d =

(
2κ

2κ + d

)κ+ d
2
(

d

2κ

) d
2 (

KGN
p,d

)− d
2

< ∞. (25)

By the implicit function theorem and the non-degeneracy of Q [McL93,Tao06,Fra13],
the Gagliardo–Nirenberg constant K (1)

p,d is known to be real-analytic in p, so that L(1)
κ,d is

a real-analytic function of κ . In this paper we will only use the continuity of κ �→ L(1)
κ,d ,

which is more elementary and which we explain now for completeness. We claim that
p �→ K (1)

p,d is continuous in the interval (1,∞) if d = 1, 2 and (1, d/(d − 2)] if d ≥ 3,

which implies the continuity of L(1)
κ,d on the corresponding intervals. To prove this fact,

we can notice that

log

((
K (1)

p,d

) d(p−1)
4p

)
= inf

u∈H1(Rd )

{
d(1 − p−1)

2
log ||∇u||L2(Rd )

+

(
1 − d(1 − p−1)

2

)
log ||u||L2(Rd ) − log ||u||L2p(Rd )

}
. (26)

By Hölder’s inequality, p−1 �→ log ||u||L2p(Rd ) is convex. Hence after minimising over

u we find that p �→ (
K (1)

p,d

) d(p−1)
4p is upper semi-continuous on [1,∞) if d = 1, 2 and on

[1, d/(d − 2)] if d ≥ 3, and log-concave in 1/p. Log-concavity implies continuity on
the interior of the interval of definition and then upper semicontinuity implies continuity
up to the endpoints.

Our goal in the rest of this section is to compare L(1)
κ,d with the semi-classical constant

Lsc
κ,d . First, the argument from [AL78] can be used to prove that κ �→ L(1)

κ,d/Lsc
κ,d is non-

increasing. We show here that it is even strictly decreasing, which is (i) in Theorem 3.

Lemma 9. For any d ≥ 1, the function κ �→ L(1)
κ,d/Lsc

κ,d is strictly decreasing.

Proof. Following [AL78], we use the fact that for any 0 ≤ κ ′ < κ and λ ∈ R, we have

λκ− = cκ,κ ′
∫ ∞

0
(λ + t)κ

′
− tκ−κ ′−1 dt (27)
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for some constant cκ,κ ′ > 0. Let V ∈ Lκ+d/2(Rd). By the variational principle we have
(λ1(−� + V ) + t)− ≤ |λ1(−� − (V + t)−)| for any t ≥ 0 and we can bound, using the
definition of L(1)

κ ′,d ,

(
λ1(−� + V ) + t

)κ ′
− ≤ ∣∣λ1

( − � − (V + t)−
)∣∣κ ′

≤ L(1)
κ ′,d

∫

Rd
(V (x) + t)

κ ′+ d
2− dx

= L(1)
κ ′,d

(
Lsc

κ ′,d

)−1
∫∫

Rd×Rd

(
|ξ |2 + V (x) + t

)κ ′

−
dξ dx

(2π)d
. (28)

Thus, integrating over t using (27) on both sides, we obtain

λ1(−� + V )κ− ≤ L(1)
κ ′,d

(
Lsc

κ ′,d

)−1
∫∫

Rd×Rd

(
|ξ |2 + V (x)

)κ

−
dξ dx

(2π)d

= L(1)
κ ′,d

(
Lsc

κ ′,d

)−1
Lsc

κ,d

∫

Rd
V (x)

κ+ d
2− dx . (29)

This shows that

L(1)
κ,d ≤ L(1)

κ ′,d

(
Lsc

κ ′,d

)−1
Lsc

κ,d , (30)

that is, κ �→ L(1)
κ,d/Lsc

κ,d is nonincreasing.
As was recalled at the beginning of this section, it is known that for the optimisation

problem corresponding to L(1)
κ ′,d there is an optimiser. This optimiser is a power of the

solution of the positive solution of (20) and therefore does not vanish. Since for any
V ∈ Lκ+d/2(Rd) and for any t > 0, the function −(V + t)− is supported on a set
of finite measure, this function cannot be an optimiser for L(1)

κ ′,d . Therefore the second
inequality in (28) is strict for all t > 0 and, consequently, inequality (29) is strict for any
V ∈ Lκ+d/2(Rd). Taking, in particular, V to be an optimiser corresponding to L(1)

κ,d , we
obtain that inequality (30) is strict, which is the assertion of the lemma. ��

Next, we prove an inequality relating the constant L(1)
κ,d with the ones in lower di-

mensions, in the spirit of the Laptev-Weidl method of lifting dimensions [LW00].

Lemma 10. For any d ≥ 2 and κ > 0, we have

L(1)
κ,d < L(1)

κ,d−n L(1)
κ+ d−n

2 ,n
, ∀n ∈ {1, . . . , d − 1}. (31)

The same inequality holds for κ = 0 if d − n ≥ 3.

Proof. LetV be the optimizer for L(1)
κ,d with corresponding ground stateu, which canboth

be expressed in terms of theNLS solution Q in (20).Wewrite x = (x1, x2) ∈ R
d−n ×R

n

and denote by λ(x1) the first eigenvalue of −�x2 + V (x1, ·) in R
n . Writing

−� + V = −�x1 +
( − �x2 + V (x1, x2)

) ≥ −�x1 + λ(x1)

and taking the scalar product with u, we find λ1 (−� + V ) > λ1
(−�x1 + λ(x1)

)
. The

strict inequality is because u does not solve an eigenvalue equation in x1 at fixed x2.
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This gives

|λ1(−� + V )|κ <
∣∣λ1(−�x1 + λ(x1))

∣∣κ

≤ L(1)
κ,d−n

∫

Rn
|λ(x1)|κ+ d−n

2 dx1

≤ L(1)
κ,d−n L(1)

κ+ d−n
2 ,n

∫∫

Rd−n×Rn
V (x1, x2)

κ+ d
2− dx1 dx2

and we obtain inequality (31) for κ > 0.
The proof for κ = 0 if d −n ≥ 3 is similar. Let again V be the optimizer for L(1)

κ,d and
u the corresponding ground state. More precisely, u is an eigenfunction corresponding
to the eigenvalue zero if d ≥ 5 and it is a zero energy resonance function (that is, an
element of Ḣ1(Rd) \ L2(Rd)) if d = 3, 4. We have

0 =
∫

Rd

(
|∇u|2 + V |u|2

)
dx ≥

∫

Rd

(
|∇x1u|2 + λ(x1)|u|2

)
dx

≥
∫

Rn

{∫

Rd−n
|∇x1u|2 dx1

−
(∫

Rd−n
|λ(x1)| d−n

2 dx1

) 2
d−n

(∫

Rd−n
|u| 2(d−n)

d−n−2 dx1

) d−n−2
d−n

}
dx2

≥
∫

Rd
|∇x1u|2 dx

(
1 − S−1

d−n

(∫

Rd−n
|λ(x1)| d−n

2 dx1

) 2
d−n

)
,

where Sd−n is the optimal Sobolev constant in dimension d − n. We conclude that
∫

Rd−n
|λ(x1)| d−n

2 dx1 ≥ S
d−n
2

d−n =
(

L(1)
0,d−n

)−1
.

On the other hand, we have

|λ(x1)| d−n
2 < L(1)

κ+ d−n
2 ,n

∫

Rn
|V (x1, x2)| d

2 dx1 ,

where the strict inequality follows from the fact that for no x1, V (x1, ·) is an optimal
potential for L(1)

κ+ d−n
2 ,n

. (Indeed, V (x1, ·) is algebraically decaying, whereas we know

that the optimal potential for L(1)
κ+ d−n

2 ,n
is exponentially decaying.) Combining the last

two inequalities we obtain

L(1)
κ+ d−n

2 ,n

∫

Rd
|V (x)| d

2 dx >
(

L(1)
0,d−n

)−1
.

Since
∫

Rd |V (x)| d
2 dx = (L(1)

0,d)−1, this is the claimed inequality for κ = 0. ��
Note that the semi-classical constants satisfy the relation

Lsc
κ,d = Lsc

κ,d−n Lsc
κ+ d−n

2 ,n
, ∀n ∈ {1, . . . , d − 1} (32)
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so that we obtain the same inequality as (31) for L(1)
κ,d/Lsc

κ,d . According to the Laptev-
Weidl method of lifting dimensions the bound (31) with ≤ instead of < holds for the
matrix-valued Lieb–Thirring constants L(mat)

κ,d . Using the results from [LW00,HLW00],
one sees that for n = d − 1 and κ ∈ {1/2} ∪ [3/2,∞) the bound (31) with ≤ instead of
< holds for the usual Lieb–Thirring constants Lκ,d . One might wonder whether this is
true more generally.

In [Mar90], Martin used a similar idea but instead of removing he added one dimen-
sion by considering the potential W (x, t) := V (x) + λt2. This led to the inequality

L(N )

κ ′,d
Lsc

κ ′,d
<

L(N )
κ,d+1

Lsc
κ,d+1

, ∀κ ′ ≥ κ +
1

2

for all 1 ≤ N ≤ ∞. This can in fact be improved for N = 1, see [Mar90, Sec. 3].
The proof of Theorem 3 follows from Lemmas 9 and 10.

Proof of Theorem 3. In d = 1, the constant L(1)
κ,1 is explicit and the unique intersection at

κ1∩sc(1) = 3/2 follows by explicit comparison. The bound (10), for general d ≥ 2, then
follows immediately from (31) with n = 1, by using (32) and the fact that L(1)

κ,1 > Lsc
κ,1

for κ > 3/2.
In dimension d ≥ 3 using the explicit formula for the sharp Sobolev constant [Rod66,

Aub76,Tal76] (see also [LL01, Thm. 8.3]) we obtain the exact formula at κ = 0:

L(1)
0,d

Lsc
0,d

= 2d−1d− d
2 (d − 2)−

d
2 d! (33)

This is larger than 1 in dimensions d ∈ {3, . . . , 7} but smaller than 1 in dimension d ≥ 8,
as noted in [LT76,GGM78]. In fact, this is decreasing with the dimension for d ≥ 4
by (10) and the value in dimension d = 8 equals L(1)

0,8/Lsc
0,8 
 0.9722. Thus, if d ≥ 8

the part (i i i) of the theorem follows from Lemma 9.

In dimension d = 2, simple numerical computations provide L(1)
1,2/Lsc

1,2 
 1.074 > 1
at κ = 1, see [LT76,Wei83]. Alternatively, to see this analytically, one can use the
trial function u(x) = e−|x |2 in the Gagliardo–Nirenberg inequality (23) to obtain an
upper bound on the constant KGN

2,2 = K (1)
2,2. Via (25) this gives the lower bound L(1)

1,2 ≥
(8π)−1 = Lsc

1,2. Since the Gaussian does not satisfy the Euler-Lagrange equation for

KGN
2,2 , the inequality is, in fact, strict, as claimed.

