Pavlis, Alexander and Psaroudaki, Christina (2020) Curvature-induced skyrmion mass. Physical Review Research, 2 (3). Art. No. 032058. ISSN 2643-1564. doi:10.1103/physrevresearch.2.032058. https://resolver.caltech.edu/CaltechAUTHORS:20200909-155040030
![]()
|
PDF
- Published Version
Creative Commons Attribution. 759kB | |
![]() |
PDF
- Accepted Version
See Usage Policy. 3MB | |
![]() |
PDF (full expressions of the energy potentials and discuss mass renormalization terms)
- Supplemental Material
Creative Commons Attribution. 156kB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20200909-155040030
Abstract
We investigate the propagation of magnetic skyrmions on elastically deformable geometries by employing imaginary time quantum field theory methods. We demonstrate that the Euclidean action of the problem carries information of the elements of the surface space metric, and develop a description of the skyrmion dynamics in terms of a set of collective coordinates. We reveal that curvature-driven effects emerge in geometries with nonconstant curvature, which explicitly break the translational invariance of flat space. In particular, for a skyrmion stabilized by a curvilinear defect, an inertia term and a pinning potential are generated by the varying curvature, while both of these terms vanish in the flat-space limit.
Item Type: | Article | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| |||||||||
ORCID: |
| |||||||||
Additional Information: | © 2020 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Received 3 March 2020; revised 13 August 2020; accepted 17 August 2020; published 1 September 2020. A.P. acknowledges helpful discussions with T. N. Tomaras. A.P. was supported by the Onassis Foundation and the Institute for Theoretical and Computational Physics - ITCP (Crete). C.P. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 839004. | |||||||||
Funders: |
| |||||||||
Issue or Number: | 3 | |||||||||
DOI: | 10.1103/physrevresearch.2.032058 | |||||||||
Record Number: | CaltechAUTHORS:20200909-155040030 | |||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20200909-155040030 | |||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | |||||||||
ID Code: | 105307 | |||||||||
Collection: | CaltechAUTHORS | |||||||||
Deposited By: | Tony Diaz | |||||||||
Deposited On: | 09 Sep 2020 23:04 | |||||||||
Last Modified: | 16 Nov 2021 18:41 |
Repository Staff Only: item control page