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Abstract

Most massive stars exchange mass with a companion, leading to evolution which is altered drastically from that
expected of stars in isolation. Such systems result from unusual binary evolution pathways and can place stringent
constraints on the physics of these interactions. We use the R4 binary system’s B[e] supergiant, which has been
postulated to be the product of a stellar merger, to guide our understanding of such outcomes by comparing
observations of R4 to the results of simulating a merger with the 3D hydrodynamics code FLASH. Our approach
tailors the simulation initial conditions to observed properties of R4 and implements realistic stellar profiles from
the 1D stellar evolution code MESA onto the 3D grid, resolving the merger inspiral to within 0.02 Re. We map the
merger remnant into MESA to track its evolution on the H-R diagram over a period of 104 yr. This generates a
model for a B[e] supergiant with stellar properties, age, and nebula structure in qualitative agreement with those of
the R4 system. Our calculations provide evidence to support the idea that R4ʼs B[e] supergiant was originally a
member of a triple system in which the inner binary merged after its most massive member evolved off the main
sequence, producing a new object of similar mass but significantly more luminosity than the A supergiant
companion. The code framework presented in this paper, which was constructed to model tidal encounters, can be
used to generate accurate models of a wide variety of merger stellar remnants.

Unified Astronomy Thesaurus concepts: Binary stars (154); Stellar mergers (2157); Hydrodynamical
simulations (767)

1. Introduction

Most massive stars exist in binaries or multiples, and the
inevitable interaction with their companions via mass exchange
dominates their evolution (Sana et al. 2012). Of these
interacting massive binaries, ≈25% will merge with their
companion, which has significant implications for the resulting
star’s subsequent evolution (Podsiadlowski et al. 1992; Sana
et al. 2012; de Mink et al. 2014). These mergers and related
binary interactions may give rise to peculiar phenomena such
as gamma-ray bursts (Izzard et al. 2004; Podsiadlowski et al.
2004; Tout et al. 2011), luminous blue variables (Justham et al.
2014), and B[e] supergiants. In particular, Podsiadlowski
et al. (2006) argued that products of merger events are likely
to be observed as B[e] supergiants as the merger adds mass to
the core of the expanding primary star, modifying the core–
envelope structure and altering the star’s evolution so that it
naturally populates the blue supergiant region of the H-R
diagram.

One such B[e] supergiant is observed in the R4 system in the
Small Magellanic Cloud (Zickgraf et al. 1996) along with an A
supergiant companion. The observed properties of this system
exhibit an Algol-type paradox, which cannot be resolved by
modeling the stars as evolving in isolation (Zickgraf et al.
1996; Pasquali et al. 2000). The B[e] supergiant in R4 thus
appears to be an ideal candidate for a merged stellar remnant

with clear observational constraints for the initial conditions
and end state of the system. However, very few such potential
merger products have been identified from observations (e.g.,
Schneider et al. 2016).
Along with the rarity of observational constraints, realizing a

fully self-consistent treatment of binary stellar mergers has been
impeded by the complexity of the problem, which involves
many physical processes spanning many orders of magnitude
both spatially and temporally. One way to approach this is to
divide the problem into separate phases, such that a different
physical process dominates in each phase, and investigate each
with a tailored numerical scheme (Podsiadlowski 2001).
For example, when binary stars merge, the distorted internal

structure of the stars has to be taken into consideration, and one
must switch to a hydrodynamical description to follow the
encounter. Hydrodynamical calculations need to be employed
to study the deformations and exchange of energy and angular
momentum, as well as the complete merger between the binary
members (Sills & Lombardi 1997; Glebbeek et al. 2013a;
Nandez et al. 2014; Schneider et al. 2019).
After the dust has settled, one then has to update the stellar

models for the stars involved, and in the case of mergers, one
has to construct new models from scratch, often with highly
unusual chemical compositions and physical conditions. The
timescales for the stellar remnants to regain their thermal
equilibrium are vastly longer than the timescales needed for
dynamical equilibrium to be restored. In such cases, the merger
remnant needs to be evolved in one dimension using an active
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stellar evolution code (Glebbeek et al. 2013b; Schneider et al.
2020).

There is a history of over half a century of stellar evolution
calculations (e.g., Henyey et al. 1959; Bertelli et al. 1994;
Heger et al. 2000; Meynet & Maeder 2000; Paxton et al. 2011),
and significant work on the hydrodynamics of stellar
encounters has been done, in particular in the context of
smoothed particle hydrodynamics (SPH) simulations of blue
stragglers (e.g., Freitag & Benz 2005; Dale & Davies 2006;
Suzuki et al. 2007) and stellar collisions (e.g., Rasio &
Shapiro 1991, 1994, 1995; Sills & Lombardi 1997). Pioneering
work by Sills & Lombardi (1997) emphasized the importance
of bridging stellar evolution and SPH to achieve realistic
collisional products.

The paucity of observations for possible mergers, let alone
known merged remnants, motivates us to study the nature of
unique systems such as R4 in order to be able to effectively
constrain the physics of stellar mergers. As a result, we choose
to develop 3D hydrodynamical simulations of mergers using
the R4 system as a guide (Section 2). We select progenitor stars
with structures that exhibit the desired core–envelope distinc-
tion and mass ratios that are consistent with the premerger
system based on simple prescriptions for energy considerations
(Section 3.1).