On the other hand, it also follows from (10) that L(1)
κ,d < Lsc

κ,d for all d ≥ 2 and

κ ≥ 3/2. We deduce that in dimensions 2 ≤ d ≤ 7 the two continuous curves L(1)
κ,d and

Lsc
κ,d must cross. The crossing point is unique by Lemma 9 and this concludes our proof

of Theorem 3. ��

3. Finite Rank Lieb–Thirring Inequalities: Proof of Theorem 6

This section contains the proof of Theorem 6 which, for convenience, we split into
several intermediate steps. Our goal is to study the optimisation problem corresponding
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to inequality (11), namely

K (N )
p,d := inf

0≤γ=γ ∗
Rank(γ )≤N

||γ ||
p(2−d)+d
d(p−1)

Sq Tr(−�γ )

∣∣∣∣ργ

∣∣∣∣
2p

d(p−1)

L p(Rd )

, (34)

where we recall that

q :=
{

2p+d−dp
2+d−dp for 1 < p < 1 + 2

d ,

+∞ for p = 1 + 2
d .

(35)

Throughout the paper, the constants p, q and κ are linked by the relations (we set
p′ = p/(p − 1) and κ ′ = κ/(κ − 1))

κ +
d

2
= p′, and q = κ ′.

Taking (34) to the power 1
2 (p−1), and letting p → 1, so that q → 1 as well, we recover

the equality

∫

Rd
ργ (x) dx = ‖ργ ‖L1(Rd ) = ‖γ ‖S1 = Tr(γ ),

for all 0 ≤ γ = γ ∗. On the other hand, taking p = 1 + 2/d, so that q = ∞, we recover
the better known dual Lieb–Thirring inequality

K (N )
1+2/d,d

∫

Rd
ργ (x)1+

2
d dx ≤ ‖γ ‖ 2

d Tr(−�γ ), ∀0 ≤ γ = γ ∗, Rank(γ ) ≤ N .

(36)
We can think of (11) as a specific interpolation between these two cases. Note that a direct
proof of (36) with N = +∞ can be found in [Rum11], see also [LS13,Sab16,Nam18].
The original Lieb–Thirring proof proceeds by proving (1) and then deducing (36) by
duality.

3.1. Proof of (i) on the existence of optimisers. Consider a minimising sequence (γn)

with Rank(γn) ≤ N for (34), normalised such that

Tr(−�γn) = 1, ‖γn‖Sq = 1

and

lim
n→∞

∫

Rd
ρn(x)p dx = 1

(
K (N )

p,d

) d(p−1)
2

(37)

with ρn := ργn . We have ‖γn‖ ≤ ‖γn‖Sq = 1 and hence

∫

Rd
ρn(x) dx = Tr(γn) ≤ N .
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This proves that ρn is bounded in L1(Rd). On the other hand, the Hoffmann-Ostenhof
[HH77] inequality states that

Tr(−�γ ) ≥
∫

Rd
|∇√

ργ (x)|2 dx (38)

for all γ = γ ∗ ≥ 0. This shows that
√

ρn is bounded in H1(Rd), hence in Lr (Rd) for
all 2 ≤ r < 2∗ where 2∗ = 2d/(d −2) in dimension d ≥ 3 and 2∗ = +∞ in dimensions
d = 1, 2, by the Sobolev inequality. In particular, we can choose r = p. From [Lie83a]
or from [Lio84b, Lem. I.1], we know that

• either ρn → 0 strongly in L p(Rd),
• or there is a ρ �= 0 with

√
ρ ∈ H1(Rd), a sequence τk ∈ R

d and a subsequence so
that

√
ρnk (· − τk) ⇀

√
ρ �= 0 weakly in H1(Rd).

Due to (37) we know that the first possibility cannot happen and we may assume that√
ρn ⇀

√
ρ �= 0, after extraction of a subsequence and translation of the whole system

by τn . We may also extract a weak-∗ limit for γn in the trace class topology and infer
γn ⇀ γ where ργ = ρ �= 0, hence γ �= 0. By passing to the limit, we have γ = γ ∗ ≥ 0
and Rank(γ ) ≤ N .

Next we apply Lions’ method [Lio84a] based on the Levy concentration function
Qn(R) = ∫

|x |≤R ρn(x) dx and the strong local compactness in L2(Rd) to deduce that
there exists a sequence Rn → ∞ so that

lim
n→∞

∫

|x |≤Rn

ρn(x) dx =
∫

Rd
ρ(x) dx, lim

n→∞

∫

Rn≤|x |≤2Rn

ρn(x) dx = 0.

Let χ ∈ C∞
c (Rd , [0, 1]) be a smooth localisation function such that χ ≡ 1 on the unit

ball B1 and χ ≡ 0 outside of B2. Let χn(x) := χ(x/Rn) and ηn = √
1 − χ2

n . Then
χ2

n ρn → ρ strongly in L1(Rd) ∩ L p(Rd) whereas |∇χn|2ρn → 0 and |∇ηn|2ρn → 0
strongly in L1(Rd). By the IMS formula (see, e.g., [CFKS87, Thm. 3.2]) and Fatou’s
lemma for operators (see, e.g., [Sim05, Thm. 2.7]), we obtain

Tr(−�γn) = Tr(−�χnγnχn) + Tr(−�ηnγnηn) −
∫

Rd
(|∇χn|2 + |∇ηn|2)ρn

= Tr(−�χnγnχn) + Tr(−�ηnγnηn) + o(1)

≥ Tr(−�γ ) + Tr(−�ηnγnηn) + o(1).

From the strong convergence of χ2
n ρn we have

∫

Rd
ρ

p
n =

∫

Rd
χ2

n (ρn)p +
∫

Rd
(η2nρn)p +

∫

Rd
(η2n − η

2p
n )ρ

p
n

=
∫

Rd
ρ p +

∫

Rd
(η2nρn)p + o(1).

First, we assume that q < ∞, that is, p < 1 + 2/d. The Schatten norm satisfies

Tr(γn)q = Tr
(
χn(γn)qχn

)
+ Tr

(
ηn(γn)

qηn
)

≥ Tr(χnγnχn)q + Tr(ηnγnηn)q

≥ Tr(γ )q + Tr(ηnγnηn)
q + o(1).
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In the second line we have used the inequality Tr(AB A)m ≤ Tr(Am Bm Am) for all
m ≥ 1 [LT76, App. B] to infer

Tr(γn)
q(χn)

2 ≥ Tr(γn)
q(χn)2q = Tr(χn)q(γn)

q(χn)q ≥ Tr(χnγnχn)
q .

In the third line we used Fatou’s lemma in the Schatten spaceSq . Next, we argue using
the method of the missing mass as in [Lie83b], see also [Fra13], noticing that K (N )

p,d can
be rewritten as

(
K (N )

p,d

) d(p−1)
2 = inf

γ=γ ∗≥0
Rank(γ )≤N

(
Tr(γ q)

)1−θ(
Tr(−�γ )

)θ

∫
Rd ργ (x)p dx

with

θ := d(p − 1)

2
∈ (0, 1).

Using Hölder’s inequality in the form

(a1 + a2)
θ (b1 + b2)

1−θ ≥ aθ
1b1−θ

1 + aθ
2b1−θ

2

we find

1 =
(
Tr(γ q

n )
)1−θ(

Tr(−�γn)
)θ

≥
(
Tr(γ q)

)1−θ(
Tr(−�γ )

)θ

+
(
Tr(ηnγnηn)q

)1−θ(
Tr(−�ηnγnηn)

)θ

+ o(1)

≥
(
Tr(γ q)

)1−θ(
Tr(−�γ )

)θ

+
(

K (N )
p,d

) d(p−1)
2

∫

Rd
(η2nρn)p + o(1)

=
(
Tr(γ q)

)1−θ(
Tr(−�γ )

)θ

+ 1 −
(

K (N )
p,d

) d(p−1)
2

∫

Rd
ρ p

γ + o(1).

In the third line we used Rank(ηnγnηn) ≤ N . Passing to the limit we obtain

(
K (N )

p,d

) d(p−1)
2

∫

Rd
ρ p

γ ≥
(
Tr(γ q)

)1−θ(
Tr(−�γ )

)θ

and therefore γ �= 0 is an optimiser.
The case p = 1+2/d is similar. This time, we use ‖γ ‖ ≤ lim infn→∞ ‖γn‖ = 1 and

‖ηnγnηn‖ ≤ ‖γn‖ = 1 to bound

1 = Tr(−�γn)

≥ Tr(−�γ ) + Tr(−�ηnγnηn) + o(1)

≥ ‖γ ‖ 2
d Tr(−�γ ) + ‖ηnγnηn‖ 2

d Tr(−�ηnγnηn) + o(1)

≥ ‖γ ‖ 2
d Tr(−�γ ) + K (N )

1+2/d,d

∫

Rd
(η2nρn)1+

2
d + o(1)

= ‖γ ‖ 2
d Tr(−�γ ) + 1 − K (N )

1+2/d,d

∫

Rd
ρ
1+ 2

d
γ + o(1)

and arrive at the same conclusion that γ is an optimiser.



The nonlinear Schrödinger equation 1801

3.2. Proof of (i i) on the equation. Let γ be an optimiser such that

Tr(−�γ ) =
∫

Rd
ρ(x)p dx = 1.

This normalisation is always possible by scaling and by multiplying γ by a positive
constant. Then we have

Tr(γ q) =
(

K (N )
p,d

) d(p−1)
2+d−dp

.

We start with the case q < ∞, that is, p < 1 + 2/d. Assume that we have a smooth
curve of operators γ (t) = γ + tδ + o(t) for some δ = δ∗, with γ (t) = γ (t)∗ ≥ 0 and
Rank(γ (t)) ≤ N . By expanding we find

(
K (N )

p,d

) d(p−1)
2 ≤

(
Tr(γ (t)q )

)1−θ(
Tr(−�γ (t))

)θ

∫
Rd ρ

p
γ (t)

=
(

K (N )
p,d

) d(p−1)
2

(
1 + qt Tr(δγ

q−1)
Tr(γ q )

+ o(t)
)1−θ(

1 + tTr(−�δ) + o(t)
)θ

1 + pt
∫
Rd ρδρ

p−1
γ + o(t)

=
(

K (N )
p,d

) d(p−1)
2

(
1 + t θ Tr

[
δ

(
−� − p

θ
ρ

p−1
γ +

q(1 − θ)

θTr(γ q )
γ q−1

)]
+ o(t)

)
.

