
Incentive Compatible Surveys via Posterior

Probabilities
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Abstract

We consider the problem of eliciting truthful responses to a survey question, when the re-

spondents share a common prior about which the survey planner is agnostic. The planner would

therefore like to have a universal mechanism, which would induce honest answers for all possible

priors. If the planner also requires a locality condition that ensures that the mechanism payoffs

are determined by the respondents’ posterior probabilities of the true state of nature, we prove
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that, under additional smoothness and sensitivity conditions, the payoff in the truth-telling equi-

librium must be the logarithmic function of the posterior probabilities. Moreover, the players are

necessarily ranked according to those probabilities. Finally, we discuss implementation issues.

Key words: proper scoring rules, robust/universal mechanisms, Bayesian Truth Serum, mechanism

implementation, ranking experts

JEL codes: C11, D82, D83, M00



1 Introduction

Consider a problem of truthful elicitation of responses in a population of Bayesian agents who share

the common prior, in which the survey planner is ”agnostic” about the prior (although the planner

may have some beliefs about the prior, she may prefer to keep these beliefs private). Prelec (2004)

introduces an algorithm for giving scores to the respondents which is easily implementable and requires

minimal knowledge on the part of the planner; it is known as Bayesian Truth Serum (BTS). Prelec

(2004) proves that BTS has two important properties. First, it is strictly incentive compatible (IC),

i.e., strict truth-telling is an equilibrium, so that the agent types are fully revealed 1. Second, the

BTS equilibrium score of a respondent is, up to a linear transformation, equal to the logarithm of

his posterior, so that BTS ranks respondents by posteriors, henceforth PstR. Lets call this second

property logarithmic scoring. The motivating questions for our paper are: Under which conditions do

equilibrium payoffs necessarily correspond to logarithmic scoring? Under which conditions a strict IC

equilibrium has to satisfy PstR? That is, are all equilibrium payoffs under natural conditions essentially

equivalent to BTS payoffs?

Our main results are the following. We identify two conditions on equilibrium payoffs that we name

”posterior locality”, PstLoc, and a ”separation of variables” property, SepVr. The main theorem says

IC + PstLoc + SepVr −→ logarithmic scoring.

The second result says

IC + PstLoc −→ PstR.

To make these statements more precise, we consider our setting in more detail. There is a state

of the world drawn from a finite set, and an infinite population of players and each player observes a

private signal from a finite set 2. The signals are conditionally i.i.d. with respect to the state of the

world, so that there is a single probability distribution, the “prior”, that describes the joint distribution

of states of the world and signals. We assume that the prior is common knowledge among players, but

1In fact, we show that all strict equilibria in the BTS framework are either truth-telling or a types-permutation of

truth-telling, and the scores are unique up to a linear transformation.
2We expect that our results would still hold approximately for finite, but large sample sizes. The exact theory for

the finite case is very different and left for future research.
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unknown to the planner ex-ante. The planner asks each player to submit a response, which typically

includes a declaration of the respondent’s ”type” and ”something else” (as we show, reporting only

types cannot lead to a truth–telling equilibrium). Each player then earns a score based on his own

response and on the responses of everyone else. The score is computed via a scoring function f .

Let us now recall the notion of proper scoring rules in a framework with only one respondent.

Consider a random variable Ω, taking values in {1, . . . , N}, N > 1, representing the state of the world.

A respondent is asked to declare his belief about the distribution of Ω. If the outcome Ω = i is

observed, the respondent is paid Fi(p), where p = (p1, . . . , pN) is the probability distribution declared

by the respondent. A family of functions {Fi}i=1,...,N is called a strictly proper scoring rule if it is

incentive compatible for truth-telling, that is, the respondent’s expected payoff is maximized at his

true belief, the respondent’s posterior. More precisely, for all probability vectors q 6= p, we have

N∑
i=1

piFi(p) >
N∑
i=1

piFi(q) (1.1)

There are many proper scoring rules. A general characterization with many examples is provided in

Gneiting and Raftery (2007)3. An important special case arises if Fi(p) = Fi(pi) depends only on the

local posterior, which is the probability pi the respondent assigns to the realized outcome Ω = i, and

does not depend on how probabilities are divided among the remaining counterfactual outcomes. In

that case the scoring rule is necessarily equal to a linear transformation of the logarithm of pi (Savage

(1971), Bernardo (1979)). Such a rule is a natural choice if the local posterior is interpreted as a

measure of respondent’s expertise.

In our multi-player setting, the values of Ω can be thought of as distributions of types in the infinite

population, and we call ”posteriors” the probabilities that a type assigns to those values. Because there

are many respondents and we will allow the score of a respondent to depend on the responses of others,

providing responses becomes a game. Given a scoring function f such that there exists a (strictly)

separating equilibrium in which different types choose different answers, we derive properties of the

payoffs in that equilibrium. In particular, if Ω = i is observed4, we denote by Fi the value of the payoff

score f in that equilibrium. Condition PstLoc posits that Fi are functions of local posteriors, that

3Offerman, Sonnemans, Van De Kuilen and Wakker (2009) consider the case in which the respondents may have

non-expected utilities, with only two possible states of the world.
4By de Finetti’s theorem and our interpretation of the values of Ω, the value of Ω is known when all the players’

responses are known.
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is, of posterior probabilities of the event Ω = i. With infinitely many players the form of equilibrium

payoff does not change when a player of one type mimics the equilibrium strategy of another type.

For this reason, we are able to derive results about equilibrium payoffs even though the scores that

players would receive out of equilibrium are never specified.

More precisely, we assume that the realized ex-post payoffs in equilibrium are of the form Fi(p
i
k, p

i
−k; s),

that is, the payoff of the respondent of type k in state i depends on his posterior pik of state i, possibly

also on the posteriors of state i of other types, collected in the vector pi−k, and on the probability

vector s representing the (ex-ante) distribution of types.

We first show, under mild smoothness conditions, that, if the equilibrium payoffs Fi satisfy incen-

tive compatibility, the difference in the state i scores of two respondents with posteriors pi and qi,

respectively, has to be approximately proportional to log(pi)− log(qi) for q ≈ p, up to the first order.

Our first theorem says: if we add to incentive compatibility mild requirements on payoff smoothness

and sensitivity on other players of the difference in equilibrium payoffs of two respondents, then the

difference in incentive compatible scores of the two respondents is exactly proportional to the difference

in logarithms of the declared posteriors, rather than only approximately.

Our second theorem says that any incentive compatible ex-post payoff Fi(p
i
k, p

i
−k) is non-decreasing

in the declared probability pik. Consequently, the ranking of experts in equilibrium, if we consider pik

to be the measure of expertise, is the same given any incentive compatible mechanism. This result is

a generalization of results in the literature on the case of one respondent, on the monotonicity being

implied by incentive compatibility of proper scoring rules. See, e.g., McCarthy (1956), Savage (1971),

Schervish (1989) and Schlag and van der Weele (2013). The result is very general, proven by purely

algebraic methods.

