Revisiting the gas kinematics in SSA22 Lyman-α Blob 1 with radiative transfer modelling in a multiphase, clumpy medium

Zhihui Li, Charles C. Steidel, Max Gronke and Yuguang Chen

1 Cahill Center for Astrophysics, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125, USA
2 Department of Physics, University of California, Santa Barbara, CA 93106, USA
3 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

Accepted 2020 December 16. Received 2020 November 17; in original form 2020 August 24

ABSTRACT

We present new observations of Lyman-α (Lyα) Blob 1 (LAB1) in the SSA22 protocluster region (z = 3.09) using the Keck Cosmic Web Imager and Keck Multi-object Spectrometer for Infrared Exploration. We have created a narrow-band Lyα image and identified several prominent features. By comparing the spatial distributions and intensities of Lyα and Hβ, we find that recombination of photo-ionized H I gas followed by resonant scattering is sufficient to explain all the observed Lyα/Hβ ratios. We further decode the spatially resolved Lyα profiles using both moment maps and radiative transfer modelling. By fitting a set of multiphase, ‘clumpy’ models to the observed Lyα profiles, we manage to reasonably constrain many parameters, namely the H I number density in the interclump medium (ICM), the cloud volume filling factor, the random velocity and outflow velocity of the clumps, the H I outflow velocity of the ICM, and the local systemic redshift. Our model has successfully reproduced the diverse Lyα morphologies, and the main results are: (1) the observed Lyα spectra require relatively few clumps per line of sight as they have significant fluxes at the line centre; (2) the velocity dispersion of the clumps yields a significant broadening of the spectra as observed; (3) the clump bulk outflow can also cause additional broadening if the H I in the ICM is optically thick; (4) and the H I in the ICM is responsible for the absorption feature close to the Lyα line centre.

Key words: galaxies: evolution – galaxies: high-redshift – intergalactic medium – galaxies: kinematics and dynamics.

1 INTRODUCTION

Lyman-α Blobs (LABs) – spatially extended (projected sizes ≥ 100 kpc) gaseous nebulae at high redshift (z ≥ 2) with immense Lyα luminosities (L_{Lyα} \sim 10^{43} - 44 \text{ erg s}^{-1}) – are among the most enigmatic and intriguing objects in the universe. To date, hundreds of LABs have been discovered (e.g. Francis et al. 1996; Fynbo, Möller & Warren 1999; Keel et al. 1999; Steidel et al. 2000; Matsuda et al. 2004, 2011; Dey et al. 2005; Saito et al. 2006; Smith & Jarvis 2007; Hennawi et al. 2009; Ouchi et al. 2009; Prescott, Dey & Jainuzzi 2009, 2012; Erb, Bogosavljević & Steidel 2011; Cai et al. 2017), yet their physical origin remains murky. Many of the LABs have been found in overdense regions associated with massive protoclusters, which will presumably evolve into rich galaxy clusters observed today (e.g. Steidel et al. 1998; Prescott et al. 2008; Yang et al. 2009, 2010; Hine et al. 2016). Hence, the study of LABs may elucidate the formation process of massive galaxies and the mechanisms of concurrent feedback events.

What are the possible energy sources that power the observed Lyα emission of LABs? Thus far, numerous attempts have been made to answer this fundamental question, but a consensus is yet to be reached. Among many proposed scenarios, one of the most plausible Lyα production mechanisms is photo-ionization via embedded energetic sources (e.g. starburst galaxies or active galactic nuclei, AGNs) followed by subsequent recombination (Haiman & Rees 2001; Cantalupo et al. 2005, 2014). This scenario has been corroborated by the discovery of luminous galaxies and AGNs (Chapman et al. 2001; Dey et al. 2005; Geach et al. 2005, 2007, 2009; Colbert et al. 2006; Webb et al. 2009) inside some LABs via infrared (IR) and submillimetre (submm) observations. If the ionizing sources are starbursts, supernova-induced energetic winds may be triggered (Heckman, Armus & Miley 1990; Taniguchi & Shioya 2000; Taniguchi, Shioya & Kakazu 2001; Mori, Umemura & Ferrara 2004), producing outflowing superbubbles and additional Lyα emission via shock heating. Evidence for the existence of such ‘superwinds’ includes the observed double-peaked Lyα profiles (Ohyama et al. 2003) and bubble-like structures (Matsuda et al. 2004). Alternatively, Lyα emission can originate from cooling radiation via accretion of cold gas streams in dark matter haloes on to protogalaxies (Haiman, Spaans & Quataert 2000; Fardal et al. 2001; Furlanetto et al. 2005; Dijkstra, Haiman & Spaans 2006a, b; Scarlata et al. 2009; Goerdt et al. 2010; Faucher-Giguère et al. 2010; Rosdahl & Blaizot 2012). This explanation is especially favoured for LABs with no or only weak associated energy sources identified even with deep multiwavelength observations (Nilsson et al. 2006; Smith & Jarvis 2007; Saito et al. 2008; Smith et al. 2008). In either case, a substantial fraction of the Lyα photons will be resonantly scattered multiple times before escape (Steidel et al. 2010, 2011), although the ‘cold accretion’ scenario is supposed to induce a lower degree of polarization due to a lower chance of scattering from the...

In this paper, we present new observations and analyses of one of the first LABs ever discovered, SSA22-Blob1 (LAB1, Steidel et al. 2000). LAB1 is one of the brightest and largest LABs discovered to date, with a Lyα luminosity of $\sim 1.1 \times 10^{42}$ erg s$^{-1}$ (Weijmans et al. 2010) and a spatial extent of ~ 100 kpc (Matsuda et al. 2004). Since its discovery, LAB1 has been studied extensively, at wavelengths including X-ray (Geach et al. 2009), optical (Ohyama et al. 2003; Bower et al. 2004; Weijmans et al. 2010), IR (Uchimoto et al. 2008, 2012; Webb et al. 2009), and submm, Geach et al. 2005; Matsuda et al. 2007; Geach et al. 2014; Hine et al. 2016). Two Lyman-break galaxies (LBG), C11 and C15 (Steidel et al. 2000, 2003; Matsuda et al. 2004), and multiple dust-obscured star-forming galaxies (Geach et al. 2007, 2014, 2016) have been identified within LAB1. However, X-ray observations yield non-detections, indicating the absence of (Compton-thin) AGNs (Geach et al. 2009).

To determine the principle energy source(s) powering LAB1, three main approaches have been adopted: the first is to infer the gas kinematics (e.g. inflows versus outflows) from the observed properties of Lyα as well as other non-resonant emission lines (e.g. [O III], Hα, Hβ). For example, Bower et al. (2004) and Weijmans et al. (2010) measured a velocity shear of the Lyα emission from C11 and C15 using integral-field spectroscopy, which suggests the presence of outflows. On the other hand, McLinden et al. (2013) reported a nearly zero velocity offset between Lyα and [O III] in C11 and C15, which they interpreted as an absence of strong outflows. An alternative approach is to compare the available energy budget of possible energy sources with the observed Lyα emission. For example, Geach et al. (2016) deduced the IR luminosities and corresponding star formation rate (SFR, ~ 150 M$_\odot$ yr$^{-1}$) of the embedded sources from their 850 μm flux density measured with Atacama Large Interferometer Array (ALMA), and found that this energy budget is sufficient to power the observed Lyα luminosity. However, as it is difficult to independently constrain the fraction of Lyα photons that escape from the galaxy and scatter into our line of sight, additional energy sources (e.g. cold accretion) cannot be ruled out entirely (Geach et al. 2014; Hine et al. 2016). Thirdly, Hayes et al. (2011) and Beck et al. (2016) have measured polarized Lyα emission using polarimetric imaging. Although they claimed that this result should be strongly supportive of a ‘central powering + scattering’ model, Trebitsch et al. (2016) pointed out that the scattering inside the cold filaments in the ‘cold accretion’ scenario could still account for the degree of polarization observed.