Motivated by Sills & Lombardi (1997), in this paper we self-
consistently implement MESA stellar profiles and corresp-
onding equations of state onto our FLASH 3D grid simulation.
In particular, we are able to resolve both the dense stellar core
and the diffuse envelope on the grid with this realistic profile
instead of appealing to the gravitational potential of a point
mass to represent the core of the star (Section 3.2), a distinction
that is crucial to physically relevant simulations in the realm of
stellar mergers and common envelope calculations. This
approach allows us to resolve the inspiral into the inner few
solar radii of the star and enforce a physically motivated
stopping criterion for the inspiral. Finally, we map the merger
remnant into a 1D stellar evolution code to track its position on
the H-R diagram as it regains thermal equilibrium. We compare
the properties of the remnant and its surrounding nebula to
observations of R4 in Sections 4 and 5. In Sections 5 and 6, we
discuss how our methods, which encapsulate the merger
process from inspiral to postmerger evolution, form a proof of
concept for utilizing this setup to investigate similar systems.

2. Initial Conditions

In this section, we determine which profiles are viable
candidates for the premerger primary. We deduce minimum
values of the mass unbound and energy injected into the
remnant from observed properties of the R4 system. To
determine which profiles can achieve these values, we look at a
simple comparison of the binding energy of the envelope with
the difference in initial and final orbital energies. We also look
at whether the energy expected to be injected into the remnant
by the secondary during the merger is able to power the excess
luminosity. This allows us to generate an initial grid of
potential models that will be narrowed down further in
Section 3.1, using more careful considerations of the effects
of drag on the dynamical inspiral phase of a merger.

2.1. Observed Properties of the R4 System

The R4 system as observed by Zickgraf et al. (1996) consists
of an evolved A supergiant and a B[e] supergiant companion
separated by a=23 au. For the A supergiant, Zickgraf et al.
(1996) derive an effective temperature Teff≈9500–11,000 K
and fix =glog 2.5 from fitting ATLAS8 models. In addition,
they estimate a mass of M M12.9 2  from radial velocity
(assuming =isin 13 ). By iteratively fitting these parameters
using the ATLAS8 models, Zickgraf et al. (1996) find a radius
of =R R33 , which gives a luminosity of »L L104

. They
also derive a mass of M12.6  from the radius and glog values.
Using a similar procedure, they find Teff=27,000 K,

=glog 3.2, =R R14 , and =L L105
 for the B[e] super-

giant companion. The mass they derive from radial velocity
(RV) is = M M M13.2 2 , and from the radius and glog ,
they find =M M11.3 .
The effective temperature and luminosity of the B[e] star are

well described by a supergiant with a zero-age main-sequence
mass of » M20 , which is in stark contrast with the mass
estimates from both radial velocity and glog . This exemplifies
the Algol-type paradox, where the B[e] star appears to have
reached a very different stage in its evolution than the A
supergiant despite their having similar measured masses.
The system exhibits a bipolar nebula with a mean expansion

velocity of ∼100 kms−1 and an extension of ∼2.4. pc
(Pasquali et al. 2000). Assuming a constant expansion velocity
for the expanding material, the nebula’s age can be estimated to
be»104 yr. Pasquali et al. (2000) conclude that the nebula was
likely ejected from the B[e] supergiant as they find it to be
nitrogen enriched as well as dynamically linked with the star.

2.2. Evolutionary History of R4

Given the observed separation, it is reasonable to assume
that the B[e] star and A supergiant companion have not
interacted. Therefore, in what follows, we assume that the A
supergiant has evolved independently as a single star.
The observed effective temperature and luminosity of the B

[e] component are not consistent with the evolution of a single
star with the observationally derived mass estimate (Zickgraf
et al. 1996). In order to explain this tension, we may appeal to a
process that is able to inject a significant amount of energy,
resulting in higher luminosity. A stellar merger, in which the B
[e] component was preceded by a close binary in a widely
separated triple system with the A supergiant evolving
independently, is one possibility. We refer to the more massive
star in the close binary as the primary and to its less massive
companion as the secondary. As a result of the merger, the
secondary star injects energy, mass, and angular momentum
into the primary and unbinds a significant amount of envelope
material. In this case, a merger remnant might be left with
properties similar to those observed for the B[e] supergiant
(Podsiadlowski et al. 2006).
The existence and shape of the nebula clearly indicates that

mass loss occurred in a nonspherically symmetric fashion,
which favors a dynamical event that occurred ≈104 yr ago. To
constrain the initial conditions of this postulated merger event,
we first assume that the system consisted previously of three
stellar components born at the same time: star A, which
evolved into the A supergiant; star B, which represents the
aforementioned primary star in the merger that we postulate
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resulted in the observed B[e] supergiant; and star C, which
represents the secondary star engulfed during the merger. Star
A is likely to have evolved in isolation, so its age should help
constrain the age of the R4 system.

To estimate the age of star A, we run MESA (Paxton et al.
2011, 2013, 2015, 2018) simulations for stars evolving into the
supergiant phase with masses similar to those derived
observationally. All models are generated with MESA version
10398. We use the initial mass M12.5 , which is within the
range reported by Zickgraf et al. (1996). In all calculations, we
start with pre-main-sequence models with an initial metallicity
of =Z Z0.1 ☉, given the system’s location in the Small
Magellanic Cloud.8

To select viable models for the A supergiant, we match the
observed value of =glog 2.5 (Zickgraf et al. 1996) during the
supergiant phase of evolution (Figure 1, top panel). This leads
us to our model for the A supergiant, which has an age of
1.7×107 yr with a mass of M12.5  and a radius of R31  at
that age. The mass and radius successfully match the observed
mass, radius, and glog values for the A supergiant.

