Pressure Integrity of 3013 Container Under Postulated Accident Conditions

George B. Rawls Jr.
Savannah River National Laboratory, Aiken, South Carolina USA

F. Coyne Prenger
Los Alamos National Laboratory, Los Alamos, New Mexico USA

Joe E. Shepherd
California Institute of Technology, Pasadena, California USA

Zhe Liang
Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada

Abstract
A series of tests was carried out to determine the threshold for deflagration-to-detonation transition (DDT), structural loading, and structural response of the U.S. Department of Energy 3013 storage systems for the case of an accidental explosion of evolved gas within the storage containers. Three experimental fixtures were used to examine the various issues and three mixtures consisting of either stoichiometric hydrogen-oxygen, stoichiometric hydrogen-oxygen with added nitrogen, or stoichiometric hydrogen-oxygen with an added nitrogen-helium mixture were tested. Tests were carried out as a function of initial pressure from 1 to 3.5 bar and initial temperature from room temperature to 150°C. The elevated temperature tests resulted in a slight increase in the threshold pressure for DDT. The elevated temperature tests were performed to ensure the test results were bounding. Because the change was not significant, the elevated temperature data are not presented in the paper. The explosions were initiated with either a small spark or a hot surface. Based on the results of these tests under the conditions investigated, it can be concluded that DDT of a stoichiometric hydrogen-oxygen mixture (and mixtures diluted with nitrogen and helium) within the 3013 containment system does not pose a threat to the structural integrity of the outer container.

Introduction
A system composed of triple-nested stainless steel 3013 storage canisters used to store plutonium-bearing powders was evaluated to determine the probability of plutonium bearing material release in the event of a hydrogen-oxygen explosion. Generation of hydrogen and oxygen within the storage containers by radiolysis of water, hydrated salts or corrosion raises the possibility of internal combustion in the highly unlikely event of an ignition source being present. The 3013 Containment System contains no identifiable ignition source. However, because hydrogen has a very low ignition energy, a concern was raised that friction-generating events caused by a physical interaction between the nested containers may have the potential to provide sufficient energy to ignite a combustible hydrogen-oxygen mixture.

The California Institute of Technology, Explosion Dynamics Laboratory\(^1\) was contracted to perform a series of tests designed to evaluate the potential for detonation and the resulting structural response of the 3013 container system. This containment system is used throughout the U.S. Department of Energy (DOE) complex to package plutonium metal and oxides under the DOE 3013 Packaging Standard. An illustration of the 3013 containers is shown in Figure 1. The convenience and inner containers used at each DOE facility differ but the 3013 outer containers are the same for all configurations throughout the DOE complex.

Figure 1. Nested 3013 containers. The outer container is on the left, the inner container in the middle, and the convenience container on the right.
The test program used deliberate ignition of explosive mixtures of hydrogen and oxygen to determine the type of explosion, (i.e., a deflagration having a subsonic burn front or a detonation having a supersonic burn front), structural loading (pressure history), and structural response (strain history) in both simulated test fixtures and actual 3013 outer containers.

Testing Methodology

The initial gas pressures, temperatures and gas compositions in the storage containers were based on the surveillance data for the storage material containers of interest. The test fixtures and explosive mixtures were designed to address all the identifiable modes of explosions possible in the 3013 storage system. The 3013 outer container was treated as the final containment barrier and, for added conservatism, the final evaluation neglected any structural benefit derived from the inner containers.

Three phases of testing determined the threshold for deflagration-to-detonation transition (DDT), the container structural loading, and the structural response of the nested storage containers. Three experimental fixtures were used to examine the variables that might influence the test results. The first series of tests was performed to understand the influence on DDT of the small gaps between the inner and outer containers. Because the ratio of gap thickness between the outer and inner containers to container diameter was small, a planar fixture was used to simulate the combustion behavior. Because of the planar configuration, only the pressure-time history was measured in these tests. A second series of tests was performed in a thick-walled cylindrical container fitted with a cylindrical insert to simulate the outer container-inner container configuration. In this cylindrical geometry, strain gauges were used to measure the structural response of the thick-walled outer container. In addition, the eccentricity in the annular gap between outer and inner cylinders was also investigated. The final test fixture was an actual 3013 outer container modified with penetrations for pressure transducers, gas handling, and ignition sources.