(39)

Now take γ (t) := eit H γ e−i t H = γ + i t[H, γ ] + o(t) for some (smooth and finite-
rank) self-adjoint operator H and all t ∈ R. Since Rank(γ (t)) = Rank(γ ), we deduce
from (39) after varying over all H that

[
−� − p

θ
ρ p−1

γ , γ
]

= 0.

Hence γ commutes with the mean-field operator Hγ := −�− pρ p−1
γ /θ . We can there-

fore write γ = ∑R
j=1 n j |uk j 〉〈uk j | for some eigenvectors uk j of Hγ (with eigenvalue

μk j ) and some n j > 0. In particular, Hγ admits at least R eigenvalues.
Using now γ (t) = γ + tδ for a δ supported on the range of γ and for t small enough

in (39), we find that

−� − p

θ
ρ p−1

γ +
(1 − θ)q

θTr(γ q)
γ q−1 ≡ 0 on the range of γ.

Evaluating this identity on uk j we infer that

μk j +
(1 − θ)q

θTr(γ q)
nq−1

j = 0.

This shows that μk j < 0 and

n j =
(

θTr(γ q)

(1 − θ)q

) 1
q−1 |μk j |

1
q−1 .



1802 R. L. Frank, D. Gontier, M. Lewin

Since γ is assumed to be of rank R, we in particular deduce that Hγ has at least R
negative eigenvalues.

Next, we show that the μk j are necessarily the R first eigenvalues. Assume that one
eigenvector of Hγ with eigenvalue < μR does not belong to the range of γ , so there is
1 ≤ j ≤ R with uk j �= u j with k j > j and u j not in the range of γ . Consider the new
operator

γ ′ := γ − n j |uk j 〉〈uk j | + n j |u j 〉〈u j | := γ + δ,

which has the same rank and the same Sq norm as γ . We have by convexity
∫

Rd
ρ

p
γ ′ ≥ 1 + pn j

∫

Rd
ρ p−1

γ

(
|u j |2 − |uk j |2

)

and

Tr(−�γ ′) = 1 + n j
〈
u j ,−�u j

〉 − nk j

〈
uk j ,−�uk j

〉

= 1 +
pn j

θ

∫

Rd
ρ p−1

γ

(|u j |2 − |uk j |2
)
+
(
μ j − μk j

)
n j

< 1 +
pn j

θ

∫

Rd
ρ p−1

γ

(|u j |2 − |uk j |2
)

since μ j < μk j . This gives

(
Tr(γ ′)q

)1−θ(
Tr(−�γ ′)

)θ

∫
Rd ρ

p
γ ′

<
(

K (N )
p,d

) d(p−1)
2

(
1 +

pn j
θ

∫
Rd ρ

p−1
γ

(|u j |2 − |uk j |2
))θ

1 + pn j
∫

Rd ρ
p−1
γ

(|u j |2 − |uk j |2
)

≤
(

K (N )
p,d

) d(p−1)
2

,

a contradiction. Hence μk j = μ j .
Finally, when R < N and μR+1 < 0, we can consider the operator

γ (t) = γ + t |u R+1〉〈u R+1|
with t ≥ 0, which has rank R + 1 ≤ N . From (39) we obtain

(
K (N )

p,d

) d(p−1)
2 ≤

(
K (N )

p,d

) d(p−1)
2

(
1 + o(t)

+ tθ

〈
u R+1,

(
−� − p

θ
ρ p−1

γ +
(1 − θ)q

θTr(γ q)
γ q−1

)
u R+1

〉)

≤
(

K (N )
p,d

) d(p−1)
2

(1 + tμR+1θ + o(t)) ,

another contradiction. Hence Hγ cannot have more than R negative eigenvalues when
R < N .

As a conclusion, we have shown that

γ =
(

θTr(γ q)

q(1 − θ)

) 1
q−1

R∑

j=1

|μ j |
1

q−1 |u j 〉〈u j |,
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with
(
−� − p

θ
ργ (x)p−1

)
u j = μ j u j , j = 1, . . . , R.

Taking the trace of γ q we find that

θTr(γ q)

q(1 − θ)
=

⎛

⎝q(1 − θ)

θ

1
∑R

j=1 |μ j |
q

q−1

⎞

⎠
q−1

and thus

γ = q(1 − θ)

θ
∑R

j=1 |μ j |
q

q−1

R∑

j=1

|μ j |
1

q−1 |u j 〉〈u j |.

Replacing γ by (p/θ)
1

p−1 γ we find the equation mentioned in the statement.
The arguments for q = +∞ (p = 1 + 2/d) are similar. We start with a minimiser

normalised so that
∫

Rd
ρ
1+ 2

d
γ = Tr(−�γ ) = 1, ‖γ ‖ 2

d = K (N )
1+2/d,d .

The first perturbation γ (t) := eit H γ e−i t H = γ + i t[H, γ ] + o(t) leaves the operator
norm invariant and provides the equation [−� − pρ2/d

γ , γ ] = 0, hence again γ =∑R
j=1 n j |uk j 〉〈uk j | with Hγ uk j = μk j uk j and Hγ = −� − pρ2/d

γ . In order to prove
that μk j < 0, we consider the operator

γ̃ := γ − n j |uk j 〉〈uk j |
which has one less eigenvalue and satisfies ‖γ̃ ‖2/d ≤ ‖γ ‖2/d = K (N )

1+2/d,d . We find

K (N )
1+2/d,d ≤ K (N−1)

1+2/d,d ≤ ‖γ̃ ‖ 2
d Tr(−�γ̃ )

∫
Rd ρ

1+ 2
d

γ̃

≤ K (N )
1+2/d,d

Tr(−�γ̃ )

∫
Rd ρ

1+ 2
d

γ̃

= K (N )
1+2/d,d

1 − n j
∫

Rd |∇uk j |2
∫

Rd

(
ργ − n j |uk j |2)1+

2
d

= K (N )
1+2/d,d

1 − n jμk j − n j
d+2

d

∫
Rd ρ

2
d
γ |uk j |2

∫
Rd

(
ργ − n j |uk j |2)1+

2
d

.

Simplifying by K (N )
1+2/d,d > 0, this gives the estimate

μk j ≤ − 1

n j

(∫

Rd

(
ργ − n j |uk j |2)1+

2
d −

∫

Rd
ρ
1+ 2

d
γ + n j

d + 2

d

∫

Rd
ρ

2
d
γ |uk j |2

)
< 0

(40)
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where the last negative sign is by strict convexity of t �→ t1+2/d . Hence γ has its range
into the negative spectral subspace of Hγ , an operator which thus possesses at least
R negative eigenvalues. Next we show that n j = ‖γ ‖ for all j = 1, . . . , R. Assume
on the contrary that 0 < n j < ‖γ ‖ (this can only happen when R ≥ 2). Taking
γ (t) = γ + t |uk j 〉〈uk j | which has the same operator norm for t small enough, we obtain

K (N )
1+2/d,d ≤ ‖γ (t)‖ 2

d Tr(−�γ (t))
∫

Rd ρ
1+ 2

d
γ (t)

= K (N )
1+2/d,d

1 + t
∫

Rd |∇uk j |2
∫

Rd

(
ργ + t |uk j |2)1+

2
d

= K (N )
1+2/d,d

1 + tμk j + pt
∫

Rd ρ
p−1
γ |uk j |2

∫
Rd

(
ργ + t |uk j |2)1+

2
d

= K (N )
1+2/d,d

(
1 + tμk j + o(t)

)
(41)

which is a contradiction sinceμk j < 0, as we have seen. We conclude that n j = ‖γ ‖ for
all j = 1, . . . , R. The argument for showing thatμk1 , . . . , μkR are the R first eigenvalues
is exactly the same as before.

3.3. Proof of (i i i) on the rank of optimisers. In this subsection, we prove the following
result.

Proposition 11 (Binding). Let 1 < p ≤ 1 + 2/d with p < 2 and assume that K (N )
p,d

admits an optimiser γ of rank N. Then K (2N )
p,d < K (N )

p,d .

The proof of (i i i) in Theorem 6 follows immediately from Proposition 11, arguing
as follows. Since K (1)

p,d has an optimiser, the proposition shows that K (2)
p,d < K (1)

p,d , hence

we can take N2 = 2. By Step (i) there is an optimiser for K (2)
p,d and by Step (i i) the

strict inequality K (2)
p,d < K (1)

p,d implies that the optimisers for K (2)
p,d all have rank two.

Hence Proposition 11 implies that K (4)
p,d < K (2)

p,d . If K (3)
p,d < K (2)

p,d we take N3 = 3 and
otherwise we take N3 = 4. We then go on by induction to obtain the assertion of (i i i).
Hence we now concentrate on proving Proposition 11.

Proof of Proposition 11. We follow ideas from [GLN21, Section 2.4]. Let
γ := ∑N

j=1 n j |u j 〉〈u j | be a minimiser of rank N for K (N )
p,d , normalised in the man-

ner Tr(−�γ ) = ∫
Rd ρ p = 1. The functions u j satisfy
⎛

⎜⎝−� − p

θ

⎛

⎝
N∑

j=1

n j |u j |2
⎞

⎠
p−1

⎞

⎟⎠ u j = μ j u j

with n j = c|μ j |1/(q−1). Note that the first eigenfunction u1 is positive, hence the non-
linear potential never vanishes. By usual regularity arguments, this shows that the u j
are C∞ and decay exponentially at infinity. For R > 0, we set u j,R(x) := u j (x − Re1)
where e1 = (1, 0, . . . , 0), and we introduce the Gram matrix

SR =
(

IN E R

(E R)∗ IN

)
, with E R

i j := 〈ui , u j,R〉 =
∫

Rd
ui (x)u j (x − Re1)dx .
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Since the functions ui are exponentially decaying, ER goes to 0, and the overlap matrix
SR is invertible for R large enough. We then let

⎛

⎜⎝
ψ1,R

...

ψ2N ,R

⎞

⎟⎠ = (SR)−
1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

u1
...

uN
u1,R

...

uN ,R

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and

γR =
N∑

j=1

n j

(
|ψ j,R〉〈ψ j,R | + |ψN+ j,R〉〈ψN+ j,R |

)
.