Because the age of R4ʼs nebula is of the order of 104 yr, the age
of stars B and C at the time the merger occurred must be
approximately 104 yr less than the current age of star A.
Dynamical mergers are driven by the expansion of the primary
star. One possibility is that star B was crossing the Hertzsprung
gap at that time, such that it was entering a slightly earlier stage of
evolution than star A’s current state (supergiant). For star B to
have reached a similar stage of evolution as star A only 104 yr
earlier means that it closely matched the evolution of star A. This
suggests that the primary star in the merger had a slightly higher
initial mass than that of the A supergiant. With this constraint in
mind, we use the MESA code to generate models for star B, using
the same inlist as for star A but with an initial mass of M13 . This
choice is slightly arbitrary, but similar masses (< M1 
variations) do not significantly affect the validity of our
conclusions. For consistency with the age of the nebula, we limit
our consideration to models for the primary which are 8×103 yr
to a few ×104 yr younger than our A supergiant models. This
restricts the size of the primary to  R R R55 120 .

From the models within this range of radii, we select
premerger primary profiles that have the capacity to release
sufficient energy and unbind the required amount of mass. To
estimate the radius at which energy will be released and mass
unbound, we make use of the energy formalism, which equates
the change in orbital energy of the secondary with the binding
energy of the stellar envelope (van den Heuvel 1976; Webbink
1984; Livio & Soker 1988; Iben & Livio 1993). We use the
following form, calculated at each radial coordinate r:

= D = - +E r E
GM M

R

GM M

r2 2
, 1bind orb

1 2 1,enc 2( ) ( )

where R and M1 are the initial radius and mass of the primary,
M2 is the mass of the secondary, and M1,enc is the enclosed
mass of the primary at radius r. Here E rbind ( ) is the binding
energy of the stellar envelope beyond the chosen radial
coordinate, and we use all available orbital energy to eject
this portion of the envelope. Applying this formalism, we
determine the coordinate in mass and radius where the change
in orbital energy becomes larger than the binding energy of the
envelope mass that is beyond this mass coordinate. We apply this criterion to a wide range of stellar profiles and mass ratios

q, where =qM MB C for primary mass MB and companion
mass MC.

Figure 1. Panel 1: evolution of glog over time for our A supergiant MESA
model. The selected model (purple point) is within the mass, radius, and glog
constraints of the observed R4 system. The model used for the hydrodynamical
simulation performed with FLASH is shown as a blue star in each of the
bottom three panels. Panel 2: pairs of mass ratios q and binary separations at
the onset of common envelope, which we equate to the radius of a range of
primary models, are shown as scatter points color-coded by the resultant
remnant mass. Each scatter point represents a profile during the evolution of a
MESA model with initial mass M13.0  and companion of mass ratio

 q0.2 0.5. Panel 3: scatter points represent the same pairs shown in panel
2, color-coded by the energy in ergs released by the merger. Panel 4: scatter
points represent the same pairs as plotted in Panel 2. Purple dots are pairs that
satisfy both criteria we seek, e.g., the following: = M M M13 3rem   and

>Elog erg 49.5;( [ ]) peach points do not satisfy one or both of these criteria.

8 For other parameters not listed, all MESA inlists are available upon request.
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According to the energy formalism, the amount of orbital
energy released at the mass coordinate of the crossing point is
sufficient to unbind the envelope above this mass coordinate.
As a result, the remaining mass of the primary star after the
merger, Mf, is equal to this mass coordinate. The mass of the
remnant = +M M Mrem f C is shown for various combinations
of radii and mass ratio in the second panel of Figure 1. We
retain for further analysis the pairs of radii and mass ratio that
produce remnant masses of M M13 3  within 2σ of the
approximate derived RV mass for the B[e] supergiant. In
addition, the radius of each profile represents the premerger
separation between the primary and its companion under the
premise that the merger started as the companion came into
contact with the remaining bound envelope.

Moreover, the amount of orbital energy released at this mass
coordinate provides an estimate of the amount of energy
injected into the merger, which is expected to increase as the
secondary plunges deeper into the core until it is tidally
disrupted. At the end of the secondary’s inspiral, »E Eorb bind
-q 2 3, where Ebind is the binding energy. Because q  1, the
binding energy of the secondary, which will be deposited into
the remnant, is comparable to or smaller than the orbital energy
during the inspiral. The value of the orbital energy is therefore
a simple proxy for how much energy will be deposited into the
remnant. We select profiles with the capacity to inject more
than 1049.5 erg in addition to producing the desired remnant
mass. The range of released energy ug for each pair of radius
and mass ratio is shown in the third panel of Figure 1. This
estimate for the minimum injected energy was calculated
assuming that the merger remnant needs to at least supply the
current observed luminosity of »L L10rem

5
 for at least the

age of the nebula, which is estimated to be ≈104 yr.
The parameter space of potential primaries is represented by

the intersection of the regions where < <M M M10 16rem 
and where >ulog 49.5g( ) . This intersection is shown in purple
in the bottom panel of Figure 1. In the next section, we describe
how we select our simulation initial conditions from this subset
of viable premerger binaries.