Three gas mixtures, chosen to bound the anticipated container gas compositions were tested:

1) a stoichiometric hydrogen-oxygen mixture (Mixture A),
2) a stoichiometric hydrogen-oxygen mixture added to 60 kPa of nitrogen (Mixture B); and
3) a stoichiometric hydrogen-oxygen mixture added to 60 kPa of nitrogen and 16 kPa of helium (Mixture C).

Tests were carried out as a function of initial pressure (which was varied from 1 to 3.5 bar (KPA = 1 bar)) and initial temperature (room temperature to 150°C). The explosions were initiated with either a small spark or a glow plug (hot surface).

Planar Gap Tests

The planar gap test fixture was designed to determine the threshold for DDT in the storage system annular gaps. When the containers are nested, annular spaces are created between the various container walls and gaps are also formed between the container lids, as shown in Figure 2. The tests were carried out in a planar geometry simulating the annular gaps between the outer and inner containers of the 3013 storage system. The test fixture consisted of a pair of rigid flat plates with the gap between them an adjustable, representing the annular space between the nested storage system containers. Figure 3 is a drawing of the planar test fixture showing the location of the pressure transducers. The gap was filled with a representative explosive gas mixture, ignited, and the subsequent explosion development was monitored using pressure transducers. For each mixture composition, the threshold for DDT was determined by varying initial pressures. Because the inner and outer containers could be eccentric, the gap size was treated as a parameter, and values of 0.01”, 0.02”, 0.05”, 0.1”, 0.44” (0.254, 0.508, 1.27, 2.54, 11.18 mm) were investigated. The annular gap between the containers comprising the storage system could vary from 0 to 0.185” (0-4.7 mm) depending on the eccentricity of the containers. The largest gap represented the headspace gap of approximately 0.5” (12.7 mm).

Figure 2. A close-up drawing of an inner container nested within an outer container showing the headspace gap

Figure 3. Planar fixture assembly; 1-bottom plate, 2-top plate, 3-pressure transducer holes, 4-spacer, SP-spark plug, GP-glow plug
Figure 4. Peak pressures for gap size 0.44-inch and 0.10-inch for planer tests. The shaded region is the estimated threshold for the onset of DDT.
The planar tests showed that all three mixtures would undergo DDT with threshold initial pressures between 1 and 3 bar. Typical test results representing gap sizes between 0.1” and 0.44” and the three mixtures tested at room temperature are shown in Figure 4. The nomenclature used in Figure 4 for the pressure traces is as follows: the data points are the maximum measured pressures at P1, P2, P3, and P4 respectively, P_{CV} is the calculated constant volume explosion pressure, P_{CJ} is the calculated Chapman-Jouguet (CJ) pressure, and P_{CJref} is the calculated reflected CJ pressure, all using the chemical equilibrium program in reference 2, with realistic thermochemical properties.

The results, illustrated in Figure 4, show that mixture A is the most sensitive to initial pressure and gap width, providing the lowest DDT threshold pressure, mixture B is intermediate, and mixture C is the least sensitive, providing the highest DDT threshold pressure. The smaller the gap size, the lower the threshold pressure for DDT. Again, as seen in Figure 4 for mixture A, DDT was observed at an initial pressure of 1.25 bar for a gap of 0.44” (11.18 mm) and 0.9-1.0 bar initial pressure for a gap of 0.1” (2.54 mm).

Thick-walled Cylinder Tests

The thick-walled tube was fitted with a solid cylindrical insert to simulate the annular gap between the outer and inner containers. Figure 5 provides a drawing of the thick-walled test fixture showing the location of the pressure transducers and strain gauges. The positions of the strain gauges do not correspond to the positions of the pressure transducers. Three types of tube configurations were used: (1) empty tube (no insert), (2) tube with a concentrically located cylindrical insert, and (3) tube with an eccentrically located cylindrical insert. The gap configurations (2) and (3), together with the empty tube configuration (1), were chosen to cover the entire range of anticipated configurations in the 3013 storage system geometries. The test fixture was filled with one of the three representative explosive gas mixtures (A, B, or C), ignited with a low energy spark, and the subsequent explosion development monitored with pressure transducers and strain gauges. For each mixture composition and tube configuration, the threshold for DDT and corresponding structural response was determined for various initial pressures. Use of the thick-walled test fixture allowed all tests to be conducted with a single, fully instrumented test fixture because the deformations in each test remained in the elastic range.