In this paper, we use an advanced kinematic approach to further test the feasibility of the ‘central powering + scattering’ scenario. The traditional kinematic approach—inferring the underlyng gas velocity field from the observed peak shifts and line widths (e.g. McLinden et al. 2013) is worth scrutinizing, as resonant scattering may modify the line profiles in a very complex way. Instead, we model the Lyα emission using the framework proposed by Gronke & Dijkstra (2016). By comparing the spatial distribution of Lyα, [O III], and Hβ emission and fitting Lyα line profiles, we map the kinematic structure of H1 in LAB1 and constrain its possible powering mechanisms(s).

The structure of this paper is as follows. In Section 2, we describe our KCWI and MOSFIRE observations and data reduction procedures. In Section 3, we present our new observational results and analyses. In Section 4, we detail the methodology and present our results of radiative transfer modelling using the multiphase, clumpy model. In Section 5, we summarize and conclude. Throughout this paper, we adopt a flat Λ-cold dark matter cosmology with $\Omega_m = 0.315$, $\Omega_{\Lambda} = 0.685$, and $H_0 = 67.4$ km s$^{-1}$ Mpc$^{-1}$ (Planck Collaboration et al. 2020). We use the following vacuum wavelengths: 1215.67 Å for Lyα, 4862.683 Å for Hβ, and 4960.295/5008.240 Å for [O III] from the Atomic Line List v2.04.1

2 OBSERVATIONS AND DATA REDUCTION

2.1 KCWI observations

The KCWI observations of LAB1 were carried out on the night of 2018 June 16, with a seeing of ~ 1.0 arcsec full width at half-maximum (FWHM). We used the KCWI large slicer, which provides a contiguous field of view (FOV) of 20.4 arcsec (\times 2018) exposure time was 3 h. Individual exposures were reduced using the KCWI Data Reduction Pipeline,2 which includes wavelength, atmospheric

1http://www.pa.uky.edu/~peter/atomic/index.html
2https://github.com/Keck-DataReductionPipelines/KcwiDRP
Figure 1. Lyα and continuum images of LAB1. Left: the narrow-band Lyα image, obtained by collapsing the original KCWI datacube over 4959–5009 Å, which contains the Lyα line (see Section 2). The UV continuum near the wavelength of Lyα has been subtracted. Right: the HST/STIS optical continuum image. The positions of four MOSFIRE slits (slit 1–4), two LBGs (C11 and C15), three submm sources (ALMA-a, b, and c), a K-band selected galaxy (K1), and three [O III]/Lyα serendipitous sources (c 1 to c 3) have been marked on each image (see Table 2). The Lyα isophotes with levels of SB Lyα = [120, 80, 40, 15, 4] \times 10$^{-19}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ have also been overlaid. All images have been registered to the same world-coordinate system.

The individual datacubes were then spatially re-sampled on to a uniform astrometric grid with 0.3 arcsec by 0.3 arcsec spaxels, with a sampling of 0.5 Å pixel$^{-1}$ (4.75 pixels per spectral resolution element) along the wavelength axis, using a variant of the 'drizzle' algorithm (with a drizzle factor of 0.9) in the MONTAGE3 package. The re-sampled cubes were then combined into a final stacked cube by averaging with exposure time weighting. Owing to the coarser spatial sampling in the long dimension of the spatial cube, the PSF (point spread function) in the final datacube is elongated along the N-S direction, with FWHM ≈ 0.96 arcsec \times 1.44 arcsec (X- and Y-directions, respectively).

The resampled final datacube covers a scientifically useful solid angle of 18.9 arcsec \times 32.7 arcsec on the sky, and a wavelength range (vacuum and heliocentric) of 4214–5243 Å. A variance image with the same dimensions was created by propagating errors based on a noise model throughout the data reduction.

2.2 MOSFIRE observations

We observed selected regions of LAB1, chosen to include the highest Lyα SB areas as determined from a very deep narrow-band Lyα image (see Steidel et al. 2011; Nestor et al. 2011) using MOSFIRE (McLean et al. 2010, 2012; Steidel et al. 2014) on the Keck I telescope. Spectra in the near-IR K band (1.95–2.40 μm) were obtained using four different slitmasks, each of which included a slit passing through part of LAB1 with a different RA, Dec., and position angle (PA). The four slits are labelled as ‘slit 1’ through ‘slit 4’ in Fig. 1, and the observations are summarized in Table 1. Slits 1–3 were obtained using slits of width 0.7 arcsec, providing spectral resolving power of $R \approx 3700$; slit 4 observations used a 1.0 arcsec wide slit, yielding $R \approx 2600$. The observations were obtained using different observing runs between 2012 June and 2019 November, under clear skies with seeing in the range 0.43–0.57 arcsec, as summarized in Table 1.

Table 1. MOSFIRE K-band observations of LAB1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Width</th>
<th>R</th>
<th>PA (deg E of N)</th>
<th>Exp (h)</th>
<th>Seeing (arcsec)</th>
<th>Date of obs.</th>
<th>Nod Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slit 1</td>
<td>0.7</td>
<td>3660</td>
<td>68.0</td>
<td>4.0</td>
<td>0.50</td>
<td>2012 Sep15</td>
<td>3.0</td>
</tr>
<tr>
<td>Slit 2</td>
<td>0.7</td>
<td>3660</td>
<td>3.5</td>
<td>1.5</td>
<td>0.43</td>
<td>2012 Jun30</td>
<td>3.0</td>
</tr>
<tr>
<td>Slit 3</td>
<td>0.7</td>
<td>3660</td>
<td>27.0</td>
<td>1.5</td>
<td>0.52</td>
<td>2012 Sep13</td>
<td>3.0</td>
</tr>
<tr>
<td>Slit 4</td>
<td>1.0</td>
<td>2560</td>
<td>54.0</td>
<td>2.5</td>
<td>0.53</td>
<td>2019 Jun15</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Notes: The details of the MOSFIRE K-band observations of LAB1. The columns are: (1) slit name; (2) slit width (arcsec); (3) resolving power (λ/Δλ); (4) slit PA (degrees E of N); (5) exposure time in hours; (6) seeing FWHM (arcsec); (7) UT date of observation; and (8) nod amplitude between A and B positions (arcsec).

3http://montage.ipac.caltech.edu
The MOSFIRE K-band observations (slit 1 was also observed in H band) were all obtained using an ABAB nod pattern along the slit direction with nod amplitude of 3 arcsec between positions A and B for slits 1, 2, and 3, and 15 arcsec for slit 4. Total integration times were 1.5–4.0 h, as listed in Table 1, composed of 30–80 individual 180 s exposures. The data for each observation sequence were reduced using the MOSFIRE data reduction pipeline4 to produce 2D, rectified, background-subtracted vacuum wavelength calibrated spectrograms (see Steidel et al. 2014 for details). Observations obtained on different observing nights using the same slitmask were reduced independently; the 2D spectrograms were shifted into the heliocentric rest frame and combined with inverse variance weighting using tasks in the MOSPEC (Strom et al. 2017) analysis package.

3 THE GAS KINEMATIC STRUCTURE OF LAB1

3.1 Spatial distribution of Lyα emission

To get an overview of the Lyα surface brightness (SB) distribution in LAB1, we first generate a Lyα narrow-band image by optimally summing all the Lyα fluxes over the relevant wavelength range. Here we follow the ‘matched filtering’ procedures for creating a narrow-band image (Herenz, Hayes & Scarlata 2020) using LSDCat (Herenz & Wisotzki 2017). First, we apply spatial filtering to the continuum-subtracted KCWI datacube using a 2D Gaussian filter with a constant 1.2 arcsec FWHM, which equals the seeing PSF measured from a bright star in the SSA22 field. Secondly, we apply a 1D Gaussian spectral filter with FWHM measured from a bright star in the SSA22 field. Here we follow the ‘matched filtering’ procedures for creating a 1D Gaussian spectral filter with FWHM measured from a bright star in the SSA22 field. Thirdly, we use this filtered datacube to generate an signal-to-noise (S/N) cube. We can then choose appropriate S/N thresholds for the filtered datacube to produce SB and moment maps (see Section 3.3).