3. Methods

3.1. Initial Models

In this section, we select models to serve as the primary star
in our hydrodynamical simulations. To narrow down the grid
of models generated in Section 2.2, we focus our simulations
on the dynamical inspiral phase of a merger and take into
account the effects of drag during this phase. We decide on a
model for the primary and mass ratio in which energy
dissipation due to drag forces can unbind the necessary
envelope mass so that the remnant mass Mrem matches mass
estimates of R4ʼs B[e] supergiant.
In Figure 2, we plot the properties of the stellar model that

we have selected as the initial condition for the hydrodynamical
simulation that we present in this paper. Figure 2 shows as a
function of the radial (mass) coordinate the binding energy of
the envelope, the change in the orbital energy from the start of
the inspiral, and the energy dissipated by drag during the
dynamical inspiral.
We first note that the change in orbital energy curve

(magenta) is above the binding energy curve (purple) at a
relatively large outer radius. For radii beyond this crossing
point, one can consider the envelope material, which contains a
negligible fraction of the total mass, to be easily ejected. This
justifies our trimming of the stellar envelope at »R R20 
when mapping into the hydrodynamical simulations. The core
and the envelope of the star can then be well resolved in 3D
without prohibitive computational costs. This is also motivated
by Podsiadlowski (2001), who note that the secondary’s
contact with the low-density outer envelope at the onset of
mass transfer will produce a frictional luminosity able to
unbind stellar material well before the dynamical inspiral
begins.
By trimming our envelope, we effectively focus our

simulations on the dynamical inspiral phase and consider the
envelope material beyond the crossing point to be ejected by
the starting point of our simulations. Motivated by this, we
consider modifications to the simple energy formalism used in
Section 2.2 that take into account the importance of drag in

Figure 2. Relevant quantities for envelope unbinding during common envelope, shown on the left in mass coordinates and on the right in radius coordinates. These are
presented for the model used as the initial condition for hydrodynamical simulation, with mass M12.9 , radius R55 , and secondary mass ratio q=0.4. The radius of
the companion’s disruption (dashed), total primary mass minus companion mass dM (dotted–dashed), and released energy needed to match the observed luminosity
and age (gray region) are shown. The binding energy of material exterior to a given radial coordinate (purple), the corresponding difference in orbital energy relative to
the initial orbit (magenta), and the integrated orbital energy dissipated from the inspiral (peach) are plotted against the mass and radius coordinate for each model. The
region of the stellar profile removed for the FLASH simulations is shown in the gray hatched region.
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driving the inspiral. We reexamine our profiles using Bondi–
Hoyle–Lyttleton accretion (HLA) theory (Hoyle & Lyttleton
1939) to calculate the energy dissipated due to drag, which is
related to the gravitational drag force Fd,HL by

= - ¥E r F v r , 2orb d,HL( ) ( ) ( )

where v∞ is the orbital speed of the secondary at a certain
radius r, given by

=¥v f v . 3kep kep ( )

Here fkep is a factor describing the secondary’s speed relative to
the Keplerian velocity. The gravitational drag force is

p r= ¥ ¥F r G M r v r4 , 4d,HL
2

2
2 2( ) ( ) ( ) ( )

where M2 is the mass of the secondary and r¥ is the density of
the primary at that radius. Using this formalism, we integrate
Eorb to find the total energy dissipated from the orbit DEorb

along the inspiraling (noncircular) trajectory (peach curves in
Figure 2). We calculate the mass coordinate and energy where
the curve for DEorb rises above the binding energy and take
these values to be the mass unbound and energy released by the
inspiral for that primary profile and given mass ratio q.

We address these effects in more detail in Section 4 but note
here that these values provide a reasonable lower limit to
the energy injection, as the steep density gradients in the
envelope would increase the energy dissipation rate from the
one described by Fd, HL (MacLeod et al. 2017; De et al. 2020;
Everson et al. 2020).

We also note that the dynamical inspiral will be terminated at
an inner radius at which the secondary star would be tidally
disrupted by the primary’s core,

r
r

=r R
2

, 5disrupt 2
enc

2

1 3⎛
⎝⎜

⎞
⎠⎟ ( )

where renc is the average enclosed density of the primary at
rdisrupt, and R2 and r2 are the radius and average density of the
secondary (Roche 1849). The radius of disruption in Figure 2
shows the location where the secondary would begin to lose
significant mass and can no longer be treated as a point mass as
assumed by the equation of motion used to calculate the
inspiral. In fact, we anticipate that at this radius, the material of
the secondary should begin to stream onto the core of the
primary (Ivanova 2002; Ivanova et al. 2002).

In the binary model that we selected for the 3D simulation
(Figure 2), the HLA drag formalism predicts that enough
energy will be dissipated in order to unbind a mass comparable
to the mass of the secondary. This is expected to occur at a
mass coordinate similar to but larger than that at which the
secondary would be disrupted by the primary’s core, which was
one of our key criteria. That is, the inspiral will likely terminate
after the secondary dissipates enough energy to unbind the
amount of mass needed to match the mass estimates of the B[e]
progenitor. Our chosen model for the premerger system has a
primary mass of M12.9 , secondary mass ratio q=0.4, and
radius of R55 . Its age is ≈104 yr younger than the A
supergiant model described in Section 2. Because we avoid
prohibitively high resolution in our 3D hydrodynamics
simulation by using only the inner R20  of the primary profile
and representing the secondary with a point mass (Section 3.2),
our simulation setup has the ability to most closely reproduce

an initial condition with smaller primary and secondary sizes.
This consideration guided us to select this model, which pairs
the smallest allowed values of separation and mass ratio as
predicted by the overlap region shown in the bottom panel of
Figure 1. Note that the methods of this section yield other valid
premerger models that satisfy these conditions and are within
the overlap region of Figure 1; in this paper, we present the
results of simulating one of these options.