Thick-walled Cylinder Tests; Configuration 1 (Empty Tube)

As demonstrated in the planar tests, the DDT threshold shifted to higher initial pressures for larger gap sizes. Tests with an open cylinder (Configuration 1) had no gap present and the highest DDT threshold pressures for all the gas mixtures were observed. Figure 6 shows the peak pressures and strains for mixture A. The DDT threshold was observed at an initial pressure of 2.5-2.6 bar for mixture A, and is twice as large as the DDT threshold initial pressure of 1.2-1.25 bar for the largest gap size of 0.44” in the planar fixture (Figure 4a). All the transitions occurred near the tube end. The maximum strain was on the order of 170 microstrain. For mixtures B and C, no DDT transition was observed in the empty tube for initial pressures up to 3.5 bar. In the 0.44” planar fixture, DDT was observed at an initial pressure of 2.1 bar for mixture B and 2.75 bar for mixture C (Figures 4c and e).
The annular gap between inner and outer containers of the 3013 storage system varies between 0” and 0.16” (0–4.06 mm) depending on the eccentricity of the containers. The gap between the lids of the containers varies from 0.375” to 0.6” (9.5–15 mm) depending on the inner container cut-off length. For the thick-walled cylinder with concentric insert tests an average annular gap of 0.08” with an average end gap of 0.5” was used. A solid circular bar was inserted concentrically into the outer tube to create this geometry.

As shown in Figure 7, the DDT transition occurred at an initial pressure of 1 bar for mixture A. For mixtures B and C (not shown) only the cases with an initial pressure of 3.5 bar, close to the DDT threshold, were tested. The peak strains were always observed on the strain gauge furthest from the ignition source. The maximum value was on the order of 100 microstrain at an initial pressure of 3.5 bar.
Thick-Walled Cylinder Tests; Configuration 3 (Eccentric Insert)

In configuration 3, the more realistic case of inner container eccentricity was examined. In this test series, the solid cylinder inside the test cylinder was mounted eccentrically. The nominal minimum gap was 0.01” and maximum gap was 0.15”. By rotating the solid insert, data were obtained with the minimum gap of 0.01” aligned with and 180 degrees opposed to the pressure transducers with the strain gauges being opposite the pressure transducers in each case. A diagram of the two configurations is shown in Figure 8.

In contrast to configuration 2, the annular gap size for configuration 3a (Figure 8a) was reduced on the pressure transducer side; therefore, one would expect faster DDT transition on this side. As shown in Figure 9, DDT indeed occurred right away at an initial pressure of 1 bar for mixture A, but the maximum strain was on the same order as the values recorded in configuration 2.

In configuration 3b (Figure 8b), the solid bar was rotated 180 degrees, therefore, the largest gap, 0.15 in, appeared on the pressure transducer side, and the smallest gap was on the strain gauge side. For mixture A with an initial pressure of 1 bar, DDT appeared near the last transducer, P4 with configuration 3b but it was near the first transducer P1 with configuration 3a. This means that DDT occurred earlier on the smaller gap side and later on the larger gap side. This is consistent with the previous findings about the effect of the gap size on DDT thresholds in the planar fixture. As shown in Figure 10, there are no significant differences in the peak pressures and strains for the two configurations.
Calculated Pressures and Strain

The values for CJ pressure (P_{CJ}), reflected CJ pressure ($P_{\text{CJ,ref}}$) and (P_{CV}) for each test were calculated using the chemical equilibrium program in Reference 2 with realistic thermochemical properties.

The static strains, ε_{CJ}, $\varepsilon_{\text{CJ,ref}}$, ε_{CV}, corresponding to the CJ, reflected CJ and constant volume explosion pressures, were inferred from the approximate stress-strain relation for a uniformly, statically loaded tube

$$\varepsilon = \frac{(P - P_a)R}{Eh}$$

where ε, E, R, h and P_a are strain, Young's modulus, average radius ($R=(\text{ID}+h)/2$), thickness of the tube, and atmospheric pressure, respectively.

Dynamic Load Factor

One of the most frequently used methods \(^5\)\(^6\) to evaluate structural response to transient loads is the use of a dynamic load factor (DLF). This method uses the measured or calculated peak pressure of the transient load corrected by the DLF to compute a static response, which has an equivalent deflection to the peak transient response. This method is useful if the dynamic load factor and peak pressure can be readily computed for the cases of interest.