Finally, we also discuss implementation issues. Observe that in general, while a particular ex-

post payoff of the form Fi(p
i
k, p

i
−k) may arise in equilibrium in theory, it is not necessarily simple to

implement it in practice. That is, the problem is how to implement the theoretically optimal payoff

score using only the players’ responses to a questionnaire designed by the agnostic planner, while

having the questionnaire as simple as possible. Under an assumption somewhat stronger than PstLoc,

but without assuming SepVr, we show that the payoffs of all strictly-separating equilibria in our

framework can be implemented by particular questionnaires, but the latter may be complex, except

for the logarithmic, BTS case. In this context, let us recall that Prelec (2004) shows that promising the
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respondents the BTS scores ex-ante, results, in equilibrium, in the ex-post scores of the form log(pik)

(plus a term that does not vary with a respondent). We revisit this result and provide a detailed proof

thereof. We also show that truth-telling is essentially the only budget-balanced equilibrium under

BTS. 5

Relationship to existing literature. Proper scoring rules in the game-theoretic context have

been studied extensively in the case in which the planner knows the prior distribution of the player

types. We mention a few works: Miller, Resnick, and Zeckhauser (2005) design a clever use of proper

scoring rules in such a framework; Witkowski and Parkes (2012) study a framework with only two types

but without common prior, and Waggoner and Chen (2013) consider a general framework without

assumptions on information structure. Our contributions to this literature are to analyze truth-

inducing payoffs that can be implemented even when the planner is agnostic about the prior, and to

show that logarithmic scoring is the only possible equilibrium payoff form under certain assumptions.

The problem we tackle in the paper can also be considered as one of mechanism design, since

we seek to describe mechanisms that are both incentive-compatibile and have attractive features for

opinion elicitation applications. In one way, our approach is more general than typical mechanism

design models 6 because we allow for both uncertainty regarding the players information (type), and

uncertainty regarding the true state of nature, and those two may be correlated in a nontrivial way. It

is exactly the joint distribution of the two that drives all the results. Our basic assumption is that the

players have a common prior on this joint distribution, but that the prior is not used by the planner

in designing the survey. We present this as a methodological rather than a substantive requirement:

Although the planner may have some beliefs about the prior, she may prefer to keep these beliefs

private and adopt the position of an agnostic/neutral outsider, not imposing her conjectures on the

survey respondents. Thus, she is interested in an ’universal’ mechanism, one that would work for

all priors without any input from her side apart from the initial formulation of the multiple-choice

5See also Prelec, Seung and McCoy (2013) who define and test experimentally a broader class of algorithms to produce

a ranking of experts according to their posteriors. Within this class, only BTS is known to be incentive-compatible.

Additional incentive-compatible mechanisms that are not admissible in the framework of this paper are studied in

Cvitanić and Prelec (2015).
6See, e.g., Maskin and Sjöström (2001), Bergemann and Morris (2012), Börgers (2013). We refer the reader to

Bergemann and Morris (2012) for a detailed literature survey.
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question. 7 In this sense, ours is a study of robust Bayesian mechanisms. On the other hand, our setup

is less general in another way – the players do not choose actions other than reporting their responses,

which is assumed to be costless. Thus, there is no modeling of utility/disutility drawn from actions,

the only utility the players draw is from the expected payoff they attain. Moreover, our framework is

less general than some models of robust mechanism design that, unlike ours, do not assume common

knowledge of the prior distribution by all the players. (In our case only the planner may be ignorant.)

We discuss in the conclusions section in what directions one could try to extend our results.

The rest of the paper is organized as follows: Section 2 introduces the model, Section 3 presents

the main theoretical results, Section 4 discusses implementation issues, and we conclude in Section 5.

The first appendix provides a careful description of condition PstLoc. The second appendix presents

the proofs.

2 Model, Definitions and Assumptions

In our model, a mechanism consists in giving scores to the players (respondents) of different types. 8

Applications we have in mind are of the polling type: the respondents are asked to provide responses

to queries assigned by a survey planner. The planner is interested in eliciting truthful opinions to a

multiple choice question, and ranking players according to the quality of their information, which in

our framework, will mean according to their posterior probabilities of the true state of nature. For

instance, the planner might be interested in the value of a certain wine bottle some years into the

future, and asks experts to respond to appropriately designed questions. Broader applications include

voting in elections, predicting political events, product market research, online product reviews, and

any other application that involves a survey with a multiple choice question. 9

7In theory, using the “majority rule” mechanism that would ask for the common prior to be declared may result

in an equilibrium that reveals the common prior; however, such a rule would not be implementable in practice, as we

discuss in the paper.
8A negative of a score is usually called a transfer in the mechanism design literature; see, e.g., Börgers (2013).
9Prelec (2004) and Prelec, Seung and McCoy (2013) provide many more examples.
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2.1 The model

The players are indexed by r ∈ R, where R is infinite and countable.10 The state of nature is a random

variable Ω, taking values in {1, . . . , N}, N > 1. 11 The players can be of M > 1 different types, that

can be interpreted as random signals the players receive about the state of nature. Player r’s type is

a random variable denoted T r, and it takes values tr ∈ {1, . . . ,M}. We consider scoring mechanisms

in which, for a given fixed positive integer K, player r submits as a response a K−dimensional value

ar ∈ RK (a for “action”). A pure strategy for player r is a map σr that maps a player’s type to his

response choice ar. We allow only for pure strategies.

A response ar would typically include a declaration of a respondent’s type (choosing an answer to

a multiple choice question), and it would also include responses to some other questions in order to

be truth-inducing.12 It could also include a declaration of the respondent’s prior distribution of types

and states of nature, as introduced below; that is, the respondent could be asked to state what his

prior is. We posit the following

Assumption 2.1 (i) The family of signals T r, r ∈ R, is a family of exchangeable random variables,

and random variables T r, r ∈ R, are i.i.d. conditional on the state of nature Ω.

(ii) If respondent r chooses response ar, and the remaining responses are represented by a−r, then

his score is given by function f(ar, a−r), where the order of different respondents’ responses in a−r does

not matter, that is, f is symmetric in those.

Condition (i) implies that the order in which we consider our players is irrelevant (from the point

10We need the assumption that there are infinitely many players for several reasons: first, we don’t want to impose

assumptions on the form of the payoffs outside of equilibrium; for this, we will use the fact that, with infinite number

of players, the form of equilibrium payoff does not change when a player of one type mimics the equilibrium strategy

of another type; second, achieving truth-telling of types is much harder with finitely many players, and so is the

implementation of equilibrium payoffs using practical inputs. We postpone to future research the analysis of the setup

with finitely many players; finally, we need the infinite number of players because we invoke de Finetti’s theorem in our

model setup.
11Strictly speaking, this is only an approximation for most applications, in which the state of nature could naturally

have a continuous range of values. For instance, in the example about a wine bottle’s value, the state of nature could

be the percentage of experts who believe the bottle is worth more than one thousand dollars.
12In the section on implementation, we will see that another question might be about the percentage of other respon-

dents choosing a specific choice from the multiple choice list.
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of view of the probability distribution of the entire sequence). Moreover, by de Finetti’s theorem, the

exchangeability assumption actually implies the second part of Assumption 2.1, that there exists a

random variable Ω such that T r’s are conditionally i.i.d. with respect to Ω; see, e.g., Aldous (1985),

or Chow and Teicher (1997).