We have

Tr(γR)q = 2Tr(γ q), ‖γR‖ = ‖γ ‖.
Expanding as in [GLN21] using

(SR)−1/2 =
(

IN 0
0 IN

)
− 1

2

(
0 E R

(E R)∗ 0

)
+
3

8

(
E R(E R)∗ 0

0 (E R)∗E R

)
+ O(e3R).

for

eR := max
i, j

∫

Rd
|ui (x)| |u j (x − Re1)|dx,

we obtain after a long calculation

(
K (2N )

p,d

) d(p−1)
2 ≤

(
K (N )

p,d

) d(p−1)
2 21−θ

(
Tr(−�γR)

)θ
∫

Rd ρ
p
γR

=
(

K (N )
p,d

) d(p−1)
2

(
1 − 1

2

∫

Rd

(
(ρ + ρR)p − ρ p − ρ

p
R

)
+ O(e2R)

)

with ρ(x) = ργ (x) and ρR(x) = ρ(x − Re1). From the arguments in [GLN21, Sec-
tion 2.4] we know that

∫

Rd

(
(ρ + ρR)p − ρ p − ρ

p
R

) ≥ cR p(1−d)e−p
√|μN |R (42)

and by [GLN21, Lemma 21] we have

eR ≤ C(1 + Rd)e−√|μN |R .

Since p < 2 by assumption we conclude, as we wanted, that K (2N )
p,d < K (N )

p,d . ��
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4. Binding for κ < 1 and N = 2: Proof of Theorem 2

In this section we provide the proof of Theorem 2. Define p by p′ = κ + d/2 let Q be
the radial Gagliardo–Nirenberg minimiser, solution to (20), and set m := ∫

Rd Q2 dx .

4.1. Some properties of Q. First we relate our constants for N = 1 to Q. We have the
Pohozaev identity

⎧
⎪⎪⎨

⎪⎪⎩

∫

Rd
|∇Q|2 dx −

∫

Rd
Q2p dx = −m,

(
d

2
− 1

)∫

Rd
|∇Q|2 dx − d

2p

∫

Rd
Q2p dx = −d

2
m .

(43)

These follow by multiplying the equation (20) by Q and by x · ∇Q, respectively. This
gives the identity

m∫
Rd Q2p

= 1 − d

2

p − 1

p
= p − 1

p
κ. (44)

On the other hand, setting VQ := −Q2(p−1), we see that Q is an eigenvector of−�+VQ

(with corresponding eigenvalue −1), and, by optimality of VQ for L(1)
κ,d , we have

L(1)
κ,d = 1

∫
Rd |VQ |κ+ d

2

= 1∫
Rd Q2p

. (45)

Finally, it is well known that there is C > 0 so that

1

C

e−|x |

1 + |x | d−1
2

≤ Q(x) ≤ C
e−|x |

1 + |x | d−1
2

. (46)

4.2. Test potential for L(2)
κ,d . We now construct a test potential to find a lower bound for

L(2)
κ,d . For R > 0, we let

Q±(x) = Q
(
x ± R

2 e1
)

with e1 = (1, 0, . . . , 0). Inspired by the dual problem studied in the previous section,
we consider the potential

V = −
(

Q2
+ + Q2−

)p−1
.

It is important here that we add the two densities and not the corresponding potentials.
We do not see how to make our proof work if we would take V = −Q2(p−1)

+ − Q2(p−1)
−

instead.
We introduce the quantity

A = A(R) := 1

2

∫

Rd

(
(Q2

+ + Q2−)p − Q2p
+ − Q2p

−
)

dx > 0 . (47)

Due to the inequality (46), A goes (exponentially fast) to 0 as R goes to infinity. Our
main result is the following.
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Lemma 12. We have, as R → ∞,

L(2)
κ,d ≥ |λ1(−� + V )|κ + |λ2(−� + V )|κ

∫
Rd |V |κ+ d

2 dx
= L(1)

κ,d

(
1 +

κ

pm
A + o(A)

)
.

The proof of Theorem 2 follows as the leading correction is positive.

Proof. First, we bound A from below similarly to (42). Indeed, noting that the integrand
of A is nonnegative and bounding it from below using (46) in a neighbourhood of the
origin, we find

A ≥ 1

2

∫

B(0,1)

(
(Q2

+ + Q2−)p − Q2p
+ − Q2p

−
)

≥ c
e−pR

R p(d−1)
. (48)

Next, we turn to the denominator appearing in the lemma. We have
∫

Rd
|V |κ+ d

2 dx =
∫

Rd

(
Q2

+ + Q2−
)p = 2

∫

Rd
Q2p dx + 2A.

Together with (45), this gives

1
∫

Rd |V |κ+ d
2 dx

= 1

2

1∫
Rd Q2p

(
1 − A∫

Rd Q2p
+ O(A2)

)

= L(1)
κ,d

2

(
1 − A∫

Rd Q2p
+ O(A2)

)
.

Finally, we evaluate the numerator. We set E := E(R) = ∫
Rd Q+Q− dx . We have

E → 0 as R → ∞, so for R large enough, we have |E | < m, and the two functions
ψ(±) defined by

(
ψ(+)

ψ(−)

)
=

(
m E
E m

)−1/2 (
Q+
Q−

)

are orthonormal in L2(Rd). Let

H :=
(〈ψ(+), (−� + V )ψ(+)〉 〈ψ(+), (−� + V )ψ(−)〉

〈ψ(−), (−� + V )ψ(+)〉 〈ψ(−), (−� + V )ψ(−)〉
)

.

By the variational principle, the two lowest eigenvalues of −� + V are not larger than
the corresponding eigenvalues of H, and therefore

|λ1(−� + V )|κ + |λ2(−� + V )|κ ≥ Tr Hκ− .

We have

H = hI2 +

(
0 δ

δ 0

)
,

where

h := 〈ψ(+), (−� + V )ψ(+)〉 = 〈ψ(−), (−� + V )ψ(−)〉
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and

δ := 〈ψ(+), (−� + V )ψ(−)〉 = 〈ψ(−), (−� + V )ψ(+)〉 .

We have h → −1 and δ → 0 as R → ∞, and therefore

Tr Hκ− = 2|h|κ − κ|h|κ−1Tr

(
0 δ

δ 0

)
+ O(δ2) = 2|h|κ + O(δ2) .

It remains to expand h and to bound δ. We begin with h. We find

|∇ψ(+)|2 + |∇ψ(−)|2 = m

m2 − E2

(
|∇Q+|2 + |∇Q−|2

)
− 2E

M2 − E2∇Q+ · ∇Q−.

Integrating and using (20) gives
∫

Rd

(
|∇ψ(+)|2 + |∇ψ(−)|2

)
dx = −2 +

2m

m2 − E2

∫

Rd
Q2p dx

− E

m2 − E2

∫

Rd

(
Q2p−2

+ + Q2p−2
−

)
Q+Q− dx .

Similarly,

(ψ(+))2 + (ψ(−))2 = m

m2 − E2

(
Q2

+ + Q2−
)

− 2E

M2 − E2 Q+Q−

and therefore

h = 1

2

(
〈ψ(+), (−� + V )ψ(+)〉 + 〈ψ(−), (−� + V )ψ(−)〉

)

= −1 − m

m2 − E2 A +
E

m2 − E2 B ,

where A was defined in (47), and where

B = B(R) :=
∫

Rd
Q+Q−

(
(Q2

+ + Q2−)p−1 − 1

2

(
Q2p−2

+ + Q2p−2
−

))
dx .

From (46) and [GLN21, Lem. 21] we see that E(R) ≤ C ′ Rde−R and B(R) ≤
C ′ Rde−R . In particular, by (48) and the assumption p < 2, we have E2 = o(A) and
E B = o(A). This gives

|h|κ = (−h)κ = (1 + m−1A + o(A))κ = 1 + κm−1A + o(A) .

We see in a similar fashion that δ ≤ C ′ Rde−R hence δ2 = o(A) as well. Gathering all
the estimates gives

L(2)
κ,d ≥ L(1)

κ,d

(
1 +

(
κ − m∫

Rd Q2p

)
A

m
+ o(A)

)
= L(1)

κ,d

(
1 +

κ

pm
A + o(A)

)
,

where the last equality comes from (44). ��
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5. Non Existence of Minimisers for the Fermionic NLS: Proof of Theorems 7 and 8

In this section, we prove our results concerning the minimisation problem J (N ) which,
we recall, is defined by

J (N ) := inf
{
Tr(−�γ ) − 1

p

∫

Rd
ργ (x)p dx : 0 ≤ γ = γ ∗ ≤ 1, Tr(γ ) = N

}
. (49)

We assume in the whole section

1 < p < 1 +
2

d
.

After an appropriate scaling, and using the fact that Tr(γ ) = ‖γ ‖S1 , the optimal in-
equality E(γ ) ≥ J (N ) becomes

K̃ (N )
p,d ‖ργ ‖

2p
d(p−1)
p ≤ ‖γ ‖

d+2−dp
d(p−1)

S1 Tr(−�γ ),

valid for all 0 ≤ γ = γ ∗ ≤ 1 with Tr(γ ) = N , and with best constant

K̃ (N )
p,d :=

( |J (N )|
N

)− d+2−pd
d(p−1) 1

p − 1

(
d

2p

) 2
d(p−1)

(
1 +

2

d
− p

)− d+2−dp
d(p−1)

. (50)

One can remove the constraint ‖γ ‖ ≤ 1 at the expense of a factor ‖γ ‖d/2, and we obtain
the optimal inequality

K̃ (N )
p,d ‖ργ ‖

2p
d(p−1)
p ≤ ‖γ ‖

d+2−dp
d(p−1)

S1 ‖γ ‖ 2
d Tr(−�γ ), (51)

valid for all 0 ≤ γ = γ ∗ with Tr(γ ) = N .

5.1. Link between NLS and Lieb–Thirring, proof of Theorem 7. The link between the
constant K̃ (N )

p,d and the dual Lieb–Thirring constant K (N )
p,d defined in (11) is given in the

following proposition.

Proposition 13 (Relation between K̃ (N )
p,d and K (N )

p,d ). Let d ≥ 1 and 1 < p < 1 + 2
d . For

all N ∈ N we have
K (N )

p,d ≤ K̃ (N )
p,d ≤ K̃ (1)

p,d = K (1)
p,d . (52)

Proof. It is shown in [GLN21, Lemma 11] that the minimisation problem J (N ) can be
restricted to operators γ which are orthogonal projectors of rank N . For such operators,
we have ‖γ ‖ = 1 and

‖γ ‖q
Sq = Tr(γ q) = N = ‖γ ‖S1 = Rank(γ ).