3.2. Description of Simulation

We map the density, pressure, temperature, and composition
of the 1D MESA profile onto a 3D grid using FLASH (Fryxell
et al. 2000) version 4.3, a grid-based adaptive mesh refinement
hydrodynamics code. Our setup is adapted from Guillochon &
Ramirez-Ruiz (2013), but it uses an extended Helmholtz
equation of state (Timmes & Swesty 2000) instead of a
polytropic equation of state. In addition, we track the
composition of elements as described in Law-Smith et al.
(2019).
In order to resolve the inspiral near the core while utilizing a

reasonable amount of computational resources, we trim the
profile to R20  for the simulation, which we justify with
analytical results presented in Figure 2. The computational
domain is cubic with volume R80 3( ) and is initially
composed of an 83 block grid with a minimum cell size
of R0.019 .
To set up the initial condition, we initially relax the stellar

profile for a few dynamical times. During relaxation, a point
mass (constructed to represent the secondary) is placed at R15 ,
initially at rest. The velocity of the secondary is then gradually
increased during the relaxation process until it attains an
approximate Keplerian velocity as determined by the enclosed
mass at R15 . The mass of the secondary is M5.18 ,
corresponding to q=0.4. Once relaxation ends, the primary
model is in hydrostatic equilibrium and the inspiral trajectory is
calculated self-consistently. The properties of the merger
outcome are found to be rather insensitive to the exact initial
conditions of the secondary’s velocity, provided it is close to
Keplerian. This assumption is justified by the inspiral
calculations presented in Section 3.1. We stop the simulation
once the particle reaches the tidal radius (Equation (5)). We
compare the numerical trajectories with the analytic/HLA drag
predictions presented in Section 3.1 and find that while both
show a dynamical plunge, the secondary in the hydrodynamical
simulation inspirals at a slightly faster rate. This is expected to
be the case as the HLA drag coefficients are systematically
lower than those derived when the stellar density gradients are
included, as shown by MacLeod & Ramirez-Ruiz (2015) and
MacLeod et al. (2017).

3.3. Constructing MESA Models for the Remnant

To understand the merger remnant in terms of observables,
we map our simulation results into MESA and allow the
resulting profiles to evolve further. Applying the relaxation
module to the merger model, we relax the composition, then
the entropy, using MESA’s inlist_massive_defaults
along with an inlist specifying the parameters for relaxation.
Before importing the 3D simulation results to MESA, the

material of the bound primary mass has to be combined with
the secondary. At the end of the hydrodynamical simulation,
the secondary has reached a radius at which it would tidally
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disrupt due to the gravitational influence of the primary’s core
(rdisrupt), causing material and energy to be deposited around
that radius. We approximate the tidal disruption of the
secondary by adding the mass and chemical composition of
the secondary to the bound primary material in the vicinity of
the tidal disruption radius. Using a MESA model of a M5.18 
main-sequence star to determine the secondary’s chemical and
thermal profile, we distribute the mass of the secondary across
the outer mass shells of the bound primary material such that
the greatest amount of mass is added around the mass
coordinate of rdisrupt, with the remaining mass added in a tail
skewing toward larger radius. This in turn determines the
distribution of the combined chemical and thermal structure.
We then sort the shells of the combined remnant profile by
entropy, such that entropy increases with radius (Lombardi
et al. 2002).

We map this remnant into the 1D stellar evolution code
MESA. This entails making a MESA model of a star whose
total mass is equal to the sum of the bound primary mass and
the secondary mass, as well as having a chemical and thermal
structure that matches that of the combined merger remnant.
Using the methods outlined in Schneider et al. (2016, 2019,
2020), we achieve a 1D MESA model with a structure that is a
close match to that of the combined merger remnant described
above.

To account for the deposition of energy from the disruption
of the secondary, we add heat to the remnant during the MESA
evolution. A total energy equal to the binding energy of the
secondary is injected into the remnant during evolution at shells
in the vicinity of rdisrupt. This is certainly a lower limit to the
amount of energy injected into the remnant, as we must also
consider the secondary’s remaining orbital energy. However, it
is not clear what proportion of the remaining orbital energy is
dissipated into the remnant rather than being used to spin off
the envelope of the primary once the secondary is tidally
disrupted. A detailed understanding of this requires 3D
hydrodynamical simulations of this stage that resolve both
objects in order to determine the resultant energy dissipation
and rotational profiles. For simplicity, here we take the
conservative approach of only adding the binding energy.
Each shell receives the same heat per unit mass at a constant
rate » ´ - -E 10 sbind

7 1 until energy equal to the binding
energy has accumulated, at ≈6 yr. This is much shorter than the
total time over which the remnant is evolved (105 yr).

We evolve the resulting relaxed combined model in MESA
using inlist_massive_defaults along with a base inlist
for evolution until the end of helium burning.