In the left-hand panel of Fig. 1, we present our narrow-band Lyα image. It is constructed by summing over all the voxels of the filtered datacube with S/N ≥ 4 over 4959–5009 Å, which should enclose all possible Lyα emission. To further examine whether the Lyα emission coincides with the identified sources, we also present the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) optical continuum image of LAB1.5 We have also marked the positions of previously identified sources on each image as references. Among these sources, C11 and C15 are both LBGs (Steidel et al. 2000); ALMA-a, b, and c are three submm galaxies (Geach et al. 2016); K1 is a K-band selected galaxy (Kubo et al. 2015); c1 and c2 (the same as S1 in Geach et al. 2016) are two [O III] serendipitous sources; and c3 is a Lyα serendipitous source at a lower redshift (z = 2.7542). The detailed information (especially spectroscopic redshifts, if available) of all the identified sources are presented in Table 2.

The Lyα isophotes (contours with the same SB) with levels of SB_{Lyα} = [120, 80, 40, 15, 4] × 10^{-19} erg s^{-1} cm^{-2} arcsec^{-2} have also been overlaid on to each image.

Several prominent features are evident in Fig. 1: (1) In general, the regions with the highest SB are associated with the continuum source (e.g. C15); (2) an exception worth noting is the tadpole-shaped structure (marked in Fig. 1), which starts from the ALMA-ab sources, wiggles towards the north-west first and then north-east. Interestingly, although the ‘head’ of the tadpole overlaps with ALMA-a, its ‘tail’ does not overlap with any source; and (3) the regions with identified continuum sources do not necessarily have significant Lyα emission (e.g. ALMA-c, c2, K1).

3.2 Spatial distribution of [O III] and Hβ emission

To test whether the extended Lyα emission is produced ‘in situ’ or ‘ex situ’ (the latter requires scattering), we further use MOSFIRE to map the spatial distribution of two other non-resonant lines, [O III] and Hβ, and quantitatively compare them with Lyα emission at the same spatial position. The positions of the four MOSFIRE slits are also shown in Fig. 1.

Theoretically, we consider two principal scenarios of Lyα production: (1) photo-ionization + recombination (e.g. due to star formation); and (2) collisional excitation + radiative de-excitation (e.g. due to cold accretion). For scenario 1, assuming case B recombination, we use the PYNEB package (Luridiana, Morisset & Shaw 2015) to calculate F_{Lyα}/F_{Hβ} for T_{e}(K) ∈ [10^5, 10^4] and n_e (cm^{-3}) ∈ [1, 10^4], where T_{e} and n_e are the kinetic temperature of the H gas and electron number density, respectively. For scenario 2, assuming collisional ionization equilibrium, we use the CHiantiPy package (Dere et al. 1997; Dere 2013; Dere et al. 2019) to calculate F_{Lyα}/F_{Hβ} as a function of T_{e} for both scenarios are shown in Fig. 2. It can be seen that as T_{e} increases, the predicted F_{Lyα}/F_{Hβ} is roughly constant for scenario 1, but decreases for scenario 2, as Lyα emissivity drops more quickly than Hβ.

Now we compare our spectroscopic data to the theoretical predictions above. For each MOSFIRE slit in Fig. 1, we construct a pseudo-slit to extract a 2D spectrum from the 3D KCWI datacube via a 3D datacube visualization tool QFitasView (Davies et al. 2010; Ott 2012). We then integrate the flux density in the wavelength dimension for each line and convert it to an SB accounting for the slit width.

In Fig. 3, we show the line SB for Lyα, [O III] and Hβ along each slit. Evidently, Lyα is not necessarily cospatial with [O III] or Hβ, and is usually more extended along the slit. We further calculate F_{[O III]}/F_{Hβ} (shown in red numbers) by integrating SB_{Hβ} and SB_{[O III]} along the slits for each identified source. We also calculate F_{[O III]}/F_{Hβ} in two ways, where F_{[O III]} is calculated either by integrating SB_{[O III]} over the same region as Hβ and [O III] (the ‘restricted’ region, as indicated by solid arrows), or by integrating over the full extent of Lyα (the ‘extended’ region, as indicated by dashed arrows).

Table 2. Continuum sources identified in LAB1.

<table>
<thead>
<tr>
<th>Name</th>
<th>RA (J2000)</th>
<th>Dec. (J2000)</th>
<th>z_{sys}</th>
<th>Type</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11</td>
<td>22:17:25.70 + 00:12:34.7</td>
<td>3.0980 ± 0.0001</td>
<td>[O III] (1) and (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>22:17:26.15 + 00:12:54.7</td>
<td>3.0975 ± 0.0001</td>
<td>[O III] (1) and (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALMA-a</td>
<td>22:17:25.94 + 00:12:36.6</td>
<td>...</td>
<td>...</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>ALMA-b</td>
<td>22:17:26.01 + 00:12:36.4</td>
<td>...</td>
<td>...</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>ALMA-c</td>
<td>22:17:26.11 + 00:12:32.4</td>
<td>3.1000 ± 0.0003</td>
<td>[C II] (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>22:17:25.70 + 00:12:38.7</td>
<td>3.1007 ± 0.0002</td>
<td>[O III] (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>22:17:25.94 + 00:12:36.0</td>
<td>3.0988</td>
<td>[O III] (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c1/S1</td>
<td>22:17:26.08 + 00:12:34.2</td>
<td>3.0968</td>
<td>[O III] (1) and (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>22:17:26.05 + 00:12:38.3</td>
<td>2.7542</td>
<td>Lyα (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: aOriginally defined in Steidel et al. (2000). References: (1) This work; (2) McLinden et al. (2013); (3) Geach et al. (2016); (4) Kubo et al. (2015); (5) Umehata et al. (2017).

4https://github.com/Keck-DataReductionPipelines/MosfireDRP
5The KCWI and HST/STIS images have been registered to the same world-coordinate system using cross-correlation.
results are shown next to the arrows (red for $F_{\text{OIII}}/F_{\text{H}\beta}$ and green for $F_{\text{Ly}\alpha}/F_{\text{H}\beta}$).

The results in Figs 2 and 3 show that: (1) for slit 1 and 2, $F_{\text{Ly}\alpha}/F_{\text{H}\beta}$ are always smaller than the predicted value of scenario 1. Considering that Lyα is subject to heavier dust extinction6 than Hβ, this result suggests that scenario 1 itself is sufficient to explain the observed $F_{\text{Ly}\alpha}/F_{\text{H}\beta}$; (2) for slits 3 and 4, we do see $F_{\text{Ly}\alpha}/F_{\text{H}\beta}$ ratios (~ 50–70, see Table 3) higher than that predicted by scenario 1, but still far lower than those predicted by scenario 2 (especially in the T_HI $\geq 10^4$ K region, where both Lyα and Hβ have been sufficiently excited). Simply scenario 1 and resonant scattering are sufficient to explain all the observed line ratios. Furthermore, we do not see a significant number of Lyα profiles that have a blue dominant peak (signature of cold accretion, see e.g. Zheng & Miralda-Escudé 2002; Dijkstra et al. 2006b; Faucher-Giguère et al. 2010) in these regions. Therefore, it is highly likely that photo-ionization + recombination is the main source of Lyα photons, and resonant scattering (as indicated by significant polarization detections from Hayes et al. 2011; Beck et al. 2016) has substantially altered their spatial and kinematic distribution.

3.3 Profiles of Lyα emission

In this section, we investigate the variations of spatially-resolved Lyα profiles in major emitting regions. Before proceeding, we first use [O III] to determine the systemic redshifts of three associated sources: C11, C15, and c1. Single Gaussian fits to the [O III] line profiles (see Appendix A for details) yield redshifts (after heliocentric corrections) $z(C11) = 3.0980$, $z(C15) = 3.0975$, and $z(c1) = 3.0988$, which we adopt as fiducial redshifts in the following analysis.

6Additionally, the scattering of Lyα photons out of the line of sight can also reduce the observed $F_{\text{Ly}\alpha}/F_{\text{H}\beta}$ ratio.

5Compared to McLinden et al. (2013), our measurements for $z(C15)$ are consistent but our $z(C11)$ are slightly different. This may be due to: (1) the asymmetric nature of the [O III] profile of C11, and (2) the misalignment between the MOSFIRE slit and the galaxy continuum emission.