The symmetry property in condition (ii) is a natural restriction considering that the planner does

not make a distinction between different types, assumed exchangeable by condition (i).

From now on, we assume the players are risk-neutral, that is, each player maximizes his expected

payoff. 13

2.2 The prior and the posteriors

The joint distribution of types and states of nature is given by an M ×N matrix Q = [qki], where

qki = Pr(T r = k,Ω = i).

Note that Q does not actually depend on r, a consequence of the exchangeability assumption.

We suppose that the matrix Q is common knowledge among the players, but not used by the

planner when designing the survey. In fact, the planner does not even need to know the number of

the states of nature N . The only thing we assume that the planner uses is M . For example, M is

needed for implementation using a multiple choice question – the planner has to offer exactly as many

possible choices as there are types. 14

Matrix Q determines the marginal probabilities of types, referred to as type probabilities, and the

probabilities of states of nature given the type, referred to as posteriors. They are denoted

sk = Pr(T r = k)

13Typically, mechanism design models consider only the types as being random, according to a prior which is known

also to the planner. Our model is more general by considering random states of natures in addition to random types,

with a non-degenerate correlation between the two. On the other hand, it is less general in that the players do not

choose actions other than choosing a response, and thus, they draw no utility/disutility other than from the expected

score value.
14To get around the problem of not knowing the common prior the planner could ask each player to state the whole

prior distribution and harshly penalize the player who gives a response different from others. However, asking for the

common prior is unlikely to work in practice - more likely than not, most responses would be different from each other,

and the planner would have to penalize harshly most respondents.

7



and

zik = Pr(Ω = i | T r = k).

We assume that the marginal probabilities of types and of states of nature are all strictly positive.

The posteriors form a matrix Z = [zik]
M, N
k=1,i=1. Note that zik does not depend on r, that for every

k ∈ {1, ...,M}, we have
∑N

i=1 z
i
k = 1, and that any matrix with this property can be represented as a

Z−matrix of posteriors for some joint distribution Q. We denote the vector (s1, ..., sM) by S.

The following result is simple, but crucial for our results. It tells us what the score looks like for

the type who mimics another type’s equilibrium strategy. We emphasize that we need infinite number

of players for this result.

Proposition 2.1 Suppose there exists a Bayesian Nash equilibrium for our game of respondents. 15

Then, under the symmetry assumptions on f and with infinite number of players, if a respondent of

type k deviates from the equilibrium by using the strategy of type j 6= k, his deviation payoff is equal

to the equilibrium payoff of type j.

This holds because every type is represented by infinitely many players, and the score function f

is symmetric in their responses. The proof is in Appendix.

2.2.1 Equilibrium payoff and incentive compatibility

In the standard literature on scoring rules, there is only one respondent, asked to declare his posterior

belief about the distribution of Ω, that is, to declare zi’s. If the outcome Ω = i is observed, the

respondent is paid Fi(z). A family of functions {Fi}i=1,...,N is called a strictly proper scoring rule if it

is incentive compatible for truth-telling, that is, the respondent’s expected payoff is maximized at his

true belief, meaning, for all probability vectors q 6= p, we have
∑N

i=1 p
iFi(p) >

∑N
i=1 p

iFi(q).

In our framework with infinitely many respondents, we consider only the payoff mechanisms that

allow for a Bayesian Nash equilibrium in which the equilibrium payoffs are functions Fi : (0, 1)2M → R,

of the form Fi(z
i
k, z

i
−k; sk, s−k) where, for example, zi−k = (zi1, ..., z

i
k−1, z

i
k+1, ..., z

i
M).

15A Bayesian Nash equilibrium is a family of strategies σr, one for each player r, such that, if player r deviated to a

strategy different from σr, his expected payoff would not be greater. If it is strictly less, we say that the equilibrium is

strict.If the players of different types submit different responses, we say that that the equilibrium is separating. For a

detailed definition, see Appendix A.
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The details of the relationship between the ex-ante payoff f and the ex-post payoff {Fi}, and the

technical conditions needed, are presented in Appendix A; see also Section 2.2.2 below. Here, for

the purposes of stating our results, we only need to assume that, if the realized state is i, and the

players play the equilibrium strategy, a player’s realized score is given by function Fi that depends

on posteriors zij of the realized state and type probabilities sj. Moreover, we require that the realized

equilibrium payoffs satisfy the conditions in the following definition.

Definition 2.1 The family {Fi} of functions of the form Fi(z
i
k, z

i
−k; sk, s−k) is called a Posterior-Local

Equilibrium Payoff System (PLEPS) if the following is satisfied:

- (i) Symmetry: (∀x, y ∈ (0, 1)) (∀z2, ...zM , s2, . . . , sM ∈ (0, 1)) (∀ permutation Π of {2, ...,M}),

we have

Fi(x, z2, z3, ..., zM ; y, s2, . . . , sM) = Fi(x, zΠ(2), zΠ(3), ..., zΠ(M); y, sΠ(2), sΠ(3), ..., sΠ(M))

- (ii) Incentive compatibility, strict separation inequality:

(∀Z −matrix) (∀S − vector) (∀k, j ∈ {1, ...,M} such that (z1
k, ..., z

N
k ) 6= (z1

j , ..., z
N
j ))

N∑
i=1

zikFi(z
i
k, z

i
−k; sk, s−k) >

N∑
i=1

zikFi(z
i
j, z

i
−j; sj, s−j) (2.1)

Assumption (i) on symmetry means that the equilibrium score of type k does not depend on the

order of other types, and is consistent with Assumption 2.1 (ii) on the symmetry of scoring function

f . Assumption (ii) implicitly assumes that the players are risk-neutral and maximize the expected

score. By Proposition 2.1, it is automatically satisfied if Fi are the equilibrium payoffs (as formalized

by Assumption 6.1 in Appendix A) in a truth-telling equilibrium.

We now elaborate more on the assumed form of equilibrium payoffs Fi.

Remark 2.1 The crucial assumption for the results of this paper is that the score of a player in

equilibrium depends on the player’s posterior zi of the realized state of nature i, called local posterior.

This is justified if the posterior is a good measure of the player’s expertise. There are cases in which

the planner clearly wants to know about the distribution of types, such as elections or product market

research, trying to estimate what percentage of population will vote for each candidate, or is likely to

buy a product. In such cases, it is intuitive that a respondent with higher posterior is a better expert

– he has the highest probability of being right about the actual distribution of responses, reminiscent
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of the concept of maximum likelihood estimators that maximize the probability of the event that does

actually occur. Moreover, if the survey study has more than one stage, for example, in market research,

a mechanism that results in PLEPS payoffs could be used to identify experts in the first stage, and

then only the experts could be used for further surveys, thus reducing the cost of the study. It is

primarily these applications we have in mind. In other applications, such as, for example, surveying

economists on whether this year’s inflation will be higher than a certain level, it is less clear that a

higher posterior on the distribution of types means a higher expertise, and scoring rules other than

those with ex-post PLEPS payoffs might be appropriate. In particular, if the planner is not concerned

with identifying experts, but only with truth-telling, the assumption may exclude perfectly reasonable

scoring rules. For example, it can be shown that the following is an incentive compatible payoff, paid

to the player of type k in state i (see Cvitanić and Prelec (2015)):

M∑
j=1

Pr(T s = j | Ω = i) logPr(T s = j | T r = k)

However, this payoff is not monotone in the local posterior.