The peak value of the strain signals can be analyzed by finding the DLF (Φ), which is defined as the ratio of the measured peak strain to the peak strain expected in the case of quasi-static loading

$$\Phi = \frac{\varepsilon_{\text{max}}}{\Delta P R} \frac{\Delta P R}{Eh}$$

The pressure term (ΔP) in Equation 2 can be based on either the measured peak value or one of the computed pressure values. Using the experimental pressure allows an evaluation of what type of loading (impulsive, sudden or mixed) is taking place. For an ideal single-degree of freedom structure and a simple pressure-time history with a single step function followed by a monotonic decay \(^5\)\(^6\) values of DLF close to two are associated with the limit of “sudden loading” in which the pressure jumps to a high value and does not significantly decay on the time scale of the tube radial oscillation (breathing) period. In this regime, the peak elastic deformation is proportional to the peak pressure. As the decay time of the pressure after the step change becomes shorter, the dynamic load factor becomes less than two, decreasing as the decay time decreases. In the limit of very short pressure pulses, the loading is in the impulsive regime and the peak elastic deformation is proportional to the impulse. Between these two extremes, in the mixed regime, the peak elastic deformation will depend on both the impulse and peak pressure.

Evaluation of the experimentally determined pressures from the empty thick-walled tube provides DLFs between 1.2 and 2.6 for mixture A. The evaluation of the thick-walled tube with concentric annular gap provides DLFs between 0.7 and 1.8 for experimentally determined pressure values. The dynamic load factors of the annulus configuration are less than the DLFs for the empty tube. One reason is that the gas volume for the annular gap is only 7.5 percent of the empty tube so that the total energy released in the combustion event is much smaller in the annulus.

Figure 10. Peak pressures and strains for mixture A of thick-walled cylinder tests in configuration 3b. The gray vertical shaded region indicates the DDT threshold.
than in the empty tube. Another reason is that DDT was initiated promptly for the annulus configuration, so the detonation was approximately an ideal CJ wave when it propagated to the tube end, while for the empty tube, the detonation wave was highly overdriven due to the DDT event.

3013 Container Testing

As a confirmation of the applicability of the test results, actual 3013 containers were instrumented with strain gauges and fitted with pressure ports to measure structural loading and response to deliberate ignition of the explosive mixtures. Figure 11 provides a photo of the modified 3013 container and a drawing of the test setup. Filling the 3013 container, which is the outermost container and has the largest volume, with the various explosive mixtures was considered to provide the worst case structural loading for the storage system because it maximizes the energy content within the system. The presence of the inner containers, not included in this test, not only reduces the gas volume but also acts as energy absorbing media, thus reducing the energy absorbed by the outer container. These observations demonstrate that the assumption of filling the empty 3013 container with the explosive mixture as the worst case condition for evaluating loss-of-containment for the system is justified.

Figure 12 shows the recorded peak pressures on pressure transducers P1-P5, and peak strains on S1-S9 for all the shots and mixtures. The static strains, ε_{CJ}, $\varepsilon_{CJ_{ref}}$, ε_{CV}, corresponding to the CJ, reflected CJ and constant volume explosion pressures,
Figure 12. Peak pressures and strains for the three mixtures in the 3013 empty can tests. Gray vertical shaded region indicates the DDT threshold. DDT was not observed for mix B or C.
were calculated using equation (1) for the 3013 outer can, where $E = 193\ \text{GPa}$, $R = 2.40\ \text{in}$, and $h = 0.118\ \text{in}$.

For the empty 3013 outer can configuration, the DDT transition was observed at an initial pressure of 2.6-2.7 bar for mixture A. This is essentially the same threshold initial pressure (2.6-2.7 bar) as observed for the empty thick-walled fixture (Figure 6a). The maximum peak strain was usually observed near the middle of the 3013 can on either S1 or S2 instead of close to the reflecting end as observed for the thick-walled fixture (Figure 6b). Peak strain increases with increasing initial pressure, and the overall trend is linear with sharp increases in the vicinity of the DDT threshold. Below the threshold at initial pressure of 2.6 bar, the peak strain was on the order of 700 μstrain, which is 1.33 times larger than the calculated ε_{CJ} value. Above the threshold at an initial pressure of 2.7 bar, the peak strain was on the order of 1800 μstrain, which is 1.34 times larger than the calculated $\varepsilon_{CJ,\Phi=2}$ value and very close to the convention for the onset of plastic behavior (2000 μstrain). For mixtures B and C, no DDT transition was observed for initial pressures up to 3.5 bar, which is consistent with the findings with the thick-walled tube.