We then visualize the spatial variations of Lyα peak position ($v_{\text{Ly}\alpha}$) and line width ($\sigma_{\text{Ly}\alpha}$) by making moment maps. The first and second flux-weighted moments are defined as:

$$v_{\text{Ly}\alpha,xy} = \frac{\sum_k v_{\text{Ly}\alpha} I_{\text{Ly}\alpha k}}{\sum_k I_{\text{Ly}\alpha k}}$$

$$\sigma_{\text{Ly}\alpha,xy} = \sqrt{\frac{\sum_k (v_{\text{Ly}\alpha} - v_{\text{Ly}\alpha,xy})^2 I_{\text{Ly}\alpha k}}{\sum_k I_{\text{Ly}\alpha k}}}$$

where $I_{\text{Ly}\alpha k}$ and $v_{\text{Ly}\alpha k}$ are the flux density and velocity (relative to a fiducial redshift) of the kth wavelength layer at position (x, y). In our moment analysis we fix the fiducial redshift of LAB1 at $z = 3.1$, and all the summations are carried out over 4959–5009 Å. Before applying equations (1) and (2), we filter out all the voxels with S/N < 6 (for $v_{\text{Ly}\alpha}$) or 4 (for $\sigma_{\text{Ly}\alpha}$).3 The $\sigma_{\text{Ly}\alpha}$ map has been further corrected for the KCWI instrumental line spread function (LSF), $\sigma = 65$ km s$^{-1}$.

The resulting moment maps are shown in Fig. 4. The two major Lyα emitting regions have been delineated by rectangular boxes. We zoom in on these two regions in separate panels. By adjusting the dynamic range, we are able to discern more subtle structures, discussed in the following sections (Sections 3.3.1 and 3.3.2).

3.3.1 Northern region

There is only one identified source (C15) in the northern Lyα emitting region. We first use a large aperture to measure the global properties of LBG C15. The global line widths of Lyα and [O III] of C15 are 250 and 64 km s$^{-1}$ (corrected for LSF, $\sigma = 65$ km s$^{-1}$ for KCWI and 35 km s$^{-1}$ for MOSFIRE). The global velocity offset between Lyα and [O III] is $\Delta v_{\text{Ly}\alpha} = -22$ km s$^{-1}$, although it varies at different locations. This $\Delta v_{\text{Ly}\alpha}$ is significantly smaller than the velocity offsets observed in LBGs (Steidel et al. 2010) and LAEs (McLinden et al. 2011), both of which are ≥ 300 km s$^{-1}$ and are interpreted as signs of outflows. Therefore, it is tempting to conclude that this region should lack of significant outflows. However, as we will show in Section 4.2, our multiphase, clumpy model predicts that significant outflow velocities can still be present in profiles with $\Delta v_{\text{Ly}\alpha} \approx 0$ (e.g. in our spectra 1 and 2).

Most Lyα profiles in the northern region are considerably asymmetric and consist of a ‘main peak’ and a ‘red bump’ (see spectrum 1 in Fig. 5 as an example). Moreover, the main peak is redshifted towards the eastern region, and blueshifted towards the west. The largest $v_{\text{Ly}\alpha}$ can be up to ~ 500 km s$^{-1}$, which explains the evident east-west $v_{\text{Ly}\alpha}$ gradient in Fig. 4. This shear in $v_{\text{Ly}\alpha}$ appears to be perpendicular to the major axis of C15, which is consistent with the suggestion by Weijmans et al. (2010) that outflow or rotation is indicated.

As for $\sigma_{\text{Ly}\alpha}$, its largest value (~ 400 km s$^{-1}$) is located slightly north-east of C15, beyond which $\sigma_{\text{Ly}\alpha}$ gradually decreases moving away from C15. In general, the $\sigma_{\text{Ly}\alpha}$ values in the northern region are much larger than the global σ_{OIII}. This is unexpected if one were to assume that both Lyα and [O III] photons are emitted by the same sources, unless the kinematics of Lyα have been altered by radiative transfer effects. We attempt to explain the broadening of Lyα in Section 4.

8Our experiments show that these choices maximize the inclusion of real signal without introducing spurious detections.
3.3.2 Southern region

Multiple discrete continuum sources have been identified within the southern portion of LAB1, including the LBG C11, three ALMA submm sources, and several very faint objects with spectroscopic confirmation (K1, c1, c2, and c1). We first use a large aperture to measure the global properties of LBG C11. The LSF-corrected global line widths of Lyα and [O III] of C11 are 178 and 78 km s\(^{-1}\). The global velocity offset between Lyα and [O III] is Δv\(_{\text{Lyα}}\) = \(+175\) km s\(^{-1}\) (i.e. redshifted with respect to systemic), and \(-197\) km s\(^{-1}\) between the Si ii 1526 absorption line (from Low Resolution Imaging Spectrometer (LRIS) observations) and Lyα. Similar velocity offsets between Lyα and interstellar absorption features are commonly observed in ‘down the barrel’ spectra of LBGs, and are generally interpreted as signatures of outflow (Steidel et al. 2010). However, they are inconsistent with the non-detection of a significant offset between Lyα and [O III] by McLinden et al. (2011). This may be due to the large asymmetry of the [O III] profile of C11.

Most Lyα profiles from spatial locations near C11 exhibit double peaks – a red dominant peak + a blue ‘bump’ (see spectrum 10 in Fig. 5 as an example). The position of the red dominant peak tends to move towards more blueshifted velocities along the north-west-southeast direction. The largest \(v_{\text{Lyα}}\) is \(~300\) km s\(^{-1}\), which gives rise to the \(v_{\text{Lyα}}\) north-west-southeast gradient in Fig. 4. This shear in \(v_{\text{Lyα}}\) appears to be parallel to the major axis of C11, consistent with Weijmans et al. (2010).

As for σ\(_{\text{Lyα}}\), its largest value (~500 km s\(^{-1}\)) is located in the southwest corner, while the majority of the spectra around C11 have a rather homogeneous σ\(_{\text{Lyα}}\) ~ 400 km s\(^{-1}\). Again, these values are much larger than σ\(_{\text{[OIII]}}\).

The Lyα profiles near the ALMA sources are more complex – most of them are very broad, highly asymmetric, and have multiple peaks. Some of the profiles (e.g. the northeast corner) are even dominated by a ‘blue peak’, as shown in spectrum 4 in Fig. 5.

On the \(v_{\text{Lyα}}\) map, there is an alternate pattern of positive and negative \(v_{\text{Lyα}}\) from the east to the west. Yet again, we see a similar coherent velocity structure that coincides with the high SB ‘tadpole’ structure (see Section 3.1). This structure is also seen on the σ\(_{\text{Lyα}}\) map, but with a slightly different trend – starting from the south, first going towards northeast, and then turning north-west. The largest σ\(_{\text{Lyα}}\) values (~500 km s\(^{-1}\)) still overlap with ALMA-a, which indicates that the ALMA source may be responsible for the Lyα line broadening (e.g. via starburst-driven outflows).

Our \(v_{\text{Lyα}}\) and σ\(_{\text{Lyα}}\) maps are qualitatively similar to the ones presented in a recent work by Herenz et al. (2020), albeit with slight differences in the extent of the Lyα emitting regions and the number of spaxels included, due to different FOVs of instruments and S/N threshold choices. The alternate pattern of positive and negative \(v_{\text{Lyα}}\) is consistent with the left-hand panel in their fig. 7, and the large σ\(_{\text{Lyα}}\) values near ALMA-ab sources are consistent with the right-hand panel in their fig. 7.

4 Radiative Transfer Modelling Using the Multiphase Clumpy Model

4.1 Methodology

Although the moment map analysis above provides a cursory overview of the apparent gas velocity field, it is purely phenomenological and could even be misleading, in the sense that if radiative transfer effects dominate, the observed \(v_{\text{Lyα}}\) would not necessarily be linked directly to the local gas kinematics. To gain more physical insight and to account for the possibly important radiative transfer effects, we generated a series of model spectra using MCRT and fit them to the observed Lyα spectra at different positions in LAB1.