We also note that we look for the simplest possible equilibrium payoffs that describe players’

expertise, which is why the payoff F is not allowed to depend on other local probabilities that can

be derived from the prior. On the other hand, the reason why we allow dependence on ex-ante type

probabilities sk, s−k is because these, in implementation, translate to type frequencies, which may be

used to make a mechanism budget-balanced, as defined below. Actually, for budget balance, it is

sufficient to have dependence on local conditional probabilities sik = Pr(T r = k | Ω = i), but we allow

dependence on sk, s−k for generality (except in the implementation section), as discussed next.

A natural question to ask is whether for any PLEPS F there exists a scoring rule f that implements

it in equilibrium. In the implementation section below we argue that this is, indeed, the case, under

the assumption that, instead of on possibly all sk, s
−k, Fi depends only on sik = Pr(T r = k | Ω = i).

It is also natural to ask if, for a given f , the equilibrium that implements F is unique. We show later

below that this is essentially true for the benchmark example of the Bayesian Truth Serum scoring

rule.

We will often restrict the payoffs to those for which the planner pays zero in aggregate, in which

case we say that the mechanism is budget balanced. More precisely, we have
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Definition 2.2 A payoff mechanism is said to be budget-balanced if the sum of the scores of all the

players is equal to zero, with probability one.16

We have the following negative result, proved in Appendix, when the number of players is finite.17

Proposition 2.2 Assume (only in this proposition) a finite number of players. Then, there exists no

budget-balanced PLEPS.

2.2.2 Ex-ante vs. ex-post payoff: implementation

Even when identifying states of nature with possible empirical frequencies of responses, asking about

posterior probabilities of state of nature is likely to be prohibitively complex in practice, because it

would require respondents to provide a distribution over all possible empirical frequencies. Thus, in

practice, the planner who wants the mechanism to result in ex-post payoffs Fi when the players play

the truth-telling equilibrium, would like to find a way to induce those ex-post payoffs by promising

to pay the players based on ex-ante scores that require much simpler inputs than the players’ beliefs

about the distribution of the empirical frequencies. We will discuss this issue in the implementation

section, and here we just mention the following. Our benchmark example of a PLEPS is the classical

logarithmic scoring rule payoff

Fi(z
i
k, z

i
−k; sk, s−k) = log(zik) .

Prelec (2004) showed that the budget-balanced version of this payoff can be implemented by, in addition

to asking (infinitely many) respondents to declare their own type – the multiple choice question – also

asking them what they think is the percentage of other types in the population, that is, the empirical

frequencies of each choice in the multiple choice question. It is much easier for the respondents to

provide their estimates of empirical frequencies than their estimates of the probability distribution of

the empirical frequencies. In the logarithmic case, this means that a respondent of type k is not asked

for zik’s and is not promised log(zik), but he is asked for simpler inputs that determine his promised

16It should be mentioned that in a budget-balanced game the players know they may receive negative “payments”,

and some players may not be willing to participate. In practice, the “payments” will often not be monetary, but used as

score points, and every respondent might be paid a non-negative amount, that may consist of a fixed fee and a variable

fee that depends on the respondent’s score, or his ranking according to the scores. That is, what is used may not be a

budget-balanced scoring rule, but a modification thereof.
17We leave for a future study a more thorough analysis of the case with the finite number of players.
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score via a specific function f (called Bayesian Truth Serum), and the value of the score will turn out

to be equal to log(zik) when the players play the truth-telling equilibrium.

3 Possible equilibrium payoffs

In this subsection we present examples of PLEPS’s and address the question whether logarithmic

equilibrium payoffs (EP’s) or simple modifications thereof are the only possible PLEPS’s.

3.1 Logarithmic equilibrium payoffs

3.1.1 The benchmark example – the logarithmic function

The canonical example of a PLEPS (ignoring budget-balancing) is the logarithmic function:

Fi(z
i
k, z

i
−k; sk, s−k) = log(zik)

More precisely, a player’s equilibrium payoff is the logarithm of the posterior probability of the state

of nature given his type. It is well known and straightforward to verify that this, indeed, satisfies the

strict separation inequality (2.1). This is because of the well known Gibbs inequality which says that

for a probability vector (p1, . . . , pN), we have

0 = min
qi≥0,

∑
i q

i=1

N∑
i=1

pi[log(pi)− log(qi)] (3.1)

This can be verified by noting that, with λ being a Lagrange multiplier for the constraint
∑

i q
i = 1,

the first order conditions for the problem

0 = min
qi

{
N∑
i=1

pi[log(pi)− log(qi)] + λ
∑
i

qi

}
(3.2)

are pi/qi = λ, thus satisfied with qi = pi.

The question arises whether the log function is the only PLEPS (modulo budget balancing). The

answer is negative in general, and we present a counterexample in what follows. Later below, we show

that under mild additional conditions logarithmic equilibrium payoffs are, in fact, the only possible

PLEPS’s.
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3.1.2 Other examples of PLEPS’s

Let us first note that there are variations of the log EP’s that produce equivalent scores when we

require budget balance. For instance, if we set, for some function G symmetric in all the arguments,

and some constant K, suppressing the dependence on the state of nature i,

F (zk, z−k) = log(zk)−K
∑
j 6=k

log(zj) +G(z1, . . . , zM)

then, function F corresponds to a PLEPS, as can be verified in the same way as for the problem (3.2).

However, it is not really different from logarithmic EP’s if we insist on budget balance, because, as is

straightforward to check, if we add the constant term that makes it budget-balanced, we get the same

EP’s as for the budget-balanced logarithmic EP’s.

We now present a PLEPS that has higher order terms that make it distinct from the logarithmic

PLEPS, even if we make it budget-balanced.

Example 3.1 Consider the case with three types, M = 3, and denote

pi = zik , (qi, ri) = zi−k

Define the following function:

F (p, q, r) = Klog(p) + p4 − 2p3(q + r)− 6p(qr2 + q2r)

It is straightforward to verify that, for large enough K, this function satisfies the strict separation

inequality (2.1). This is because the first order conditions (FOC’s) for the Lagrangian optimization

problem

min
qi

{∑
i

pi[F (pi, qi, ri)− F (qi, pi, ri)] + λ
∑
i

qi

}
are, denoting with Fx the derivative with respect to x argument,

pi[Fp(q
i, pi, ri)− Fq(pi, qi, ri)] = λ (3.3)

for some Lagrange multiplier λ, and these FOC’s are satisfied for the above function with qi = pi.