This gives

K (N )
p,d ≤ ||γ ||

p(2−d)+d
d(p−1)

Sq Tr(−�γ )

∣∣∣∣ργ

∣∣∣∣
2p

d(p−1)

L p(Rd )

= ‖γ ‖
d+2−dp
d(p−1)

S1 ‖γ ‖ 2
d Tr(−�γ )

∣∣∣∣ργ

∣∣∣∣
2p

d(p−1)

L p(Rd )

.
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Optimising over projectors γ gives K (N )
p,d ≤ K̃ (N )

p,d . In the case N = 1, every operator of

rank 1 is proportional to a rank 1 projector, so the two problems coincide, and K̃ (1)
p,d =

K (1)
p,d . Finally, in [GLN21], it is also proved that J (N ) ≤ N J (1). This implies K̃ (N )

p,d ≤
K̃ (1)

p,d . ��
There is a similarity between the proof of the above proposition and the arguments

in [Ld78,FLST11]. In those works also the sharp Lieb–Thirring inequality for κ = 3/2
is used to obtain an inequality about orthonormal functions.

The relation (52) allows us to prove Theorem 7, which states that J (N ) = N J (1)
for all N ∈ N, and that J (N ) admits no minimiser for N ≥ 2.

Proof of Theorem 7. It was proved in [LT76] that for κ = 3/2, we have L3/2,1 =
L(N )
3/2,1 = L(1)

3/2,1 for all N ∈ N. This implies K (N )
2,1 = K (1)

2,1 for all N ∈ N. Hence,

by (52), also K̃ (N )
2,1 = K̃ (1)

2,1 for all N ∈ N and, finally, J (N ) = N J (1) thanks to the
explicit formula (50).

To prove that J (N ) has no minimiser for N ≥ 2, we assume by contradiction that
γ is one. By [GLN21, Proposition 16], γ is a rank N projector. In addition, since we
have equality in (52), γ is also an optimiser for K (N )

2,1 . But then, by Theorem 6, it is of

the form γ = c
∑N

j=1 |μ j |1/2 |u j 〉〈u j | for some c. We conclude that μ j = −1/c2 for
all j = 1, . . . , N which is impossible since the first eigenvalue μ1 of a Schrödinger
operator is always simple. ��
Remark 14. In dimension d = 1, a special case of the Lieb–Thirring conjecture [LT76]
states that

L(N )
κ,1 = L(1)

κ,1 for all κ ∈ (1, 3/2] and all N ≥ 1.

If true, this conjecture would imply by the same argument as in the previous proof that

J (N ) = N J (1) for all 2 ≤ p < 3 and all N ≥ 1, in dimension d = 1, (53)

and that the corresponding problems do not have minimisers for N ≥ 2. The weaker
conjecture (53) appeared in [GLN21].

5.2. Proof of Theorem 8: triviality of solutions for d = 1, p = 2 and N = 2. In this
subsection we prove Theorem 8: we show that the fermionic NLS equation (18) does
not have a solution in the one dimensional case with p = 2 and N = 2. We will make
use of the integrability of the equations. In the sequel, we study the ODE system

{
v′′
1 + 2(v21 + v22)v1 + μ1v1 = 0,

v′′
2 + 2(v21 + v22)v2 + μ2v2 = 0.

(54)

We added an extra factor 2 to obtain the same explicit formulas as in the literature. If
(u1, u2) is a real-valued ground state solution to (21), then (v1, v2) = 1√

2
(u1, u2) is a

real-valued solution to (54), which satisfies in addition ‖v1‖ = ‖v2‖ = 1
2 .

The key step in the proof of Theorem 8 is the following classification result for (54)
under an additional vanishing condition for v2.
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Lemma 15. Let μ1 ≤ μ2 < 0, and let (v1, v2) be a square integrable real-valued
solutions of the ODE (54) with v2(0) = 0. Then there are a1, a2 ∈ R such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v1(x) = a1eη1x

f (x)

(
1 +

a2
2

4η22

η1 − η2

η1 + η2
e2η2x

)
,

v2(x) = a2eη2x

f (x)

(
1 − a2

1

4η21

η1 − η2

η1 + η2
e2η1x

)
,

(55)

where

f (x) = 1 +
a2
1

4η21
e2η1x +

a2
2

4η22
e2η2x +

a2
1a2

2

16η21η
2
2

(η1 − η2)
2

(η1 + η2)2
e(2η2+2η1)x

and η1 := √|μ1|, η2 := √|μ2|.
In fact, if a2 �= 0, the condition v2(0) = 0 fixes the value

a1 = ±2η1

(
η1 + η2

η1 − η2

)1/2

. (56)

Proof. We proceed in two steps. First, we show that the functions (55) are solutions and
then we prove that they cover all possible initial data for v1(0), v′

1(0) and v′
2(0). By

uniqueness of the solution of an initial value problem the result follows.
For the first point, checking the equation is simply a computation. For the convenience

of the reader we quickly recall how to find the formulas (55). Following [RL95] which
uses Hirota’s bilinearisation method [Hir80], we write

v1 = g

f
, and v2 = h

f
.

With this change of variable, we see that (54) can we written as
{

f 2
(

f g′′ + f ′′g − 2 f ′g′ + μ1 f g
)
+ 2 f g

(| f ′|2 − f f ′′ + g2 + h2
) = 0,

f 2
(

f h′′ + f ′′h − 2 f ′h′ + μ2 f h
)
+ 2 f h

(| f ′|2 − f f ′′ + g2 + h2
) = 0.

We seek solutions that satisfy
⎧
⎪⎨

⎪⎩

f g′′ + f ′′g − 2 f ′g′ + μ1 f g = 0,
f h′′ + f ′′h − 2 f ′h′ + μ2 f h = 0,
| f ′|2 − f f ′′ + g2 + h2 = 0.

With Hirota’s notation, this is of the form

D( f, g) + μ1 f g = 0, D( f, h) + μ2 f h = 0, D( f, f ) = 1

2
(g2 + h2),

with the bilinear form D(u, v) := uv′′+u′′v−2u′v′.We nowmake the formal expansion
g = χg1 + χ3g3, h = χh1 + χ3h3 and f = 1 + χ2 f2 + χ4, and we solve the cascade of
equations in powers of χ . We first obtain (setting η1 := √|μ1| and η2 := √|μ2|)

g1 = a1e
η1x , h1 = a2e

η2x ,
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where a1 and a2 are two arbitrary constants. After some computation, we get (see also
[RL95]),

f2 = a2
1

4η21
e2η1x +

a2
2

4η22
e2η2x ,

then

g3 =
(

a1a2
2

4η22

η1 − η2

η1 + η2

)
e(2η2+η1)x , h3 = −

(
a2
1a2
4η21

η1 − η2

η1 + η2

)
e(2η1+η2)x

and finally

f4 = a2
1a2

2

16η21η
2
2

(η1 − η2)
2

(η1 + η2)2
e(2η2+2η1)x .

This is the solution in Lemma 15. The condition v2(0) = 0 gives the value of a1 in (56).
Let us now prove that all square integrable solutions with v2(0) = 0 are of this form.

In fact, instead of square integrability we will assume that v j and v′
j tend to zero at

infinity for j = 1, 2. It is not hard to deduce this property from the assumption that the
solution is square integrable.

For the proof we will assume that v′
2(0) �= 0, for otherwise v2 = 0 everywhere and

the result is well-known (and easy to prove by a variation of the arguments that follow,
using only (57a) below).

Any solution (v1, v2) that decays at infinity has two constants of motion

(v21 + v22)
2 + |v′

1|2 + |v′
2|2 + μ1v

2
1 + μ2v

2
2 = 0, (57a)

(v21 + v22)(μ1v
2
2 + μ2v

2
1 + μ1μ2) + (v1v

′
2 − v′

1v2)
2 + μ2|v′

1|2 + μ1|v′
2|2 = 0. (57b)

To obtain identity (57a) we multiply the first and second equation in (54) by v′
1 and

v′
2, respectively, add the resulting identities and then integrate using the fact that the
solutions and their derivatives vanish at infinity. The fact that there is a second identity
(57b) reflects the integrability of the system [Man74].

Evaluating (57) at x = 0 and using v′
2(0) �= 0, we deduce that

v1(0)
2 = μ2 − μ1 and v′

1(0)
2 + v′

2(0)
2 = −μ2 (μ2 − μ1) .

Thus, the value of v1(0) is determined, up to a sign, by μ1 and μ2 and we have

v′
1(0)

2 < −μ2(μ2 − μ1) = η22

(
η21 − η22

)
.

The assumption v′
2(0) �= 0 also shows that −μ2(μ2 − μ1) > 0, hence μ2 �= μ1 and

therefore also v1(0) �= 0.
Let (ṽ1, ṽ2) be a solution of the form (55). The absolute value of a1 is fixed by (56).

We will now show that the sign of a1 as well as the number a2 can be determined in such
a way that ṽ j (0) = v j (0) and ṽ′

j (0) = v′
j (0) for j = 1, 2. Once we have shown this,

ODE uniqueness implies that ṽ j = v j for j = 1, 2, which is what we wanted to prove.
Since v1(0) �= 0, we can choose the sign of a1 in (56) such that sgn a1 = sgn v1(0).

Note that, independently of the choice of a2, we have sgn ṽ1(0) = sgn a1. This, together
with ṽ1(0)2 = μ2 − μ1 = v1(0)2, implies that ṽ1(0) = v1(0).
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It remains to choose a2. A tedious but straightforward computation yields

ṽ′
1(0) = − a1

|a1|η2
√

η21 − η22
4η22(η1 + η2) − a2

2(η1 − η2)

4η22(η1 + η2) + a2
2(η1 − η2)

.

The last quotient on the right side is a decreasing function of a2
2 from [0,∞] to [−1, 1].

Thus, there is an a2
2 ∈ (0,∞) such that ṽ′

1(0) = v′
1(0). This determines the abso-

lute value of a2. To determine its sign, we note that the identities ṽ′
1(0)

2 + ṽ′
2(0)

2 =
−μ2 (μ2 − μ1) = v′

1(0)
2 + v′

2(0)
2 and ṽ′

1(0) = v′
1(0) imply that ṽ′

2(0)
2 = v′

2(0)
2.

Thus, we can choose the sign of a2 in such a way that ṽ′
2(0) = v′

2(0).
This shows that we can indeed find a1 and a2 such that ṽ j (0) = v j (0) and ṽ′

j (0) =
v′

j (0) for j = 1, 2. As explained before, this implies the result. ��
We will also need the following lemma in the proof of Theorem 8.

Lemma 16. If (v1, v2) is a solution of the form (55) of Lemma 15, then ‖v1‖2 = 2η1
and ‖v2‖2 = 2η2. In particular, we can have ‖v1‖ = ‖v2‖ only if μ1 = μ2.

Proof. With the notation of Lemma 15, a computation reveals that

v1(x)2 = −
⎛

⎜⎝

a22η1
2η22

e2η2x + 2η1

f (x)

⎞

⎟⎠

′

while v2(x)2 = −
⎛

⎜⎝

a21η2
2η21

e2η1x + 2η2

f (x)

⎞

⎟⎠

′

.