The DLF for the tests performed on the 3013 containers ranged between 0.4 and 1.2. Values between 1.2 and 2.6 were measured for the empty thick-walled tube configuration. The values obtained indicate mixed mode loading between the impulsive and sudden regimes. The calculated values of Φ_{CJ} for the 3013 container varied between 1.2 and 3.2. Values of Φ_{CJ} between 1.7 and 3.5 were calculated for the thick-walled tube. The slightly higher values measured for the thick-walled tube configuration are most likely due to differences in the structural response associated with the detonation loads.

In Figure 13, the measured strains are compared with estimated strains based on P_{CJ} with dynamic load factors of 1 (static loading), 2 (sudden loading) and 5 (sudden loading with reflected detonation). For the empty 3013 container within the DDT range (initial pressure > 2.6 bar), the maximum measured strains are all larger than $\varepsilon_{CJ,\Phi=2}$, which is consistent with the results from the thick-walled tube. This is because DDT occurred close to the tube end, producing much higher strains than the case where detonation was initiated promptly.

Discussion

For the 3013 storage containment system, DDT transition is possible within the annulus between the containers for all gas mixtures as demonstrated by the results of testing the planar fixture and the thick-walled cylinder with annular gaps. DDT was also observed in the empty thick-walled cylinder tests and the actual 3013 container tests (without an inner container) at sufficiently high initial pressure with stoichiometric hydrogen-oxygen mixtures.

For the three mixtures tested, the peak hoop strains measured in the outer 3013 container are slightly less than the 0.2 percent strain conventionally used to determine the onset of plastic deformation. No structural failure or measurable deformation was found in the 3013 outer containers that were tested. Based on the results of these tests, it can be concluded that DDT of a stoichiometric hydrogen-oxygen mixture (and mixtures diluted with nitrogen and helium) within the 3013 nested containment system does not pose a threat to structural integrity of the outer container at initial pressures up to 3.5 bar and temperatures up to 150°C.

The inner or convenience containers were not tested. Based on these test results and analytical studies, the DDT threshold initial pressures are expected to be lower for small diameter containers and containers filled with granular material. Because peak pressures are proportional to initial pressures, the peak DDT pressures measured in the 3013 outer containers will bound the peak DDT pressures that will occur in the inner and convenience containers. If an explosion were to occur in the inner or convenience containers the peak strains and deformations will be higher for the inner and convenience containers than for the outer container because the outer container is more robust structurally than the inner and convenience containers.

Conclusion

The 3013 outer container is the credited safety pressure boundary for the nested 3013 storage canister system. The test results demonstrate that the 3013 container system will maintain its structural integrity following the postulated explosion accident.
George B. Rawls Jr. is a senior fellow engineer at Savannah River National Laboratory. He has an M.E. in mechanical engineering from the University of South Carolina and a B.S. in mechanical engineering from Clemson University.

F. Coyne Prenger is a retired Registered Professional Engineer. He has a Ph.D. in mechanical engineering from Colorado State University.

Joseph E. Shepherd is a professor of aeronautics and professor of mechanical engineering at California Institute of Technology. He has a Ph.D. in applied physics from the California Institute of Technology and a B.S. in physics from the University of South Florida.

Zhe Liang is a combustion scientist at Atomic Energy of Canada Limited – Chalk River Laboratories. Liang has a Ph.D. in mechanical engineering from the University of Calgary, Canada, an M.S. in mechanical engineering from Sichuan University, China, and a B.S. in mechanical engineering from Chengdu University of Science and Technology, China.

Acknowledgements
Funding for this work was provided by the Surveillance and Monitoring Program, U.S. Department of Energy Office of Environmental Management. This work was conducted at California Technology Institute Los Alamos National Laboratory operated by Los Alamos National Security, LLC under contract DE-AC52-06NA25396 and at the Savannah River National Laboratory operated by Savannah River Nuclear Solutions for the U.S. Department of Energy under contract DE-AC09-08SR22470.

References