For large enough K, the FOC’s are also sufficient conditions for optimality because the second order

optimality conditions will also be satisfied, which implies that (2.1) is satisfied.
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Remark 3.1 We make an important observation here that, even if a PLEPS does not lead to loga-

rithmic EP’s, the difference in equilibrium scores of two players with posteriors p and q, respectively,

has to be proportional to log(p)− log(q) for q ≈ p, up to the first order. To explain what we mean by

that, consider, for simplicity of notation, the case with three types, and use the same notation pi, qi, ri

as above. For fixed p and r, suppressing dependence on i, expanding the score difference up to the

first order as a function of q around the point p, denoting by ∂i the partial derivative with respect to

the i−th argument, we have

F (p, q, r)− F (q, p, r) ≈ [∂2F (p, p, r)− ∂1F (p, p, r)](q − p)

To evaluate the right-hand side, note that since F is incentive compatible, the solution to the problem

minqi {
∑

i p
i[F (pi, qi, ri)− F (qi, pi, ri)] + λ

∑
i q
i} is qi = pi, where λ is a Lagrange multiplier. The

first order condition for this problem gives (see Lemma 3.1 below)

∂2Fq(p, p, r)− ∂1F (p, p, r) = −λ
p

Combining the above equations and using that the first order Taylor expansion of the log function

around q = p is log(p)− log(q) = 1
p
(p− q), we get

F (p, q, r)− F (q, p, r) ≈ λ(1− q

p
) ≈ λ(log(p)− log(q))

Thus, even though there are “strange” PLEPS functions F as in the example above, for all of them

the difference in two EP’s is proportional to the difference of logarithmic payoffs, up to the first order.

This is also true if F depends on type probabilities sk, under the conditions of Lemma 3.1.

We next identify conditions under which there can be no second-order terms, and the budget-

balanced logarithmic EP is the only budget-balanced PLEPS.

3.2 When are equilibrium payoffs logarithmic?

We assume in this section that N ≥ 3. 18 As we have just shown, the difference in the ex-post

scores of two types is equal to the difference of the log scores up to the first order. We will now

find conditions under which the higher order terms cannot appear, and under which any PLEPS is

essentially a logarithmic EP.

18It is well known that there are quadratic scoring rules that are strictly separating when N = 2, for all priors.
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We do the following:

- (i) we first state an assumption on the second order mixed derivative of the difference in equilib-

rium scores of two types;

- (ii) we then show that the assumption implies an additive representation of the EP of a given

type – the EP is a sum of a term that does not depend on the posteriors of other types and a term

that is symmetric in types.

- (iii) finally, we show that such additive representation is sufficient to imply log EP’s, under a

smoothness assumption.

For ease of notation we continue assuming M = 3, and use the above notation pi, qi, ri for the

posteriors of the three types. Also denote by sp, sq, sr the corresponding type probabilities. This is

without loss of generality, the same proof works for more than three types.

The following is the assumption we need; not surprisingly, in light of the first-order approximation

above, it is an assumption on the second-order properties of the equilibrium payoffs. In particular, it

is weaker than the assumption that the difference in equilibrium payoffs of two types does not depend

on other types.

Assumption 3.1 For all i, and all type probabilities sp, sq, sr, the second mixed derivative (assumed

to exist)

∂pq
[
Fi(p

i, qi, ri; sp, sq, sr)− Fi(qi, pi, ri; sq, sp, sr)
]

of the difference in scores of two types with posteriors pi and qi respectively, does not depend on other

type’s posteriors ri.

The assumption says that the (mixed) sensitivity of the difference in EP’s to the corresponding

types is not affected by other types.

We now state the following additive representation result, proved in Appendix.

Proposition 3.1 Consider a PLEPS system {Fi} such that Assumption 3.1 holds. Then, if, for

some p0 ∈ (0, 1) and for any fixed type probabilities sp, sq, sr the function Fi(p
i, qi, ri; sp, sq, sr) can

be expanded as an infinite Taylor series around the point (pi, qi, ri) = (p0, . . . , p0) ∈ (0, 1)M , then,

necessarily, the following Additive Representation (AR) holds:

Fi(p
i, qi, ri; sp, sq, sr) = Gi(p

i; sp, sq, sr) +Hi(p
i, qi, ri; sp, sq, sr) (3.4)
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where Hi is a function that is symmetric in all the pairs (pi, sp), (q
i, sq), (r

i, sr), i = 1, . . . , N .

The main result of the section is the following:

Theorem 3.1 Consider a PLEPS consisting of functions Fi(p
i, qi, ri; sp, sq, sr), i = 1, 2, . . . , N , that

satisfy the assumptions of Proposition 3.1. Assume also that Fi is such that Gi is symmetric in all

sk variables, for every fixed pi, i = 1, . . . , N . Then, we have, for some functions λ and B of type

probabilities S = (sp, sq, sr),

Gi(p
i, sp, sq, sr) = λ(S) log pi +Bi(S)

In particular, if the corresponding PLEPS is budget-balanced, the EP with posterior pi is given by

Fi(p
i, qi, ri; sp, sq, sr) = λ(S) log pi − λ(S)

∑
t=p,q,r

sit log ti (3.5)

where sit is the conditional probability of the type with posterior t in state i.

Remark 3.2 We emphasize again that this result is obtained by restricting only equilibrium properties

of a scoring rule, without restrictions on the off-equilibrium properties.

Proof: Since Fi is a PLEPS, it satisfies separation property (2.1). By the stated symmetry of Hi,

function Gi also satisfies the same type of inequality, which can be written as

0 = min
qi

{∑
i

piGi(p
i; sp, sq, sr)−

∑
i

piGi(q
i; sp, sq, sr)

}
, (3.6)

As shown in Savage (1971), this property implies that Gi is continuously differentiable in the pi variable,

i = 1, . . . , N . Then, by Lemma 3.1 below that identifies the first order condition for this minimization

problem, there exists a Lagrange multiplier λ(S) independent of p, such that, suppressing dependence

on i,

λ(S)
1

pi
= ∂pG(pi; sp, sq, sr)

The above implies the statement about the logarithmic form of Gi. Equation (3.5) is then straightfor-

ward to verify.

The following “Lagrange optimization” lemma is proved in Appendix. It gives the first order

condition for the IC minimization problem in (3.7)below.
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Lemma 3.1 Consider, in the above notation, functions Fi(p
i, qi, ri; sp, sq, sr), i = 1, 2, . . . , N, that are

continuously differentiable in the pi and qi variables, and, for every fixed pi, qi, ri, symmetric in all

values of st variables. Recall the strict separation inequality (2.1), written in the form

0 = min
qi

{∑
i

piFi(p
i, qi, ri; sp, sq, sr)−

∑
i

piFi(q
i, pi, ri; sp, sq, sr)

}
, (3.7)

that is, the minimum over probabilities qi is obtained at qi = pi. Then, there exists a function λ(S) =

λ(sp, sq, sr) such that, for all i, pi, qi, ri, sp, sq, sr,

λ(S) = pi[∂pFi(p
i, pi, ri, sp, sq, sr)− ∂qFi(pi, pi, ri, sp, sq, sr)] . (3.8)

3.3 Ranking by posteriors

We now show the following result: PLEPS payoffs necessarily rank the players according to the

relative ranking of the corresponding posteriors. That is, when using a scoring system resulting in an

equilibrium with PLEPS payoffs, the planner will know which players are better experts than others,

if she considers the level of the posterior equivalent to the level of expertise. 19 We emphasize that

for this result it is crucial to assume that the equilibrium scores depend only on the posteriors of the

realized state of nature.