Our first attempt was to fit the Lyα profiles using the widely used ‘shell model’ (Verhamme et al. 2006; Dijkstra et al. 2006b). However, as most line profiles are fairly broad and multipeaked with significant flux close to line center, the fits either fail to reproduce the major features or have inexplicably large intrinsic line widths (see e.g. Orlitova et al. 2018). Therefore, we adopt a more sophisticated and physically realistic multiphase ‘clumpy model’ instead. As described in Gronke & Dijkstra (2016), the geometric setup of this ‘clumpy model’ is a number of spherical Hi clumps moving within a hot (\(T = 10^{5}-10^{6}\) K), ionized interclump medium (ICM, see also Laursen et al. 2013). This model predicts the Lyα spectra produced by a central Lyα emitting source, accounting for the scattering by H1 (both in the clumps and the ICM). It has 14 parameters in total (see the detailed formulation in Gronke & Dijkstra 2016), among which the most important ones are the cloud covering factor (\(f_{\text{cl}}\)) that describes the mean number of clumps per line of sight from the centre to the boundary of the simulation sphere, the H1 number density in the ICM (\(n_{\text{H1,ICM}}\)), and kinematic parameters of the clumps and ICM. Specifically, the clump motion is assumed to be a superposition of an isotropic Gaussian random motion (characterized by \(\sigma_{\text{cl}}\), the
Figure 3. SB distributions of Lyα (blue), [O III] (red), and Hβ (green) along four MOSFIRE slits (the leftmost panels, (a)–(d) correspond to slits 1–4, respectively). For reference, the smoothed 2D spectra of Hβ (the second column) and [O III] (the third and fourth columns, for 4960 and 5008 Å, respectively) are also shown. Both the observed wavelengths (λ_{obs}) and the rest-frame wavelengths (λ_{rest}, assuming z = 3.1000) are shown. The positions of known sources are indicated with black arrows. We calculate \(F_{[O III]} / F_{H\beta} \) (shown in red numbers) by integrating SB_{H\beta} and SB_{[O III]} along the slits for each identified source. We also calculate \(F_{Ly\alpha} / F_{H\beta} \) (shown in green numbers) in two ways, where \(F_{Ly\alpha} \) is calculated either by integrating SB_{Ly\alpha} over the same region as Hβ and [O III] (as indicated by solid arrows), or by integrating over the full extent of Lyα (as indicated by dashed arrows). Note that the blue regions in the 2D spectra are negative images due to dithering.
velocity dispersion of the clumps) and a radial uniform outflow with a constant velocity v_{cl}. In addition, we consider an outflow velocity of the low density H I in the ICM, v_{ICM}, and a post-processed parameter, the velocity shift with respect to $z = 3.1000$, Δv. This Δv parameter represents the best-fitting systemic redshift of the Ly\(\alpha\) source function relative to $z = 3.1000$ (the initial guess for the systemic redshift).

Note that Ly\(\alpha\) radiative transfer in such a multiphase medium exhibits two characteristic regimes defined by the values of f_{cl}. If f_{cl} is (much) greater than a critical value $f_{\text{cl, crit}}$ (which is a

Figure 3. continued.
Figure 4. The first ($v_{\text{Ly} \alpha}$) and second ($\sigma_{\text{Ly} \alpha}$) moment maps of LAB1. The two major Lyα emitting regions have been delineated by rectangular boxes (dashed white lines), and their zooming-in views are shown in the right-hand panels. For the northern region, the colour bar limits have been adjusted accordingly to account for the smaller value range. The positions of the identified continuum sources are indicated by circles with labels. The Lyα SB isophotes (solid white lines) with levels of $\text{SB}_{\text{Ly} \alpha} = [120, 80, 40, 15, 4] \times 10^{-19} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2}$ have also been overlaid on to each image for visual reference.
Also been shifted by \(-\Delta v\) to their local systemic redshifts. For each subpanel, the \(x\)-axis is the velocity (in \(\text{km s}^{-1}\)) with respect to the local systemic redshift, and the \(y\)-axis is the normalized line flux. The spectrum number of each spectrum has been marked on the SB map (the right-hand panel). For visual reference, the horizontal and vertical black dashed lines in each subpanel indicate zero flux level and zero velocity with respect to the local systemic redshift, respectively.

Such a configuration amounts to 26 244 models in total. Each model is calculated via radiative transfer using 10000 \(\text{Ly} \alpha\) photon packages generated from a Gaussian intrinsic spectrum \(N(0, \sigma_\alpha^2)\), where \(\sigma_\alpha = 12.85 \text{ km s}^{-1}\) is the canonical thermal velocity dispersion of \(T = 10^7 \text{ K}\) gas.\(^{13}\) The sixth parameter, \(\Delta v\), is varied continuously in post-processing. To properly explore the multimodal posterior of the parameters, we further use a PYTHON nested sampling package \texttt{dynesty}\(^{\text{11}}\) (Skilling 2004, 2006; Speagle 2020) to fit the \(\text{Ly} \alpha\) spectra.

To demonstrate the feasibility of this fitting routine using clumpy models, we selected 11 representative \(\text{Ly} \alpha\) spectra from the high SB regions, as shown in Fig. 5. All of the spectra presented have been smoothed spatially by a 3 pixel \(\times\) 3 pixel boxcar and were extracted using an \(R = 3\) pixel (0.9 arcsec) aperture. For each spectrum, we used 1500 live points (the initial randomly drawn samples from the prior) to calculate a set of clumpy models via linear flux interpolation on the grid and convolved with the KCWI LSF before comparing them to the observed \(\text{Ly} \alpha\) profiles. The best-fitting spectra are also shown in Fig. 5.

4.2 Results

In Fig. 5, one can see that most of the model fits match the observations reasonably well. The values of the fitted parameters

\[^{10}\text{Note that the model spectra are sensitive to } f_{\text{cl}}/f_{\text{cl,obs}}\text{ but not to certain individual model parameters, such as the }H_\text{I}\text{ column density or the shape of the clumps (Hansen \& Oh 2006).}\]

\[^{11}\text{For convenience, we vary } F_\alpha\text{ rather than } f_{\text{cl}}\text{ when generating clumps, but they are directly related via } f_{\text{cl}} = 3R_{\text{gal}}/4R_{\text{cl}, \text{obs}} F_\alpha, \text{ where } R_{\text{gal}} = 5\text{ kpc is the radius of the simulation sphere and } R_{\text{cl}, \text{obs}} = 50\text{ pc is the clump radius (hence } f_{\text{cl}} = 75 F_\alpha\text{ in our case).}\]

\[^{12}\text{Here, we modelled each observed spectrum with a set of parameters of the scattering medium independently, whereas in reality the }\text{Ly} \alpha\text{ photons are likely to be scattered by a common medium with spatially varying parameters.}\]

\[^{13}\text{Note that we did not employ the commonly used ‘core-skipping’ technique, as it may cause artifacts in a multiphase medium.}\]
are presented in Table 4, and the derived joint and marginal posterior probability distributions are presented in Appendix D. We find that different parameters affect the model spectra in different ways – n_{HI} determines the overall shape of the spectrum and the depth of the intensity minimum near the systemic velocity (the ‘trough’); F_V and v_a determine the shapes and strengths of the peak(s); σ_d determines the width of the spectrum; v_{ICM} determines the location of the main peak and the trough; and Δv shifts the spectrum in the velocity dimension. In Fig. 6, we illustrate the impact of each parameter on the emergent model spectrum. Each parameter was varied individually while others were kept fixed to the best-fitting parameter values.

Specifically, spectra 1 and 2 (near the LBG C15) are clearly single-peaked, although spectrum 1 has a subdominant red bump. Interestingly, although spectrum 1 appears to be broader and has a larger σ_{Lyr} on the moment map, it actually requires a smaller σ_d (~ 150 km s$^{-1}$) than spectrum 2. The fit of spectrum 1 has a very large v_d (~ 800 km s$^{-1}$) and a negligible v_{ICM}, whereas the fit of spectrum 2 has comparable v_d and v_{ICM} (both ~ 500 km s$^{-1}$). This is due to the fact that multiphase outflows increase the asymmetry as well as the width of the spectra, and this degeneracy is not captured by the moment analysis. In particular, for spectrum 1, the optical depth at the Lyα line centre τ_{ICM} is 1 to 2, so the Lyα photons likely interact with the ICM prior to the clumps (as opposed to spectrum 2 where $\tau_{\text{ICM}} \ll 1$). This implies that photons can then scatter approximately orthogonally off the clumps (see Appendix B), which yields an additional broadening of the spectrum that is larger than σ_d. The derived Δv (~ 200 km s$^{-1}$) is also consistent with the C15 systemic redshift ($z = 3.0975$) measured from [OIII]. Also note that although spectrum 1 exhibits a blue dominant peak and a smaller red trough, the modelled spectrum 2 has comparable v_d and v_{ICM}. The best fit of the former is captured by the clumpy models. Increasing σ_d in order to include both the red and blue peaks could potentially provide a better fit but would lack physical motivation.