Integrating gives

∫

R

v21 = −
⎡

⎢⎣

a22η1
2η22

e2η2x + 2η1

f (x)

⎤

⎥⎦

∞

−∞

= 2η1 and similarly
∫

R

v22 = 2η2,

as wanted. ��
Proof of Theorem 8. As explained before Lemma 15, it is enough to consider solutions
(v1, v2) of (54) with ‖v1‖ = ‖v2‖ = 1

2 .
The equations (54) mean that the numbers μ1 and μ2 are negative eigenvalues of the

operator −∂2xx − 2(v21 + v22). It is easy to see that the latter operator is bounded from
below and its negative spectrum is discrete. Therefore it has a lowest eigenvalue μ0. Let
v0 be a corresponding eigenfunction, normalised by ‖v0‖ = 1

2 . It is well-known that
the eigenvalue μ0 is non-degenerate and that v0 can be chosen positive. In particular, if
v is a square integrable real valued solution to −v′′ − 2(v21 + v22)v = μv which never
vanishes, then necessarily μ = μ0.

We claim that μ1 = μ2 = μ0. To prove this, we may assume that μ1 ≤ μ2 < 0.
In the case where v2 never vanishes, the above remark gives μ2 = μ0. Since μ0 is the
lowest eigenvalue and since μ1 ≤ μ2, this also yields μ1 = μ0. In the opposite case
where v2 does vanish at some point we can, after a translation, apply Lemma 15. We
deduce that v1 does not vanish, hence μ1 = μ0. Moreover, applying Lemma 16, we
conclude that μ1 = μ2. This proves the claim.

It follows from the equalityμ1 = μ2 = μ0, the simplicity ofμ0 and the normalisation
that v21 = v22. In particular, v1 and v2 both satisfy v′′

j + 4v3j + μ0v j = 0. By uniqueness
of the solution to the equation up to translations, this gives (22) for some x0 ∈ R and
a sign ±. Since v21 = v22 the x0’s for the two functions coincide, while the signs are
independent. This completes the proof of the theorem. ��
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Appendix A. Proof of Lemma 5

The proof of Lemma 5 splits naturally into two parts. We first deduce (11) from (1). We
write our operator γ in the form

γ =
N∑

j=1

n j |u j 〉〈u j |, so that ργ (x) =
N∑

j=1

n j |u j |2(x),

where (u1, . . . , uN ) forms an orthonormal system. The inequality (11) which we wish
to prove therefore reads

N∑

j=1

n j‖∇u j‖2 ≥ K (N )
d,p

(∫

Rd
ρ p

γ dx

) 2
d(p−1)

⎛

⎝
N∑

j=1

nq
j

⎞

⎠
− 2

d(p−1)+1

. (58)

For a constant β > 0 to be determined, let

V (x) = −βρ p−1
γ .

For κ ≥ 1 we use Hölder’s inequality in Schatten spaces [Sim05] in the form

TrAB ≥ −
(

N∑

n=1

λn(A)κ−

) 1
κ (

TrBκ ′) 1
κ′

http://creativecommons.org/licenses/by/4.0/
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for all B ≥ 0 of rank ≤ N . Applying this with A = −� + V and B = γ we obtain, in
view of (1),

N∑

j=1

n j

∫

Rd
|∇u j |2 dx − β

∫

Rd

⎛

⎝
N∑

j=1

n j |u j |2
⎞

⎠
p

dx =
N∑

j=1

n j

∫

Rd

(
|∇u j |2 + V |u j |2

)
dx

≥ −
⎛

⎝
N∑

j=1

nκ ′
j

⎞

⎠

1
κ′ ⎛

⎝
N∑

j=1

∣∣λ j (−� + V )
∣∣κ
⎞

⎠

1
κ

≥ − ||γ ||Sκ′
(

L(N )
κ,d

∫

Rd
V (x)

κ+ d
2− dx

) 1
κ

= − ||γ ||Sκ′
(

L(N )
κ,d

) 1
κ

β1+ d
2κ

(∫

Rd
ρ

(p−1)
(
κ+ d

2

)
γ dx

) 1
κ

.

We optimise in β by choosing

β =

⎛

⎜⎜⎝
2κ

2κ + d

∫
Rd ρ

p
γ dx

||γ ||Sκ′
(

L(N )
κ,d

) 1
κ
(∫

Rd ρ
(p−1)(κ+d/2)
γ dx

) 1
κ

⎞

⎟⎟⎠

2κ
d

and obtain

N∑

j=1

n j

∫

Rd
|∇u j |2 dx ≥

(
2κ

2κ + d

) 2κ
d d

2κ + d

(∫
Rd ρ

p
γ dx

)1+ 2κ
d

‖γ ‖
2κ
d

Sκ′
(

L(N )
κ,d

) 2
d
(∫

Rd ρ
(p−1)(κ+ d

2 )
γ dx

) 2
d

.

We now choose κ = p′ − d/2, which is > 1 since p < 1 + 2/d and which ensures that
(p − 1)(κ + d/2) = p. Thus,

N∑

j=1

n j

∫

Rd
|∇u j |2 dx ≥

(
2p′ − d

2p′

) 2p′
d −1 d

2p′

(∫
Rd ρ

p
γ dx

) 2
d(p−1)

‖γ ‖
2p′
d −1

Sκ′
(

L(N )

p′−d/2,d

) 2
d

.

Therefore, the best constant K (N )
d,p in (58) satisfies

K (N )
d,p ≥

(
2p′ − d

2p′

) 2p′
d −1 d

2p′
1

(
L(N )

p′−d/2,d

) 2
d

.

Conversely, assume that inequality (58) holds and let V ∈ Lκ+d/2(Rd). We assume that
−� + V has at least N negative eigenvalues, the other case being handled similarly. Let
u1, . . . , uN be orthogonal eigenfunctions corresponding to the N lowest eigenvalues of
−� + V and let

γ =
N∑

j=1

n j |u j 〉〈u j |, n j = |λ j (−� + V )|κ−1 ,
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so that

Tr(−� + V )γ =
N∑

j=1

n j λ j (−� + V ) = −
N∑

j=1

|λ j (−� + V )|κ .

We have, for p such that p′ = κ + d
2 ,

N∑

j=1

|λ j (−� + V )|κ = −
N∑

j=1

n j

∫

Rd

(
|∇u j |2 + V |u j |2

)
dx

≤ −K (N )
d,p

(∫

Rd
ρ p

γ dx

) 2
d(p−1)

⎛

⎝
N∑

j=1

nκ ′
j

⎞

⎠
− 2

d(p−1)+1

+ ‖V−‖p′
∥∥ργ

∥∥
p .

Setting x := ‖ρ‖p, this is of the form−αx
2p

d(p−1) +βx , with 2p
d(p−1) > 1. So it is bounded

from above by

N∑

j=1

|λ j (−� + V )|κ ≤
(

K (N )
d,p

)− d(p−1)
2 (d+p−dp)

(
d

2p′

) d
2p′−d

(
2p′ − d

2p′

)

×
(∫

Rd
V p′

− dx

) 2
2p′−d

⎛

⎝
N∑

j=1

nκ ′
j

⎞

⎠

2−d(p−1)
2p−d(p−1)

.

Recall that

nκ ′
j = |λn(−� + V )|κ

and therefore the above inequality becomes

N∑

j=1

|λ j (−� + V )|κ ≤
(

K (N )
d,p

)− d
2
(

d

2p′

) d
2
(
2p′ − d

2p′

) 2p′−d
2

∫

Rd
V p′

− dx .

Therefore the best constant L(N )
κ,d in (1) satisfies

L(N )
κ,d ≤

(
K (N )

d,p

)− d
2
(

d

2p′

) d
2
(
2p′ − d

2p′

) 2p′−d
2

.

This proves the lemma. ��
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Appendix B. Comments on the NLS Model and its Dual

This appendix contains some additional comments on the minimisation problem J (λ)

in (49) studied in [GLN21]. The latter was considered for λ ∈ R+ instead of just λ =
N ∈ N. It is equivalent to the inequality

K̃ (λ)
p,d

(∫

Rd
ργ (x)p dx

) 2
d(p−1) ≤

(
Tr(γ )

) d+2−dp
d(p−1) ‖γ ‖ 2

d Tr(−�γ ),

for all 1 ≤ p ≤ 1 +
2

d
(59)

with Tr(γ ) ≤ λ, which is a particular interpolation between the trace formula ‖γ ‖S1 =
Tr(γ ) = ‖ργ ‖1, and the Lieb–Thirring inequality (36) at p = 1 + 2/d. As discussed in

Sect. 1.2, another interpolation involving the Schatten space norm ‖γ ‖
d+2−dp
d(p−1) +

2
d

q instead

of ||γ ||
d+2−dp
d(p−1)
1 ‖γ ‖ 2

d is the dual Lieb–Thirring inequality (14).

B.1. An inequality with no optimiser. Optimising (59) over all possible λ’s, we arrive at
the inequality without constraints

K̃ p,d

(∫

Rd
ργ (x)p dx

) 2
d(p−1) ≤

(
Tr(γ )

) d+2−dp
d(p−1) ‖γ ‖ 2

d Tr(−�γ ), (60)

for all γ = γ ∗ ≥ 0, with the best constant

K̃ p,d :=
(
sup
λ>0

|J (λ)|
λ

)− d+2−dp
d(p−1) 1

p − 1

(
d

2p

) 2
d(p−1)

(
1 +

2

d
− p

)− d+2−dp
d(p−1)

. (61)

We recall from [GLN21, Section 1.3] that

sup
λ

|J (λ)|
λ

= lim
λ→∞

|J (λ)|
λ

< ∞.

From the results in [GLN21] we can deduce that the inequality (60) has no optimiser.

Lemma 17. Let d ≥ 1 and 1 < p < min(2, 1 + 2/d). Then K̃ p,d < K̃ (λ)
p,d for all λ > 0.

In particular, the inequality (60) admits no optimiser.

Proof. It was shown in [GLN21, Corollary 22] that J (λ)/λ is always above its limit.
Therefore K̃ p,d < K̃ (λ)

p,d and there cannot be an optimiser with finite trace. ��
We believe that the optimisers of K̃ (N )

p,d converge in the limit N → ∞ to periodic or
translation-invariant operators, as discussed at the end of Sect. 1.1 and in [GLN21].