The main result of this section is

Theorem 3.2 PLEPS payoffs {Fi} are strictly increasing in the posterior probabilities of the true

state of nature. That is, functions Fi satisfy (for any prior distribution matrix Q),

If j, k ∈ {1, ...,M} and zik > zij, then Fi(z
i
k, z

i
−k; sk, s−k) > Fi(z

i
j, z

i
−j; sj, s−j) (3.9)

Put differently, if the planner wants to determine relative expertise of players receiving exchangeable

signals, it is sufficient to design a scoring system which allows only for equilibria that are realized via

a PLEPS. Thus, inequality (2.1) not only guarantees strict separation of types, but also has the

posterior-based ranking as a direct consequence.

This theorem is a generalization of the results in the literature on the monotonicity being implied

by incentive compatibility of proper scoring rules. See, e.g., McCarthy (1956), Savage (1971), Schervish

19If they were not ranked by their posteriors, then, in the pre-game phase, they might want to avoid collecting

information about the true state of nature, which is undesirable.
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(1989) and Schlag and van der Weele (2013). Those papers consider only the non-game version of the

problem with one respondent only. Moreover, they mostly use analytic methods to prove it, while our

proof is completely algebraic.

Theorem 3.1 is also in the spirit of the theorems that relate incentive compatibility to monotonicity

in types, if we equate types with posterior probabilities; see Myerson (1981) for an early theorem of

that type, and Vohra (2007) for a comprehensive treatment. However, our framework is different from

the standard mechanism design framework, in that we have random states of nature, so that incentive

compatibility is a property of a weighted sum (expected value conditional on type), not on the value

itself. As a consequence, the methodology of those papers does not work,

The intuition behind the result is that if the posterior probability of type A of a state was higher

than the one of type B, but type A’s score in that state was lower, then, he would be better off

pretending to be type B. To be more precise, consider the case with only two types, A and B, and two

states of the world, 1 and 2. Denote by pA and pB the posterior probabilities of state 1, and suppose,

without loss of generality, pA > pB. There are only two possible PLEPS scores in each state i, denoted

Fi(pA, pB) and Fi(pB, pA) (suppressing dependence on S vector). Denote by Di the difference in scores,

DA
i = Fi(pA, pB)− Fi(pB, pA). The claim is that, in equilibrium, type A’s higher posterior probability

of state i implies higher score in that state, that is, positive DA
i . To argue this, note first that by the

strict separation inequality, player A’s expected value of the differences in scores, that is, the weighted

average of DA
1 and DA

2 with weights pA and 1 − pA, is positive. By the same token, the weighted

average of DA
1 and DA

2 with weights pB and 1 − pB, is negative. The only way this can be possible

when pA > pB (thus also 1− pA < 1− pB) is that DA
1 > 0 and DA

2 < 0. Thus, indeed, the type with

higher posterior probability of a state receives higher score in that state. Or, put differently, if the

type with higher posterior probability of a state does not receive higher score in that state, he would

adopt the other type’s strategy. In Appendix, we state and prove the above simple argument in a

lemma, and extend it to any number of types and states.

4 Implementation

In this section we first show how to implement any PLEPS, up to an additional mild restriction,

and then we elaborate on the Prelec (2004) result that the Bayesian Truth Serum algorithm provides
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a feasible implementation of budget-balanced logarithmic EP’s of (3.5) (under standard Bayesian

and rationality assumptions); see also Prelec, Seung and McCoy (2013). We also comment on the

uniqueness of equilibrium under the BTS scoring rule.

4.1 Implementing PLEPS

We continue to assume there are infinitely many respondents. Consider the case in which the re-

spondents are asked to choose the correct answer to a multiple choice question, and assume that the

possible states of nature take values in the set of probability distributions of the responses to the

multiple choice questions.

Proposition 4.1 Consider a scoring function f such that there exists an SNE with ex-post payoffs

given by a PLEPS with type k payoff in state i given by Fi(z
i
k, z

i
−k; s

i
k, s

i
−k); that is, in addition to zkj ’s,

the payoff depends only on local conditional type probabilities sik = Pr(T r = k | Ω = i) instead of on

possibly all ex-ante type probabilities contained in vector sk. Then, this PLEPS can be implemented

by the agnostic planner. More precisely, there exist questions that the planner can ask from which she

can form estimates î, ẑ îk and ŝîk of the true state of nature i and the true probabilities zki and ski , and

such that, if the planner announces that a player who declares type k will receive Fî(ẑ
î
k, ẑ

î
−k; ŝ

î
k, ŝ

î
−k),

then, truth-telling is an equilibrium.

Proof: Suppose the planner asks the following from the respondents:

- (a) to choose the correct answer to the multiple choice question;

- (b) to state the possible states of nature, that is, to declare what the set of the possible distribu-

tions of the responses to (i) is, AND to state their perceived probability for each of those distributions.

To guarantee truth-telling is an equilibrium, the planner announces she will compute the values Fi

as follows. Her estimate î of the true state of nature i will be given by the frequencies by which each

particular answer to the multiple choice question has been chosen by the respondents. She will also

make the estimates ŝîk of the type probabilities equal to those frequencies. Having estimated state i,

she will then choose the corresponding ẑ îk from all the zjk’s, j = 1, . . . , N , that a player provides as the

answer to (b). Having all of these, the planner will compute the corresponding values of Fî’s.

Suppose now that all players other than player r of type k play the truth-telling strategy. If player

r also plays the truth-telling strategy, his payoff in state i is Fi(z
i
k, z

i
−k; s

i
k, s

i
−k), because i, z’s and s’s
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are correctly estimated by the planner. If player r of type k declares type j 6= k, his payoff in state i is

Fi(z
i
j, z

i
−j; s

i
j, s

i
−j), because, with infinite number of players and all except player r being honest, i, z’s

and s’s are again correctly estimated by the planner. By IC inequality (2.1), player’s r expected value

of the payoff when he is dishonest is less than the expected value of the payoff when he is honest, and

he would not deviate.

Remark 4.1 The above implementation procedure is not robust – in practice, there will be more

different outcomes of responses to question (b) than the number of types, and different respondents will

consider different distributions of the responses to (a) as the possible outcomes for the states of nature.

Thus, some approximate grouping of the responses would have to be done. Moreover, responding to (b)

puts a large burden on the subjects, because they have to provide possible frequencies of the responses

to (a) and distributions over those frequencies. For budget-balanced logarithmic equilibrium payoffs

the story is different, as discussed in the next section: the Bayesian Truth Serum (BTS) scoring rule of

Prelec (2004) implements budget-balanced logarithmic EP’s using inputs that are simpler than those

obtained from the responses to (b), and a procedure which is robust (that is, no grouping of similar

responses is necessary).