Spectra 4 and 5 (the tail of the tadpole) both possess two comparable peaks and a trough in the middle. The best fit of the former is single-peaked, while the latter is double-peaked and captured the trough. Both fits have very large σ_d (> 500 km s$^{-1}$) to account for the line widths. The fit of spectrum 4 has comparably large v_d and v_{ICM} (both ~ 700 km s$^{-1}$), whereas spectrum 5 has a v_d of ~ 500 km s$^{-1}$ and a negligible v_{ICM}.

Spectra 6 and 7 (the body of the tadpole) are both multipeaked and dominated by a red peak. The best fits both have σ_d ~ 450 km s$^{-1}$.

They have moderate v_d (~ 200 and 400 km s$^{-1}$, respectively) and small $v_{\text{ICM}} < 50$ km s$^{-1}$ (dictated by the location of the absorption features).

Spectra 8 and 9 (the head of the tadpole, near ALMA-a) are both very broad (σ_d ~ 500 km s$^{-1}$) and red-dominant double-peaked with a deep trough between two peaks. They both have high F_V (> 0.5) and moderate v_d (~ 250 km s$^{-1}$) and v_{ICM} (~ 400 km s$^{-1}$).

Spectra 10 and 11 (near the LBG C11) are also red-dominant double-peaked, although with slightly narrower line widths (σ_d ~ 400 km s$^{-1}$). Compared with spectra 8 and 9, they have lower F_V (< 0.3), comparable v_d (~ 250 km s$^{-1}$) and lower v_{ICM} (< 300 km s$^{-1}$). The derived Δv of spectrum 10 (~ 150 km s$^{-1}$) is also consistent with the C11 systemic redshift ($z = 3.0980 \pm 0.0001$) measured from [OIII]. Notably, the prominent double peak profiles in this region require a considerable outflow velocity for both the clumps and the ICM. This strongly suggests the presence of outflows, which is consistent with the indication of the large global offset between Lyα and Si II.

It is noteworthy that although the observed v_{Lyr} is fairly small in many positions (e.g. spectra 4–9), large σ_d, v_d and and non-zero
Best-fit Parameters: $n_{\text{ICM}} = 3 \times 10^{-8}$ cm$^{-3}$, $F_v = 0.28$, $\sigma_{\text{cl}} = 356$ km/s

$v_{\text{cl}} = 269$ km/s, $v_{\text{ICM}} = 299$ km/s, $\Delta v = -132$ km/s

Figure 6. The effects of each individual physical parameter in $[n_{\text{H I, ICM}}, F_v, \sigma_{\text{cl}}, v_{\text{ICM}}, \Delta v]$ (taking spectrum 10 as an example). From the top left to the bottom right panel, one parameter is varied at a time (as shown in lines and labelled with different colours) and others are fixed (to the best-fitting parameter values of spectrum 10, see Table 4). The red line in each panel represents the best-fitting model of spectrum 10. The x-axis is the velocity (in km s$^{-1}$) with respect to the local systemic redshift of spectrum 10, and the y-axis is the normalized line flux. It can be seen that different parameters affect the model spectra in different ways: $n_{\text{H I, ICM}}$ determines the overall shape and the trough depth of the spectrum; F_v and v_{ICM} determine the shapes and strengths of the peak(s); σ_{cl} determines the width of the spectrum; v_{ICM} determines the location of the main peak and the trough; and Δv shifts the spectrum in the velocity dimension.

v_{ICM} are still preferred by the broad, asymmetric Lyα profiles. This concerns us that the first moment does not fully capture the gas kinematic information encoded in the Lyα profiles. Second moments may be helpful in quantifying the line widths, whose possible physical interpretation is the random velocity dispersion of H I clumps. Furthermore, the outflow velocity (parametrized as v_{cl} and v_{ICM} in the model) may be difficult to determine directly from the observed spectra (especially for complex Lyα profiles), but might be retrieved using realistic radiative transfer modelling.

In addition, we note that both the average and the standard deviation of all the derived Δv are fairly small ($\langle \Delta v \rangle = -122$ km s$^{-1}$, $\sigma(\Delta v) = 87$ km s$^{-1}$), despite the large outflow velocities indicated by many of the Lyα profiles. This corresponds to an average systemic redshift of LAB1, $\langle \alpha \rangle = 3.0983 \pm 0.0004$.

We caution that the effect of Lyα absorption from the intergalactic medium (IGM) is not modelled in this work. It is expected that at $z \sim 3$ this effect is in general non-negligible on the blue side of the spectrum (Dijkstra, Lidz & Wyithe 2007; Laursen, Sommer-Larsen & Razoumov 2011). However, we do not expect the effect of the IGM to be significant here, as it would cause sharp absorption troughs and yield multiple peaks, which should be clearly visible given the widths of the observed spectra (see Byrohl & Gronke 2020 for a discussion of this effect) instead of simply attenuating the spectrum smoothly.

To recap, the main results of our analysis are:

(i) The observed Lyα spectra require relatively few clumps per line of sight ($f_{\text{cl, cen}} \lesssim f_{\text{cl, cen}}$) as they have significant fluxes at the line centre. Therefore, they are very different from the spectra of most Lyα emitting galaxies at essentially all redshifts (e.g. Steidel et al. 2010; Erb et al. 2014; Trainor et al. 2015; Yang et al. 2016, 2017; Gronke 2017; Orlitová et al. 2018), which can usually be reproduced by a uniform medium (e.g. the ‘shell model’) or by a multiphase medium with a large number H I clumps ($f_{\text{cl}} \gg f_{\text{cl, cen}}$).

(ii) The velocity dispersion of the scattering clumps yields a broadening of the spectra from the intrinsic line width $\sigma_{\text{cl}} \sim 13$ km s$^{-1}$ to $\gg 100$ km s$^{-1}$ as observed. This is possible when $f_{\text{cl}} \sim \alpha f_{\text{cl, cen}}$ with $\alpha \sim$ a few. Such a process may be crucial in galaxies where the observed Lyα line is always broader, usually by at least a factor of 2, than the corresponding non-resonant lines such as [O III], Hα or Hβ (e.g. Orlitová et al. 2018).

(iii) While the widths of the spectra are set primarily by the velocity dispersion of the clumps, that is, $\sigma_{\text{Ly} \alpha} \sim \sigma_{\text{cl}}$, we found that the clump bulk outflow can also cause additional broadening, as seen in spectrum 1. In this case, one might naively assume that the photons

15This is also notable in cases where an [O III] measurement is available and the velocity offset between Lyα and [O III] is close to zero (e.g. spectra 1 and 2).

16The success of shell model fitting may no longer be achieved when the model parameters are further constrained by additional observations (e.g. optical emission lines or UV absorption lines, see Orlitová et al. 2018).

17Note that the scattering off the surface of the clumps broadens the spectrum as long as $\sigma_{\text{cl}} > \sigma_i$ (and $f_{\text{cl}} \sim f_{\text{cl, cen}}$). Hence, the emergent spectra are insensitive to the exact value of σ_i.

do not interact with the clumps due to their large velocity offsets ($v_d \gg \sigma_d$). However, if $t_{\text{CM}} \gtrsim 1$, the photons may first interact with the ICM, which significantly reduces the parallel component of v_d ($v_d_{\parallel \text{CM}}$) appearing to the photons, and hence greatly increases the optical depth. This result suggests that we may have interpreted our model too naively (e.g. using single-scattering approximation), especially considering that the kinematics of our model are clearly simplistic and not strictly hydrodynamically stable (we usually expect $v_d \sim v_{\text{ICM}}$, i.e. the clouds are entrained by the local flow, see e.g. Klein, McKee & Colella 1994; Li et al. 2020). Moreover, although we found that significant outflow velocities ($\gtrsim 100 \text{ km s}^{-1}$) are required to reproduce the observed spectra, the exact values may still be subject to considerable uncertainties, due to the internal degeneracies and the presumably more complicated kinematics in reality (e.g. Steidel et al. 2010 show that gas outflows even within the same galaxy have a range of velocities that goes from 0 to 800 km s$^{-1}$ with varying effective optical depths).