4. Hydrodynamical Simulation

In this section, we present the results of our FLASH
simulation modeling the merger of a binary chosen in
Section 3.1 to represent the progenitor of R4’s B[e] supergiant.
In our simulation, the initial mass of the primary model is

M13  and has a companion-to-primary mass ratio of q=0.4,
corresponding to a secondary with mass M5.18 . The primary
star’s initial radius before trimming is R55 ; after being
trimmed to R20 , the premerger primary mass is M12.7 . In
addition to the simulation presented here, we ran simulations
with different initial conditions that also met the requirements
outlined in Sections 2 and 3.1. We find the results presented
here to be representative, as only minor differences are
observed.

4.1. Dynamical Inspiral

As the inspiral progresses over time (left to right in the top
three panels of Figure 3), the secondary rapidly plunges into the
core of the primary via dynamical inspiral. We expected this
steep plunge-in from our initial conditions, as we placed the
secondary deep in the envelope of the primary where the
inspiral would be driven by strong drag forces.
In Section 3.1 we narrowed down our profiles using HLA

drag theory to predict the amount of unbound mass and
released energy, but the results of such an approach are thought
to serve as a rough estimate for these values. In practice, the
initial conditions of the simulation push the limits of the power
that HLA drag theory possesses to predict the path of our
expected inspiral, because HLA is predicated on the assump-
tion that the inspiral deviates only mildly from a Keplerian
orbit throughout. In a steep spiral-in, the trajectory is far from
Keplerian, as we see in the progression of the inspiral for the

R55  profile in Figure 3.
However, based on the ideas of MacLeod et al. (2017), the

steep density gradient of the primary’s envelope and the high q
value indicate that the effects of drag can be approximated by
multiplying the drag force Fd, HL by a constant coefficient Cd,
applied only in the tangential direction and opposing the
direction of motion. To guide our understanding of how these
factors steepened the inspiral, we calculate an average Cd by
comparing the timescale of the inspiral with the ratio of the
change in orbital energy, ΔE, and the rate of energy dissipation
by gravitational drag, E . We use the following relation

= DC E F v t , 6d orb d,HL 2 orb( ) ( )

with the average values of density and velocity for
< <r R R20disrupt  and the change in orbital energy from

=R R20  to =R rdisrupt, and we find an average Cd=2.6.
Here rdisrupt is the tidal disruption radius as in Equation (5) (see
Section 4.2 for value). Thus, on average, the drag force is a
factor of 2.6 higher than the HLA prediction, which is in
agreement with the results of MacLeod et al. (2017). A higher
drag force implies that we would expect the orbital energy to be
dissipated at a smaller mass coordinate and the inspiral to
proceed more rapidly than the one predicted by HLA. This
aligns with the results of our simulation, which tends to unbind
slightly more mass and has a steeper inspiral trajectory than
that predicted in Section 3.1. In addition, the change in orbital
energy deviates from that commonly assumed by the α

formalism, which assumes circular orbits. As Figure 2 shows,
the change in orbital energy due to drag dissipation (peach)
rises above the binding energy curve (purple) at different mass
coordinates than the difference in orbital energy calculated
under the assumptions of the α formalism (magenta).

4.2. End of Inspiral

The simulation is evolved until the point mass representing
the secondary reaches the disruption radius, at R3.85 . In the
bottom three panels of Figure 3, we see that as the inspiral
proceeds (left to right), the core of the primary becomes
distorted and even partially disrupted once the secondary
reaches its own tidal disruption radius. At this stage, » M4.6 
of mass is unbound. Our calculations of the initial conditions
predicted that the secondary would unbind » M5  by the time
the engulfed star reached its tidal disruption radius for both
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primaries, which agrees well with the total amount of mass
found to be ejected in our simulation. We also note that8% of
the original primary mass or M1  has left the simulation box
over the duration of the simulation.

4.3. Remnant and Nebula

Once the secondary has reached the tidal disruption radius,
we treat the merger remnant as composed of material from the
disrupted secondary and the bound mass of the primary. At this
point in the simulation, M8.3  of primary material remains
bound. The bottom right panel of Figure 3 shows the ratio of H1

to He4 mass fractions at the end of the simulation for both the
primary and secondary. The composition of the bound remnant

will be mixed in the outer layers with the different composition
of the secondary.
The nebula produced by the merger will consist of unbound

material whose velocity is greater than the escape velocity of
the core of the primary star. In the middle three panels of
Figure 3, we plot the velocity magnitude divided by the escape
velocity of the core throughout the simulation. As the inspiral
progresses (left to right), more material reaches large-enough
velocities to be able to escape. The plunge-in of the secondary
up to the tidal disruption radius highly disturbs the envelope
material and causes an asymmetric ejection of unbound
material; the 3D renderings in Figure 4 depict how the primary
star’s envelope is affected at =t t14 dyn and t=28tdyn.
Although the material in the path of the inspiral is preferentially

Figure 3. 2D slices in the xy plane, showing snapshots of the simulation at = =t t t t14 , 24 ,dyn dyn and = =t t t28disrupt dyn, where tdyn is the core dynamical time and
tdisrupt is the time when the secondary reaches the tidal disruption radius. Increasing time is read from left to right. Top: density of all material. Middle: velocity
magnitude divided by the core escape velocity » -v 10 cm sesc

8 1. Bottom: ratio of H1 and He4 mass fractions. The secondary is shown as a green dot, and its inspiral
is shown by the dotted line. The color of the star is chosen from the color bar in the bottom panel, based on the secondary’s hydrogen-to-helium ratio.
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accelerated along the path of least resistance, a significant
fraction of material at a radial distance R5  becomes unbound
in all directions by the time the secondary reaches the tidal
disruption radius.