Remark 18. (Monotonicity in p) By Hölder’s inequality, for any γ = γ ∗ ≥ 0 the
function

p �→
(∫

Rd
ργ (x)p dx

) 2
d(p−1)

(∫

Rd
ργ (x) dx

)− 2
d(p−1)
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is non-decreasing. This implies that p �→ K̃ p,d is non-increasing on the interval (1, 1 +
2/d). In particular, since K̃ sc

p,d = K sc
1+2/d,d is independent of p (see Sec. B.4), we deduce

that if K̃ p,d = K̃ sc
p,d for some p = p0, then the same equality holds for all 1 < p ≤ p0.

This generalises the observation in [GLN21] that if the standardLieb–Thirring conjecture
holds for κ = 1 (that is, K̃ p,d = K̃ sc

p,d for p = 1 + 2/d), then K̃ p,d = K̃ sc
p,d for all

1 < p < 1 + 2/d.

B.2. Dual inequality. A natural question is to determine the inequality dual to (60). This
is the object of the following lemma.

Lemma 19 (Dual formulation of (60)). Let d ≥ 1 and let κ > 1 and p < 1 + 2/d be
related by p′ = κ + d/2. Then (60) is equivalent to the inequality

Tr(−� + V + τ)− ≤ L̃κ,d τ 1−κ

∫

Rd
V

κ+ d
2− dx, (62)

valid for all τ > 0 and all V ∈ Lκ+ d
2 (Rd), in the sense that the best constants are

related by

K̃ p,d L̃
2
d
κ,d =

(
1 − d(p − 1)

2

) d+2−dp
d(p−1) d

2

(p − 1)
2+d

d

p
2p

d(p−1)

= d

2

(κ − 1)
2
d (κ−1)

(κ + d
2 )

2
d κ+1

. (63)

Proof. Assume that (62) holds and let 0 ≤ γ ≤ 1 of finite kinetic energy. Set λ := Tr(γ )

and ρ := ργ . Then, for all τ > 0 and all 0 ≥ V ∈ Lκ+ d
2 (Rd), from (62) with the

abbreviation L := L̃ p′−d/2,d we have

Tr(−�γ ) = Tr(−� + V + τ)γ −
∫

Rd
Vρ dx − τλ

≥ −Lτ−κ+1
∫

Rd
V

κ+ d
2− dx +

∫

Rd
V−ρ dx − τλ .

We first optimise in V by taking

V = − 1

L p−1

(p − 1)p−1

p p−1 τ (κ−1)(p−1)ρ p−1,

and obtain

Tr(−�γ ) ≥ (p − 1)p−1

p p

1

L p−1 τ (κ−1)(p−1)
∫

Rd
ρ p dx − τλ.

We then optimise in τ by taking (note that (κ − 1)(p − 1) = 1− d
2 (p − 1) ∈ (0, 1), so

the function is indeed bounded from above)

τ = 1

λ
2

d(p−1)

(
1 − d(p − 1)

2

) 2
d(p−1) (p − 1)

2
d

p
2p

d(p−1)

1

L
2
d

(∫

Rd
ρ p dx

) 2
d(p−1)

,
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and we obtain finally

Tr(−�γ ) ≥ 1

λ
d+2−dp
d(p−1)

1

L
2
d

(
1 − d(p − 1)

2

) d+2−dp
d(p−1) d

2

(p − 1)
2+d

d

p
2p

d(p−1)

(∫

Rd
ρ p dx

) 2
d(p−1)

.

Comparing with (60) shows the first bound

K̃ p,d L
2
d ≥

(
1 − d(p − 1)

2

) d+2−dp
d(p−1) d

2

(p − 1)
2+d

d

p
2p

d(p−1)

.

Conversely, assume that (60) holds and let V ∈ Lκ+ d
2 (Rd) and τ > 0. We set γ =

1(−�+V + τ < 0), ρ = ργ and λ = Tr(γ ). We obtain, from (60) with the abbreviation
K = K̃ p,d ,

Tr(−� + V + τ)− = −Tr(−� + V + τ)γ = −Tr(−�γ ) −
∫

Rd
Vρ dx − τλ

≤ −K
1

λ
d+2−dp
d(p−1)

(∫

Rd
ρ p dx

) 2
d(p−1)

+
∫

Rd
V−ρ dx − τλ .

Seen as a function of λ, the right-hand side is smaller than its maximum, attained for

λ =
(

2

d(p − 1)
− 1

) d(p−1)
2

(
K

τ

) d(p−1)
2

∫

Rd
ρ p dx ,

so

Tr(−� + V + τ)− ≤
∫

Rd
V−ρ dx

− 2

d(p − 1)

(
2

d(p − 1)
− 1

) d(p−1)
2 −1

K
d(p−1)

2 τ1−
d(p−1)

2

∫

Rd
ρ p dx .

Now, seen as a function of ρ, it is again smaller than its maximum. We deduce that
(recall that κ = p

p−1 − d
2 = 1 + 1

p−1 + d
2 )

Tr(−� + V + τ)−

≤
(

d

2

) 1
p−1

(
2

d(p − 1)
− 1

) d+2−dp
2(p−1)

(
p − 1

p

) p
p−1 1

K
d
2

τ 1−κ

∫

Rd
V

κ+ d
2− dx .

Comparing with (62) shows that

L̃κ,d K
d
2 ≤

(
d

2

) 1
p−1

(
2

d(p − 1)
− 1

) d+2−dp
2(p−1) (p − 1)

p
p−1

p
p

p−1

=
(

d

2

) d
2
(
1 − d(p − 1)

2

) d+2−dp
2(p−1) (p − 1)1+

d
2

p
p

p−1
.

This proves the lemma. ��
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B.3. Weak Lieb–Thirring inequalities. The dual inequality (62) provides an estimate on
the quantity

sup
τ>0

{
τκ−1Tr(−� + V + τ)−

}
= sup

τ>0

⎧
⎨

⎩τκ−1
∑

n≥1

(
λn(−� + V ) + τ

)

−

⎫
⎬

⎭ . (64)

A natural question is to ask how this supremum compares with

Tr(−� + V )κ− =
∑

n≥1

|λn(−� + V )|κ

appearing in the usual Lieb–Thirring inequality. In this subsection we show that (64) is
equivalent to the weak �κ norm of the negative eigenvalues of−�+V . In this sense (62)
is weaker than the ordinary Lieb–Thirring inequality for κ , which bounds the (strong)
�κ norm of the eigenvalues. The results of this subsection concern the ‘analytic content’
of the inequalities and ignore, at least to some extent, the question of sharp constants.
Let X be a measure space and p > r ≥ 0. For a measurable function f we set

[ f ]′p,r := sup
τ>0

{
τ
1− r

p

(∫

X
(| f | − τ)r

+ dx

) 1
p
}

.

When r = 0, we get

[ f ]′p,0 = sup
τ>0

τ |{| f | > τ }|1/p

which is the standard quasinorm in weak L p. Actually, it turns out that for all 0 ≤ r < p,
[ f ]′p,r is an equivalent quasinorm in this space.

Lemma 20. If p > r ≥ 0, then for any measurable f on X,

(
(p − r)p−r rr

p p

) 1
p

[ f ]′p,0 ≤ [ f ]′p,r ≤
(

�(p − r) �(r + 1)

�(p)

) 1
p [ f ]′p,0 .

Proof. We set λ(σ) := |{| f | > σ }| for brevity. First, for any σ > τ , we have the
inequality

1{| f |>σ } ≤ 1{| f |>σ }
( | f | − τ

σ − τ

)r

≤ 1{| f |>τ }
( | f | − τ

σ − τ

)r

.

Integrating gives the inequality

λ(σ) ≤ 1

(σ − τ)r

∫

X
(| f | > τ)r

+ dx ≤ 1

τ p−r (σ − τ)r

(
[ f ]′p,r

)p
.

We optimise in τ by choosing τ =
(

p−r
p

)
σ , and obtain that

σ pλ(σ) ≤ p p

(p − r)p−r rr

(
[ f ]′p,r

)p
.



The nonlinear Schrödinger equation 1821

which is the first bound. Conversely, we use the identity

(| f | − τ)r
+ = r

∫ ∞

τ

1{| f |>σ }(σ − τ)r−1 dσ.

Integrating over X gives

τ p−r
∫

X
(| f | − τ)r

+ dx = rτ p−r
∫ ∞

τ

λ(σ )(σ − τ)r−1 dσ . (65)

Estimating λ(σ) ≤ σ−p
(
[ f ]′p,0

)p
we obtain

τ p−r
∫

X
(| f | − τ)r

+ dx ≤ r
(
[ f ]′p,0

)p
∫ ∞

1

(s − 1)r−1

s p
ds =

(
[ f ]′p,0

)p r �(p − r) �(r)

�(p)
,

which is the second bound. ��
Note that if λn(−�+V ) denote the negative eigenvalues of−�+V , repeated according
to multiplicities, then

sup
τ>0

τκ−1Tr(−� + V + τ)κ− = (
[λ·(−� + V )]′κ,1

) 1
κ .

Thus, combining Lemmas 19 and 20 , we obtain

Corollary 21 (WeakLieb–Thirring inequality). Inequalities (62)and (60)are equivalent
to the inequality

∣∣∣∣

∣∣∣∣
(
λn(−� + V )

)

n≥1

∣∣∣∣

∣∣∣∣
κ

�κ
w

�
∫

Rd
V (x)

κ+ d
2− dx

for all V ∈ Lκ+ d
2 (Rd).

The equivalence claimed in this corollary is weaker than that in Lemma 19 since the
(not displayed) constant depends on the choice of the norm in �κ

w.

B.4. Semiclassical constants. It was proved in [GLN21, Lemma 10] that K̃ p,d is not
larger than its semiclassical counterpart, which is independent of p and given by the
p = 1 + 2/d semi-classical constant

K̃ sc
d = K sc

1+2/d,d = 4π2d

d + 2

(
d

|Sd−1|
) 2

d

.

Together with Proposition 13, we obtain

K p,d ≤ K̃ p,d ≤ K̃ sc
d .

In the dual picture, we have a similar result:
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Lemma 22. For all κ ≥ 1, we have

(κ − 1)κ−1

κκ
Lκ,d ≥ L̃κ,d ≥ L̃sc

κ,d , (66)

where the semi-classical constant L̃sc
κ,d is defined by

L̃sc
κ,d := (κ − 1)(κ−1)(1 + d

2 )1+
d
2

(κ + d
2 )κ+

d
2

Lsc
1,d (67)

with the semiclassical constant Lsc
1,d at κ = 1 given by (4).