(iv) In our best-fitting spectra, the H I in the ICM is responsible for the absorption feature close to the line centre (cf. spectrum 5 or 6). However, several tentative absorption features can be present in a single spectrum (e.g. spectra 5, 6, 7, and 9), and they are not captured simultaneously by our model. These multiple features might be caused by the H I in the outer CGM/IGM, where the probability of backscattering into the line of sight is negligible.

The derived values of our fitted parameters also fit into a broader picture in at least two ways:

(i) The σ_d values correspond to reasonable dark matter halo masses. The dynamical mass of the LAB1 halo can be estimated from the velocity dispersion and physical size (assuming spherical symmetry):

$$M_{\text{dyn}} = \frac{3\sigma_d^2 R}{G} = 6.9 \times 10^9 \left(\frac{\sigma_d}{100 \text{ km s}^{-1}}\right)^2 \left(\frac{R}{\text{kpc}}\right) M_\odot.$$

Taking $R \sim 100$ kpc, the highest σ_d ($\sim 700 \text{ km s}^{-1}$) corresponds to $M_{\text{dyn}} \sim 10^{13.5} M_\odot$. This result is consistent with the predicted halo masses from the Millennium simulations at $z = 3.06$. As calculated by Kubo et al. (2016), the halo masses range from $10^{12.2}$ to $10^{14.0} M_\odot$ (with median $10^{13.2} M_\odot$) for the De Lucia & Blaizot (2007) model, and from $10^{12.4}$ to $10^{14.1} M_\odot$ (with median $10^{13.2} M_\odot$) for the Guo et al. (2011) model.

(ii) The v_d values correspond to reasonable survival times of the clumps. Here, we consider two different criteria proposed by Li et al. (2020) and Gronke & Oh (2018), respectively. Following Li et al. (2020), assuming the ionized medium has H I number density $n_{\text{H I}} = 0.01 \text{ cm}^{-3}$, an outflow velocity $v_d \sim 500 \text{ km s}^{-1}$ corresponds to a cloud lifetime $t_{\text{cl}} \sim 100$ Myr. The cooling time of the hot medium, $t_{\text{cool}, \beta} \sim 30$ Myr $\leq t_{\text{cl}}$. Whereas following Gronke & Oh (2018), the cooling time of the mixing layer $t_{\text{cool}, \text{mix}} \sim 3$ Myr, and the cloud-crushing time $t_{\text{cc}} \sim 1$ Myr $\geq t_{\text{cool}, \text{mix}}$, which implies possible survival of the cold gas. So either criterion indicates that the clumps can survive for a fairly long time, and may even grow in mass as they accrete the cooling hot material from the ambient medium.

Recently, Herenz et al. (2020) have reported a significant detection of He II λ1640 emission in three regions of LAB1 (which are close to C15, the tail of the tadpole structure, and C11, respectively) as well as a non-detection of C IV λ1548, 1550 doublet. They have carried out a detailed analysis and concluded that their observed He II/Lyα and C IV/Lyα ratios are consistent with cooling radiation, feedback-driven shocks, and/or photo-ionization from an embedded AGN. We examined our MOSFIRE spectra around these regions but did not find additional rest-UV collisionally excited emission lines near Lyα that are significant, although we do see significant outflow velocities in these three regions (cf. spectra 1, 2, 5, 10, and 11). More observations are needed to distinguish these different powering mechanisms.

In summary, the multiphase clumpy model is versatile enough to reproduce the diverse Lyα morphologies observed. The fitting results are still, not surprisingly, model dependent – different assumptions on the geometry and moving pattern of the H I gas may yield different results. Furthermore, our modelling with parameters of scattering medium varying independently at different locations can be handled in a more self-consistent manner, as in reality the Lyα photons are likely to be scattered by a common, spatially varying medium. None the less, our analysis is a first attempt to model the spatially resolved Lyα profiles in LAB1 with more physically realistic clumpy models. It provides us with insights on the gas kinematics and will serve as the foundation of more advanced radiative transfer modelling in the future. One promising future direction is to use more elaborate clump velocity profiles (e.g. consistent with absorption line observations) which can alter $f_{\text{cl, can}}$ (cf. Appendix B). We will explore such new physical regimes in our future work.

5 CONCLUSIONS

We have carried out deep spectroscopic observations of SSA22-LAB1 at $z = 3.1$ using KCWI and MOSFIRE. The main conclusions of our analysis are:

(i) By applying matched filtering to the KCWI datacube, we have created a narrow-band Lyα image of LAB1. The most prominent feature is a tadpole-shaped structure, whose ‘head’ overlaps with one of the ALMA sources yet whose ‘tail’ does not associate with any identified sources.

(ii) By comparing the spatial distributions and intensities of Lyα and Hβ, we find that recombination of photo-ionized H I gas followed by resonant scattering is sufficient to explain all the observed Lyα/Hβ ratios.

(iii) Using both moment map analysis and MCRT modelling, we have managed to extract physical information from the spatially resolved Lyα profiles. We find that moment maps can be used as a crude indicator of the H I gas kinematics, but realistic MCRT modelling needs to be invoked to extract detailed kinematic information and make physical interpretations. By fitting a set of multiphase, ‘clumpy’ models to the observed Lyα profiles, we are able to reasonably constrain many physical parameters, namely the H I number density in the ICM, the cloud volume filling factor, the random velocity and outflow velocity of the clumps, the H I outflow velocity of the ICM and the local systemic redshift. Our model has successfully reproduced the diverse Lyα morphologies at different locations, and the main results are: (1) the observed Lyα spectra require relatively few clumps per line of sight ($f_{\text{cl}} \lesssim f_{\text{cl, can}}$) as they have significant fluxes at the line centre; (2) the velocity dispersion of the scattering clumps yields a significant broadening of the spectra as observed; (3) the clump bulk outflow can also cause additional broadening if $t_{\text{CM}} \gtrsim 1$. In that case, the photons may first interact with the ICM, which significantly reduces the parallel component of clump outflow velocity appearing to the photons, and hence greatly increases the optical depth of the clumps; and (4) the H I in the ICM is responsible for the absorption feature close to the Lyα line centre.

18 We do see $v_d \sim v_{\text{ICM}}$ in our fits of spectra 3, 4, 5, 10, and 11.
We caution that there are still a number of caveats to this study. For example, our MCRT modelling is inherently model dependent, in particular on the specific assumptions about the kinematics of the cold clumps. A combination of results from hydrodynamical simulations and additional observations (e.g. absorption line studies) may help constrain the actual gas kinematics better. We intend to explore these possibilities in our future work.

ACKNOWLEDGEMENTS

We thank the referee for insightful comments that have significantly improved the paper. We also thank Phil Hopkins for providing us with adequate computational resources. ZL acknowledges Michael Zhang, for his professional guidance and kind company during the excruciating debugging process. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We are also grateful to the dedicated staff of the W.M. Keck Observatory who keep the instruments and telescopes running effectively. MG also grateful to the dedicated staff of the W.M. Keck Observatory for their generous financial support of the W. M. Keck Foundation. We are also thankful to the dedicated staff of the W.M. Keck Observatory for their generous financial support of the W. M. Keck Foundation.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Dere K., 2013, Astrophysics Source Code Library, record ascl:1308.017
Ginsburg A., Mirocha J., 2011, Astrophysics Source Code Library, record ascl:1109.001
Matsuda Y. et al., 2004, AJ, 128, 569

In order to determine the systemic redshifts of two LBGs, C11 and C15, we fitted the [O III] profiles (5008.24 Å) with single Gaussians. In order to determine the systemic redshifts of two LBGs, C11 and C15, we fitted the [O III] profiles (5008.24 Å) with single Gaussians. The [O III] emission is spatially integrated over the ranges indicated by black solid arrows in Fig. 3, which include all the significant [O III] emission of C11 and C15.