The total kinetic energy of the unbound material is
3.2×1050 erg and its average velocity is 1.7×108 cms−1,
which is 1.8 vesc (the core’s escape velocity). As shown in the
center-right panel of Figure 3, the majority of the unbound
material initially moves at speeds that are in excess of those
observed in R4ʼs nebula, which exhibits velocities of
» -10 cm s7 1. As the ejected nebula material expands, it will
sweep up the surrounding material and, as a result, it will
decelerate. The displaced volume as derived from the size of
the observed nebula implies that the ejected material will sweep
a mass that is larger than its own (» M4 5– ) and thus is
expected to decelerate significantly.

The morphology of the unbound material in the simulations
once the secondary has reached the disruption radius provides
us with a qualitative picture for the shape of the nebula
resulting from the merger. The 3D rendering in the right panel
of Figure 4 of the density of unbound material forms an
asymmetric bipolar structure. Pasquali et al. (2000) conclude
from kinematics that R4ʼs nebula also is not strictly bipolar.
However, R4’s nebula clearly has a complicated structure and
resolving its morphology requires higher-resolution observa-
tions. In addition, any detailed comparison of the merger ejecta
with simulations will need long-term modeling of the ejecta’s
expansion including interactions with the ISM and the stellar
winds, and the illumination from the merger remnant.

5. Long-term Evolution

Figure 5 shows the track of the remnant’s evolution in
effective temperature and luminosity over time. Zickgraf et al.
(1996) determined the effective temperature and luminosity of
the B[e] star by taking their best fits to the effective temperature
Teff and glog values, then calculating the bolometric luminosity
using the radius they found from glog and their spectroscopic
mass with »isin 1. From Figure 8 of Zickgraf et al. (1996), we
deduce approximate error bars of Teff=27,000 K±500 K
and = glog 3.2 0.175 (mean values correspond to those
cited in Section 2.1 for the B[e] star). We also deduce a
bolometric luminosity =L L104.95

 from Figure 10 of
Zickgraf et al. (1996) and derive error bars on the luminosity
measurement from those on Teff and glog . The 1σ ranges for
Teff and L are shown in gray in Figure 5.
We cite values for the evolution of the merger remnant from

the R55  simulation here. The remnant attains =T 27, 000 Keff

at 8.14×103 yr (Figure 5, top panel). This model (star symbol in
Figure 5) has =glog 3.34, corresponding to a mass of M12.9 
and radius R12.73 .
The Teff, glog , and mass values are within the errors for the

observed values, and the radii resulting from these values are
close to the radius R14  derived from the observed values of
Zickgraf et al. (1996). The luminosity is =L L104.9


(Figure 5, bottom panel), again very near the derived value
of Zickgraf et al. (1996).
Our long-term evolution of the merger remnant produces a

model that achieves the same effective temperature, luminosity,
radius, and mass as the observed B[e] supergiant. This model

Figure 4. Left panel: 3D rendering of density of all material in the 3D hydrodynamical simulation, shown at =t t14 dyn. The diameter of material depicted is R40 
across. Right panel: 3D rendering of density of only unbound material at =t tdisrupt.
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exhibits all the observed characteristics at 8×103 yr
postmerger. We compare in Figure 5 the evolution of the
merger remnant to the observed properties of star A (blue
hatched region), which has a similar mass but has solely
undergone single-star evolution. The evolution of the merger
remnant starts to deviate from the evolution of star A soon after
the merger, as large amounts of heat are injected deep into its
interior that must be radiated away. This allows the merger
remnant to remain extremely luminous for a cooling phase of
about 105 yr.

As in this scenario we expect the nebula to be the result of
ejected material from the merger, we take the age of the
remnant to be equal to the age of the nebula, which is derived
from the observed expansion velocity and nebula size to be
∼104 yr. Thus, our model is able to successfully reproduce
the observed properties of the B[e] supergiant at the expected
age of the remnant. Our evolved merger remnant therefore
constitutes a viable model for the B[e] supergiant of the R4
system.

It is important to note that the late-time evolution ( t 105 yr)
of our merger remnant is sensitive to our mixing prescription and
whether we include rotation. Details of how the merger remnant
may evolve on the H-R diagram after the cooling period will be
explored in future work.

Ultimately, achieving our goal of studying the long-term
evolution of the remnant depended on our ability to map our
merger remnant from the 3D hydrodynamical code FLASH
into MESA, a 1D stellar evolution code. Bridging this gap

allowed us to make more concrete statements about how
applicable our merger models truly are to a particular system.
Furthermore, we were able to treat the long-term evolution as a
natural continuation of the merger process for the system by
mapping the final conditions of the 3D simulation onto the
initial conditions of the 1D simulation. The combination of our
highly resolved hydrodynamical simulations with the stellar
evolution code allowed us to investigate various stages of the
merger that proceed on widely different timescales, all of which
are needed in order to accurately compute the evolution of
systems hosting multiple interacting stars.