Proof. Both inequalities in (66) follow from the explicit formulas (13) and (63). ��
Remark 23 (The semi-classical constant). We show here that the constant L̃sc

κ,d has an
interpretation in terms of a semiclassical limit, thereby justifying its name. Because of
the second inequality in (66), this argument shows that the considered scenario is in

a certain sense dual to that considered in [GLN21]. For any V ∈ Lκ+ d
2 (Rd) and any

τ > 0, we have

τκ−1Tr(−�
2� + V + τ)− ∼

�→0
τκ−1

�
−d Lsc

1,d

∫

Rd
(V + τ)

1+ d
2− dx .

On the other hand, by inequality (62),

τκ−1Tr(−�
2� + V + τ)− = �

2κ(�−2τ)κ−1Tr(−� + �
−2V + �

−2τ)−

≤ �
2κ L̃κ,d

∫

Rd

(
�

−2V
)κ+ d

2

− dx = �
−d L̃κ,d

∫

Rd
V

κ+ d
2− dx .

This shows that

τκ−1
∫

Rd
(V + τ)

1+ d
2− dx ≤ L̃κ,d

Lsc
1,d

∫

Rd
V

κ+ d
2− dx .

Taking the supremum in τ shows that

[
V−

]′
κ+ d

2 ,1+ d
2

≤
(

L̃κ,d

Lsc
1,d

) 1
κ+ d

2 ‖V−‖
Lκ+ d

2
.

According to the optimality statement in the following lemma, we have

(
L̃κ,d

Lsc
1,d

) 1
κ+ d

2 ≥
(

(κ − 1)κ−1 (1 + d
2 )1+

d
2

(κ + d
2 )κ+

d
2

) 1
κ+ d

2
.

This proves, once again, the second inequality in (66) and shows how this inequality is
related to a semiclassical limit.
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Lemma 24. Let X be a measure space, p > r ≥ 0 and f ∈ L p(X). Then

[ f ]′p,r ≤
(

(p − r)p−r rr

p p

) 1
p

‖ f ‖p .

The constant on the right side is best possible.

Proof. We first recall that
∫

X
| f |p dx = p

∫ ∞

0
λ(σ)σ p−1 dσ.

Together with (65) (note that we may assume r > 0 by continuity) we need to prove
that

rτ p−r
∫ ∞

τ

λ(σ )(σ − τ)r−1 dσ ≤ (p − r)p−r rr

p p
p
∫ ∞

0
λ(σ)σ p−1 dσ .

We write λ = ∫ ∞
0 1{λ>b} db and, since λ is non-increasing, for any b > 0 the function

1{λ>b} is the characteristic function of an interval with left endpoint at zero. Thus, it
suffices to prove the above inequality for such characteristic functions. A computation
shows that

rτ p−r
∫ ∞

τ

1[0,a)(σ )(σ − τ)r−1 dσ = τ p−r (a − τ)r
+

and

p
∫ ∞

0
1[0,a)(σ )σ p−1 dσ = a p .

Thus, the inequality follows from the elementary equality

sup
a>0

τ p−r (a − τ)r
+ = (p − r)p−r rr

p p
a p .

There is equality when f is a characteristic function and τ is chosen appropriately. This
proves Lemma 24. ��
Remark 25. We wonder whether for all d ≥ 1 and all κ ≥ 3

2 , we have the equality
L̃κ,d = L̃sc

κ,d . This would be the analogue of the equality Lκ,d = Lsc
κ,d [LW00]. We

have the following rather tight bounds. Thanks to the explicit formulas (67) and (4), one

can numerically plot the two curves κ �→ L̃sc
κ,d and κ �→ (κ − 1)κ−1

κκ
Lsc

κ,d . As stated in

Lemma 22, the two curves coincide at κ = 1, but for all κ > 1, it appears that

0 <
(κ − 1)κ−1

κκ
Lsc

κ,d − L̃sc
κ,d <

⎧
⎪⎨

⎪⎩

0.004 for d = 1,
0.0009 for d = 2,
0.0002 for d = 3.

In the region κ ≥ 3/2 where Lκ,d = Lsc
κ,d [LW00], we deduce that |L̃κ,d − L̃sc

κ,d | is
smaller than the constants above.
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Fig. 2. Graphical representation of the validity and existence of optimisers for Lieb–Thirring-type inequalities

in the form
∣∣∣∣ργ

∣∣∣∣
L p(Rd )

≤ C‖γ ‖α ||γ ||β1
∣∣∣∣√−�γ

√−�
∣∣∣∣1−α−β

1 . We deal in [GLN21] and this paper with
the right edge where α, β > 0. There is no optimiser without an additional trace constraint. Existence of
optimisers was proved on the left edge where β = 0 in [HKY19]. The horizontal edge coincides with the
Gagliardo–Nirenberg inequality, with α = 0. Minimisers exist and are all rank-one. In dimension d ≥ 3, the
Sobolev inequality has a formal rank-one optimiser. For d = 3, 4, however, it is not bounded on L2(Rd ) since
the associated function is not in L2(Rd ). It is expected that a minimiser exists for the Lieb–Thirring inequality
only in dimension d = 1, where it should be rank-one. In dimension d = 1, our study is limited to p < 2

Appendix C. An inequality on the Other Side of the Lieb–Thirring Exponent

In this section we would like to compare our inequality (60) with the following related
inequality,

K ′
p,d

∣∣∣∣ργ

∣∣∣∣
2p

d(p−1)

L p(Rd )
≤ ‖γ ‖ d−(d−2)p

d(p−1) Tr(−�γ ),

1 +
2

d
≤ p < 1 +

2

d − 2
, d ≥ 3. (68)

This inequality remains valid in dimensions d = 1, 2, with 1/(d − 2) replaced by +∞.
Note that the exponent p in (68) lies on the other side of the Lieb–Thirring exponent,
compared to the situation considered in this paper. Inequality (68) appears in [LL86,
Eq. (3.7)] for p = 2 and d = 3.
The proof of (68) in dimension d ≥ 3 is simple. Indeed, the Hoffmann-Ostenhof [HH77]
inequality (38) together with the Sobolev inequality give

S d
d−2 ,d

∣∣∣∣ργ

∣∣∣∣
L

d
d−2 (Rd )

≤ Tr(−�γ ) for all d ≥ 3 and all γ = γ ∗ ≥ 0. (69)

UsingHölder’s inequality and theLieb–Thirring inequality (36) (with constant K1+2/d,d =
infN K (N )

1+2/d,d > 0) we obtain (68).
Our inequality (60) interpolates with respect to p between the Lieb–Thirring inequality
and the trace equality ‖γ ‖S1 = Tr(γ ) = ‖ργ ‖1. In contrast, inequality (68) interpolates
between the Lieb–Thirring inequality (36) and the Sobolev inequality (69). The situation
is summarized in Fig. 2.
An interesting difference between (60) and (68) arises when one considers the question
of existence of minimizers. Recall fromLemma 17 that (60) never has optimisers. On the
other hand, in [HKY19] the existence of optimisers for (68) was proved when 1+2/d <
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p < 1+2/(d −2). When normalised in the manner ‖γ ‖ = 1 and Tr(−�γ ) = θ
∫

Rd ρ
p
γ ,

these optimisers were shown in [HKY19, Thm. 2] to solve the equation

γ = 1(−∞,0)

(
−� − ρ p−1

γ

)
+ δ, with 0 ≤ δ = δ∗ ≤ 1{0}

(
−� − ρ p−1

γ

)
. (70)

In otherwords, γ is the orthogonal projection onto all the negative eigenfunctions, except
possibly on the kernel of −� − ρ

p−1
γ . If these optimisers γ have a finite rank N (they

do for d ≥ 3 and p large enough), then they must be NLS ground states in the sense of
[GLN21].
We now slightly refine the result in [HKY19] by showing that the operator −� − ρ

p−1
γ

has no zero eigenvalues and, in particular, one has δ = 0 in (70).

Proposition 26. Let 1 + 2
d < p < ∞ if d = 1, 2 and 1 + 2

d < p < 1 + 2
d−2 and let γ be

an optimiser for (68), normalised so that ‖γ ‖ = 1 and Tr(−�γ ) = θ
∫

Rd ρ
p
γ . Then

ker
(
−� − ρ p−1

γ

)
= {0} .

Proof. We begin by proving that δ = 0 in (70). We denote by u j and μ j the eigenfunc-

tions and eigenvalues of −� − ρ
p−1
γ and by n j the corresponding eigenvalues of γ .

From (70) we know that n j = 1 if μ j < 0. By arguing as in (40), we have the estimate

μ j ≤ θ
∫

Rd ρ
p
γ

n j

⎛

⎝1 − n j

θ
∫

Rd ρ
p
γ

∫

Rd
ρ p−1

γ |u j |2 −
(∫

Rd (ργ − n j |u j |2)p

∫
Rd ρ

p
γ

) 1
θp
⎞

⎠ (71)

with θ = d/(2p′) ∈ (1/p, 1). We claim that the right side is negative, which yields
μ j < 0, that is, δ ≡ 0 in (70). To see this, we remark that for any f ≥ 0 and any
probability measure P, we have by Hölder’s inequality twice

∫
f dP ≤

(∫
f p dP

) 1
p ≤ θ

(∫
f p dP

) 1
θp

+ (1 − θ).

The second inequality is strict when
∫

f p dP �= 1. This may be rewritten in the form

1 + θ−1
∫

( f − 1) dP ≤
(∫

f p dP

) 1
θp

. (72)

Choosing f = 1 − n j |u j |2/ργ and P = ρ
p
γ /

∫
Rd ρ

p
γ , we obtain μ j < 0 in (71) since

f ≤ 1 and f �= 1, hence
∫

Rd f p dP < 1. We have thus proved that δ ≡ 0 in (70).

We now show that ker(−� − ρ
p−1
γ ) = {0}. Indeed, assume on the contrary that μ j = 0

(then n j = 0 by the previous argument). Consider this time the perturbation γ (t) =
γ + t |u j 〉〈u j |, which cannot be an optimiser for t > 0. Taking μ j = 0 and n j = −t
in (71) gives the (strict) inequality

(∫
Rd

(
ργ + t |u j |2

)p

∫
Rd ρ

p
γ

) 1
θp

< 1 +
t
∫

Rd ρ
p−1
γ |u j |2

θ
∫

Rd ρ
p
γ

(73)
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for all 0 < t < ‖γ ‖. By (72) with f = 1 + t |u j |2/ργ , which satisfies
∫

Rd f p dP > 1,
we have

(∫
Rd

(
ργ + t |u j |2

)p

∫
Rd ρ

p
γ

) 1
θp

> 1 +
t
∫

Rd ρ
p−1
γ |u j |2

θ
∫

Rd ρ
p
γ

and we obtain a contradiction. Therefore ker(−� − ρ
p−1
γ ) = {0}, as claimed. ��
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