We used the PYSPECKIT package (Ginsburg & Mirocha 2011) to fit the [O III] profiles with a single Gaussian model:

$$ F_A = F_0 e^{-\frac{(z - z_A)^2}{2\sigma^2}} $$

(A1)

The fitting results and derived values with 1σ uncertainties of the free parameters (F_0, λ_0, and σ) are shown in Fig. A1. The systemic redshifts of C11 and C15 are therefore determined to be $z(C11) = 3.0980 \pm 0.0001$ and $z(C15) = 3.0975 \pm 0.0001$ (accounting for the typical redshift precision achieved by MOSFIRE measurements reported in Steidel et al. 2014).
where τ_0 of the clump. Using the core approximation of the Lyα emission of C11 and C15. The observed fluxes are shown in black with 1σ uncertainties (shaded in grey), the best-fitting model (shown in red) and best-fitting parameters (1σ uncertainties) are shown in each panel. Note that skylines are present near the [O III] lines, as indicated by large flux uncertainties.

APPENDIX B: DERIVATION OF THE CRITICAL CLUMP COVERING FRACTION

Here, we analytically derive the critical clump covering fraction, $f_{\text{cl, crit}}$, for a multiphase medium whose kinematics have been defined earlier in this work, that is, H I clumps with a constant outflow velocity v_{cl} and a velocity dispersion σ_{vel}, and an ICM with a constant outflow velocity v_{ICM}. The optical depth of the H I in the ICM at the Lyα intrinsic frequency is approximated as τ_0, ICM, that is, the optical depth at the line centre.

The large widths of the observed spectra imply that photons escape in a single long flight – after they have been scattered off the surface of a fast moving clump (Gronke et al. 2017). It follows that $f_{\text{cl, crit}}$ is given by the condition that on average one clump interacts with a photon at its intrinsic frequency.

The width in velocity space of each clump, \bar{v}, is determined by:

$$
\tau_0(\bar{v})/2 = \frac{4}{3} N_{\text{H I,cl}} \sigma_{\text{vel}}(\bar{v})/2 = 1
$$

where τ_0 is the optical depth of the clump, $N_{\text{H I,cl}}$ is the H I column density of the clump, and σ_{vel} is the Lyα cross-section of the clump. The factor 4/3 is simply due to the spherical geometry of the clump. Using the core approximation of the Lyα cross-section ($\sigma_{\text{vel}}(v) \propto \exp(-v^2/v_0^2)$), the solution to equation (B1) can be explicitly written as $\bar{v} = 2 v_0 \sqrt{\ln \tau_0}$, where $\tau_0, \text{cl} \equiv \tau_0(v = 0)$, and v_0 is the thermal velocity dispersion of H I within the clumps. For the H I column density and temperature of the clumps used in this work, $\bar{v} \simeq 78$ km s$^{-1}$.

Under the assumption that all photons are injected at the Lyα line centre (which is a reasonable approximation for our setup since the width of the intrinsic spectrum $\sigma_i \ll \sigma_{\text{vel}}$), the average number of clumps per line of sight that intersect with $v = 0$ in velocity space is:

$$
\tilde{f}_{\text{cl}} = \int_{-\infty}^{\infty} N(v, \mu = v_{\text{cl}}, \sigma = \sigma_{\text{vel}}) dv
$$

where N denotes the normal distribution assumed for the velocity distribution of the clumps. Here, $v_{\text{cl},i}$ is a component of v_{cl} that is parallel to the trajectories of photons. The reason for considering $v_{\text{cl},i}$ rather than $v_{\text{cl},\parallel}$ is explained below.

Given the considerations above, demanding $\tilde{f}_{\text{cl}} = 1$ yields the critical number of clumps per line of sight (i.e. the clump covering fraction):

$$
\tilde{f}_{\text{cl, crit}} = \frac{2}{\text{erf} \left(\frac{-v_{\text{cl},i} + 2 v_0 \sqrt{\ln \tau_0, \text{cl}}}{\sqrt{2} v_0} \right) + \text{erf} \left(\frac{v_{\text{cl},i} + 2 v_0 \sqrt{\ln \tau_0, \text{cl}}}{\sqrt{2} v_0} \right)}.
$$

where erf(x) is the Gauss error function.

Note that this equation is a generalization of equation (12) in Gronke et al. (2017), where the radial velocity distribution of the clumps is approximated as a top-hat profile. It converges to that equation when $v_{\text{cl},i} \ll \sigma_{\text{vel}}$. For $v_{\text{cl},i} \gg \sigma_{\text{vel}}$, this equation yields very large values of $\tilde{f}_{\text{cl, crit}}$.

Here, we discuss $v_{\text{cl},i}$ for two different cases: (1) if $\tau_0, \text{ICM} \ll 1$, initially the photons do not interact with the ICM. Therefore, $v_{\text{cl},i} \approx v_{\text{cl}}$; (2) if $\tau_0, \text{ICM} \sim 1$ (up to a few), the photons can interact with the ICM prior to the clumps, and thus are likely to scatter orthogonally to the clump bulk outflow. Therefore, $v_{\text{cl},i} \approx 0$ (with details depending on the exact value of τ_0, ICM and the clump distribution). We do not consider $\tau_0, \text{ICM} \gg 1$ cases, where the multiphase, clumpy medium converges to a homogeneous medium that would fail to reproduce the observed spectra presented in this work (cf. discussion in Section 4).

19Technically speaking, the optical depth of the H I in the ICM is expressed as $\int dv f_i(v) n_{\text{ICM}}(v)$ where $f_i(v)$ is the normalized intrinsic spectrum as a function of velocity. As our intrinsic spectrum is very narrow, this approximation holds.

20This choice is purely for practical purpose – in principle it can be replaced by any physically reasonable velocity distribution.
APPENDIX C: JUSTIFICATION OF USING SPATIALLY INTEGRATED MODELS TO FIT THE SPATIALLY RESOLVED Lyα PROFILES

In this work, we have fitted spatially resolved Lyα profiles with spatially integrated models, which are derived from Lyα photons from the entire scattering region. Here, we emphasize that qualitatively, these spatially integrated models are very similar to the binned models, which are derived from Lyα photons within a certain impact parameter range.

We illustrate this in Fig. C1. With spectra 1 and 2 as two examples, we binned all the scattered photons according to their impact parameters, b (the projected distance to the simulation centre perpendicular to the line of sight). Assuming the largest impact parameter of all the photons is b_{max}, we made three photon bins within the 2σ range ($0.05 < b/b_{\text{max}} \leq 0.35$, $0.35 < b/b_{\text{max}} \leq 0.65$, and $0.65 < b/b_{\text{max}} \leq 0.95$) and constructed three binned model spectra with these photon bins respectively. It can be seen the binned models are qualitatively very similar to the integrated model. Therefore, it is approximately correct to model the spatially resolved profiles at positions away from the Lyα emitting sources with spatially integrated models.

The aim of our modelling in this work is to roughly extract the velocities and densities of H I that the Lyα photons ‘experience’ in situ. In our following work, we plan to model the spatially resolved profiles in a more self-consistent way (e.g. modelling the spatially resolved Lyα profiles with a common scattering medium).

APPENDIX D: POSTERIOR PROBABILITY DISTRIBUTIONS DERIVED FROM NESTED SAMPLING

Here, we present the joint and marginal posterior probability distributions of the multiphase clumpy model parameters for all 11 representative Lyα spectra derived from nested sampling. For each spectrum, we also show the best fit, the observed Lyα profile and five model spectrum samples from nested sampling.
Figure D1. Joint and marginal posterior probability distributions of the multiphase clumpy model parameters for all 11 representative Ly\(\alpha\) spectra derived from nested sampling. The vertical black dashed lines indicate the [2.5 per cent, 50 per cent, 97.5 per cent] quantiles (i.e. 2\(\sigma\) confidence intervals). The vertical red dashed lines indicate the locations of the maximum posterior probability. The upper right panels show the best fits (red, with orange 1\(\sigma\) Poisson errors), the observed Ly\(\alpha\) profiles (black, with grey 1\(\sigma\) error bars) and five model spectrum samples from nested sampling (blue) in the same way as Fig. 5.
Figure D1. continued.
Figure D1. continued.

This paper has been typeset from a TeX/LaTeX file prepared by the author.