6. Summary and Conclusions

We have studied the evolutionary history of the R4 system
using 3D hydrodynamical simulations and a 1D stellar
evolution code to model its B[e] supergiant. We chose this
system because it has been postulated that a binary stellar
merger produced the B[e] supergiant. Furthermore, the R4
system was especially conducive to the study of binary stellar
mergers because the observations provided enough constraints
on the properties of the system to develop sensible initial
conditions (Section 2). Observations of the nebula size and
expansion velocity limited the age of the nebula, which is a
proxy for the time since merger. We also appealed to the large
observed separation between the stars in the R4 system to
deduce that the A supergiant companion evolved indepen-
dently, and to the observed luminosity of the B[e] star to set a
lower limit on the amount of energy injected into the merger.
Using initial conditions driven by the observed properties of

the R4 system, we have simulated a binary stellar merger using
a 3D hydrodynamics code and mapped the merger remnant into
a 1D stellar evolution code to study its long-term evolution. As
a result, we were able to compare the R4 system to the remnant
at a time since merger that matches the nebula age. We find that
our methods produce a model for the merger remnant at the
appropriate time whose stellar properties are in good agreement
with the B[e] supergiant. The long-term evolution also suggests
that the remnant is still undergoing a cooling phase after the
merger, during which period it remains extremely luminous
and attains the paradoxically high effective temperature and
luminosity of the B[e] supergiant.
Even with the observational constraints, some degeneracy

remains in the choice of progenitor masses and separations
(Section 2.2). We have chosen to simulate a particular
combination that satisfies the initial conditions outlined in
Section 2. The success of the exercise applied to this choice
serves as a proof of concept for the methods laid out in this
paper to study similar problems by transitioning between
FLASH and MESA. In particular, the dynamical inspiral of the
merger process was consistently extended to the long-term
evolution of the remnant. The process may be applied to
different progenitors and different systems to generate models
of a variety of merger remnants, which, as thoughtfully argued
by Sana et al. (2012), are expected to be common.
Note that the MESA models for the merger remnant were

evolved without rotation. During the plunging of the companion,
a significant fraction of the orbital angular momentum is
transferred to the unbound envelope material in our simulations.
At the time the companion reaches the tidal disruption radius, it
has a sub-Keplerian velocity »v v0.6 kep. The companion will
be disrupted at this stage and its orbital angular momentum is
expected to be effectively transferred to the merger remnant.

Figure 5. Evolution of the temperature and luminosity of the merger remnant
in MESA. Here time is measured in years since the merger. The gray bar shows
the range of Teff and L observed for the B[e] component. The remnant remains
hotter and more luminous than the observed A component (blue hatched bar)
throughout the cooling period, the duration of which is also in agreement with
the age of the remnant as derived by the age of the nebula. The star symbol
denotes the model for the merger remnant described in Section 5 that best
exhibits the observed properties.
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Assuming that the secondary’s angular momentum is distributed
uniformly over the remnant, we can calculate the remnant’s final
rotation velocity. The angular velocity that the remnant gains
from merging with the secondary is given by DW = DJ I/ ,
where = +I M M R2 5 bound 2

2( )/ is the moment of inertia of
the remnant. Here, D =J f M GM Rkep 2 bound is the additional
angular momentum of the secondary, where the orbital speed of
the secondary is measured relative to the Keplerian velocity as in
Equation (3). Evaluating this at the tidal disruption radius, we
find fkep=0.6, which implies that the addition of the angular
momentum of the secondary is expected to spin up the merger
remnant to ≈36% of its breakup velocity. In our parameter space
of initial conditions, there are some initial conditions that would
give the final merger product even higher rotation as the final
ratio of M2 to Mbound could be closer to unity. Although in
principle this rotation would serve as another reservoir of energy
for the remnant to draw upon, more detailed study of the angular
momentum transport throughout the remnant is required to
robustly estimate its dissipation rate. Here we take the simplest
approach of not including rotation in our MESA model, which
will provide a lower limit to the luminosity of the merger product
over its thermal timescale.

In addition to a more careful treatment of rotation in our
remnant, we envision many other avenues for extending our
work in the future. It would be useful to investigate the details
of how late-term evolution of the merger remnant, after the
thermal relaxation period is over, will proceed. In particular,
the effects of different mixing prescriptions and of the ensuing
rotational profile of the remnant ought to be better quantified.
Furthermore, while in this work the secondary was modeled as
a point mass, endeavors to model both primary and secondary
using realistic stellar profiles from MESA are already under-
way. This would allow the 3D hydrodynamical simulation to
realistically follow the inspiral all the way to merger instead of
stopping at the secondary’s tidal disruption radius. A simula-
tion using realistic profiles would moreover resolve how the
material of the secondary streams on to the core of the primary.
This would provide a more accurate model for the size and
shape of the merger remnant and would also narrow the
uncertainty in the mixing prescription used to map the remnant
into MESA.

To conclude, the proposed numerical formalism may be
applied to model the outcomes of mergers, collisions, and tidal
disruptions (Law-Smith et al. 2019, 2020). On the timescale of
the study, we could only hope to explore in detail merely some
subset of the interesting possible encounters that could have
given rise to the R4 system (Figure 1). In the near future, we
hope to develop a comprehensive model database of remnants
and their predicted observational outcomes for a range of
events. Such a formalism would serve as a valuable theoretical
counterpart to the increasing number of merger remnant
products expected to be uncovered in future observational
surveys (Sana et al. 2013; Almeida et al. 2017; Mahy et al.
2020).
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