4.2 Implementing logarithmic equilibrium payoffs by the Bayesian Truth

Serum

We first recall the definition of the Bayesian Truth Serum (BTS). We specify the model in the no-

tation of Section 2. We assume that there are infinitely (countably) many respondents, labeled

r ∈ R. The truthful opinion of respondent r is represented by a pair of M -tuples (Xr;Y r) =

((Xr
1 , . . . , X

r
M); (Y r

1 , . . . , Y
r
M)) of random variables. Here, Xr

i ’s take values zero or one, and only one

is equal to one. This is interpreted as choosing an answer from a set of M possible answers. Random

variables Y r
i ’s take values in [0, 1] and

∑M
i=1 Y

r
i = 1. The latter represent the declared opinion that

respondent r has on what percentage of respondents will choose i as the correct answer.

As in Section 2, we assume that the infinite sequence (Xr, r ∈ R) is exchangeable. Then, by de
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Finetti’s theorem, there is an M−dimensional (potentially random) vector

X̄ = lim
n

1

n

n∑
r=1

Xr

taking values in [0, 1]M , such that Xr’s are conditionally independent given X̄. We interpret X̄ to be

the true state of nature, denoted previously by Ω.

Denote by x̄j the sample mean of the declared values xrj of Xr
j over all respondents r, and by log ȳj

the sample mean of all the declared values log yrj of log Y r
j (so that ȳj is their geometric mean):

log ȳj := lim
n→∞

1

n

n∑
r=1

log yrj

Definition 4.1 The Bayesian Truth Serum (BTS) score function for respondent r is given by

BTSr =
M∑
j=1

xrj log
x̄j
ȳj

+
M∑
j=1

x̄j log
yrj
x̄j

Prelec (2004) proved that BTS is an incentive compatible mechanism, in the sense that a respon-

dent’s payoff is maximized by declaring the true opinion, if everyone else does. Moreover, we can state

a new uniqueness result, namely, that with the BTS mechanism any budget-balanced strict (Bayesian)

Nash equilibrium, henceforth SNE, is separating, as defined in Appendix A.

Remark 4.2 (Uniqueness of equilibrium.) It is a natural convention to define log(x̄j/ȳj) = 0 if

x̄j = ȳj = 0, as well as to define x̄j log(yrj/x̄j) = 0 if x̄j = 0. Note that if xrj = 0 for all but a finite

number of r’s, so that x̄j = 0, then it is optimal for every player r to correctly predict yrj = 0, so that

ȳj is naturally defined to be zero20. Under these conventions, the only possible budget-balanced SNE’s

are those which are separating. Indeed:

-(i) First, it is impossible to have an SNE in pure strategies in which two individuals of the same

type choose different strategies and hence have different expected scores: suppose they have different

strategies in this SNE. If player 1 switched to strategy 2, he would have a strictly lower value, by

definition of ”strict”, and this value would be the same as player 2’s value, because with infinite number

of players, the value of one player is not affected by what another player does. For the same reason,

if player 2 switched to strategy 1, his value would be equal to the original player 1’s value, which we

20This is because increasing yj does not change the score, while decreasing yk for k 6= j would lower the score, if

x̄k > 0.
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argued above is strictly larger. This means that player 2 was not playing an equilibrium strategy to

start with. A contradiction.

- (ii) Second, two individuals of different types cannot have the same strategies in an SNE: if they

did, by (i) all other players of their types also would choose the same strategy, which means that there

would be a type k that nobody would “claim”, that is a k such that xrk = 0 for all r. Because we assume

budget balance, there is a player with a non-positive score. If that player deviated to type k, by above

natural conventions his BTS score would be zero, which is weakly better than not deviating, so the

equilibrium could not be strict.

Because of this, and since the truth-telling equilibrium is focal among strictly separating equilibria,

from now on we consider xi’s and yi’s to be the truthful responses.

For the reader’s convenience and to provide additional details, we recall the Prelec (2004) result

that, in such a truth-telling equilibrium, the BTS score is equal to the budget-balanced logarithmic

payoff, and we provide a detailed proof in Appendix.

Theorem 4.1 (Prelec 2004; Theorem 2) Under the above assumptions, when the players play the

truth-telling equilibrium, BTS scoring results in budget-balanced logarithmic EP’s. More precisely, in

the equilibrium we have

BTSr = logPr(X̄ = x̄|Xr = xr)− lim
n→∞

1

n

n∑
s=1

logPr(X̄ = x̄|Xs = xs) (4.1)

or, denoting xr = k, xs = j, x̄ = i,

BTSr = log(Pr(Ω = i | T r = k))−
M∑
j=1

Pr(T r = j | Ω = i) log(Pr(Ω = i | T r = j)) (4.2)

Thus, the BTS score corresponds to the PLEPS function Fi that is logarithmic. Put differently,

BTS implements budget-balanced logarithmic EP’s by asking the players only two things: to choose an

answer from the multiple choice list, and to predict what percentage of players will choose a particular

answer.

To conclude, the main message of this section is the one confirming the superiority of BTS because

of the following three properties: BTS leads to a (essentially) unique equilibrium, it results in the

benchmark, logarithmic ex-post scores, and it is easily implementable. We know of no other PLEPS

that has these properties.

22



5 Conclusions

We consider the problems of extracting true opinions from a large group of respondents and of ranking

them according to their posteriors on state of nature, in the case in which the planner is agnostic

about the distribution of the states of nature and the respondents’ types. Thus, the planner has to

design a universal mechanism, that would work for all such distributions. One such mechanism is

the one that is based on ex-post logarithmic payoffs. We prove the following results for equilibrium

payoffs that are determined only by the posteriors and type probabilities: (i) under assumptions on the

sensitivity of score differences, the incentive compatible budget-balanced equilibria necessarily result

in logarithmic payoffs; (ii) for arbitrary mechanisms, any incentive compatible equilibrium necessarily

ranks the respondents according to the relative size of their posterior probabilities of the realized state

of nature. We elaborate on the result from Prelec (2004) that the logarithmic equilibrium payoffs can

be implemented using the BTS algorithm, and we note that other equilibrium payoff rules can also be

implemented, but may require responses to more complex questions.

Our setup does not allow for players’ actions other than costless expressing of their opinions. Thus,

developing a more general analysis of robust mechanisms in our framework, in which the players also

would draw utility from costly actions, is an unfinished task. In our model the experts have no reason to

lie, but need positive incentive to tell the truth. One could envision a framework in which players have

some reason to lie, for example they do not care about their own payoff, but want to manipulate the

results so as to have some other type have the highest score. Or, a framework with known utilities and

unknown correlation of types, in which the planner wants to elicit information about the correlations

without disturbing the stated utilities; for example, the case in which the planner wants to ask players

to predict what others will do, but she doesn’t want the payoff they get for making these predictions

to change any of the other incentives in the game. Furthermore, it may be of interest to study scoring

rules that do not satisfy posterior locality, such as the rules studied in Cvitanić and Prelec (2015).

Finally, ours is a static game, while many applications are dynamic by nature.
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6 Appendix A

6.1 Definition of equilibrium and assumptions

In this section we identify sufficient conditions to have well-defined equilibrium payoffs Fi given a

scoring function f .

Recall that a pure strategy for player r is a map σr(tr), that maps a player’s type to his response

choice ar. The profile of all respondents’ pure strategies is denoted σ(t), with entries σr(tr), and the

profile excluding player r is denoted σ−r(t−r). The score for player r is given by f(σr(tr), σ−r(t−r)),

where f is a scoring function that takes the responses to the set of real numbers. Function f(·, ·) is of

the same functional form for all N and Q.

We assume that the players are risk-neutral and maximize the expected score value.

Definition 6.1

- (i) Given a prior matrix Q, we say that a scoring function f allows a Strict (Bayesian) Nash

Equilibrium (SNE) if there exists a strategy σ = σQ such that for all r, tr, t−r, ts, we have:

For an arbitrary response choice ar 6= σr(tr), we have, with expectation taken with respect to the

(conditional) distribution of Ω,

E[f(ar;σ−r(t−r)) | T r = tr] < E[f(σr(tr), σ−r(t−r)) | T r = tr]

The strategy profile σ is called an SNE. If the equilibrium is also separating, that is, if, in addition

to the above, we also have σr(tr) = σs(ts)⇒ tr = ts, we call σ a Strictly Separating (Bayesian) Nash

Equilibrium (SSNE).

- (ii) We say that a scoring function f is an Universal Separating Scoring Rule (USSR), if for all

Q it allows at least one budget-balanced SNE σQ, if every budget-balanced SNE is an SSNE, and if any

two budget-balanced SSNE’s σQ and σ′Q result in the same scores: f(σQ) = f(σ′Q).

Remark 6.1 Condition (ii) essentially assumes uniqueness of the budget-balanced SSNE σQ. We have

shown that the budget-balanced logarithmic scoring can be implemented by an USSR (that is, by BTS)

for which the above uniqueness holds. We also note that when there is more than one SSNE, our

results still hold for those SSNE’s that satisfy the assumptions we impose.
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Note that by the above definition, an USSR score of a certain type is the same in any budget-

balanced SNE. We use notation Fi for such equilibrium score in state i, and the same notation for non

budget-balanced versions of the equilibrium payoffs. In this paper, we always impose the following

assumption on the equilibrium payoffs:

Assumption 6.1

- Posterior Locality. (∀k ∈ {1, ...,M}) and (∀i ∈ {1, ..., N}), and ∀j 6= k, if T r = k, and Ω = i,

the equilibrium score of player r has the representation, with Fi : (0, 1)2M → R,

f(σrQ(k), σ−rQ (T−r)) = Fi(z
i
k, z

i
−k; sk, s−k) ,

where, for example, zi−k = (zi1, ..., z
i
k−1, z

i
k+1, ..., z

i
M).
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7 Appendix B

Proof of Proposition 2.1:

A pure strategy for player r is a map σr(tr), that maps a player’s type to his response choice

ar. The profile of all respondents’ pure strategies is denoted σ(t), with entries σr(tr), and the profile

excluding player r is denoted σ−r(t−r). The score for player r is given by f(σr(tr), σ−r(t−r)). Let us

denote by σ the equilibrium strategy profile of all the respondents, and define ρ to be the strategy

profile that is identical to σ, except that a specific player r of type k 6= j plays the strategy σr(j)

corresponding to type j. Let s denote a player of type j. Then, we have that the payoff to the mimicry

strategy, when r plays j is

f(ρr(k), ρ−r(T−r)) = f(ρs(j), ρ−s(T−s))

= f(σs(j), ρ−s(T−s))

= f(σs(j), σ−s(T−s))

because σ−s(T−s) and ρ−s(T−s) differ only in r’s response, and this does not matter with infinitely

many players. This is because every type will be represented by infinitely many players, and f is

symmetric in their responses. Hence, equilibrium payoffs corresponding to σ determine the payoff of

a mimicry deviation by player r.

Proof of Proposition 2.2:

For notational simplicity, we consider the case M = 2 with two types only, type 1 and type 2, and

with N = 3, the states of nature 1 being (2, 0) (two of type 1, zero of type 2), state 2 being (1, 1), and

state 3 being (0, 2). We consider a Z matrix of the form p 1− p 0

0 q 1− q


where 0 < p, q < 1 (notice that the rows correspond to types and columns to states of nature).

With finitely many players, any PLEPS functions Fi would depend on the posteriors based on the

state of nature i corresponding to the declared types. For example, if the true state is (2, 0), but one

respondent declares herself as type 2, then the payoffs correspond to state (1, 1).
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The expected score of the truthful response for type 1 would be

pF1(p, p) + (1− p)F2(1− p, q)

If one respondent lies and declares his type 1 as type 2, then the expected value would be

pF2(q, 1− p) + (1− p)F3(1− q, 1− q)

Therefore, the separating inequality is

pF1(p, p) + (1− p)F2(1− p, q) > pF2(q, 1− p) + (1− p)F3(1− q, 1− q)

This becomes

p[F1(p, p)− F2(q, 1− p)] + (1− p)[F2(1− p, q)− F3(1− q, 1− q)] > 0

Similarly, when one type 2 respondent lies we get the following:

qF2(q, 1− p) + (1− q)F3(1− q, 1− q) > qF1(p, p) + (1− q)F3(1− p, q)

This becomes

q[F1(q, 1− p)− F1(p, p)] + (1− q)[F3(1− q, 1− q)− F2(1− p, q)] > 0

Suppose now that p 6= q. Without loss of generality we consider the case p > q, and apply Lemma 7.1

in Appendix on the inequalities above. We obtain

F1(p, p)− F2(q, 1− p) > 0

F2(1− p, q)− F3(1− q, 1− q) < 0

Assuming budget balance holds, we must have F1(p, p) = 0 = F3(1− q, 1− q) and so

(1− p)F2(1− p, q) + qF2(q, 1− p) = 0

Note that F1(p, p) = 0 leads to F2(q, 1 − p) < 0, while F3(1 − q, 1 − q) = 0 leads to F2(1 − p, q) < 0.

This is in clear contradiction with the last equality.
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Proof of Lemma 3.1: By the standard result on optimization under constraints (in our case the

constraint being
∑

i q
i = 1), there exists a Lagrange multiplier function λ(~p, ~r, sp, sq, sr), where, for

example, ~p = (p1, . . . , pN), such that

pi[∂pFi(p
i, pi, ri, sp, sq, sr)− ∂qFi(pi, pi, ri, sp, sq, sr)] = λ(~p, ~r, sp, sq, sr) (7.1)

Fix an arbitrary value of i and pi, ri. Since N > 2, we can set pj = x, rj = y, for a fixed, but arbitrary

j 6= i, for any 0 < x < 1 − pi, 0 < y < 1 − ri. By the above equality we have that λ(~p, ~r, S) is a

function λ(pi, ri, S) of pi, ri, S, only, and we have

x[∂pFj(x, x, y, S)− ∂qFj(x, x, y, S)] = λ(pi, ri, S),

for all 0 < x < 1 − pi, 0 < y < 1 − ri. Since we can choose pi, ri arbitrarily small, we have then, for

fixed S, that the left-hand side is constant across all values of x, y in (0, 1), and because i is arbitrary

we get that λ(S) does not depend on any of the values pi, ri, i = 1, . . . , N .

Proof of Proposition 3.1:

We suppress dependence on i in this proof, and on sp, sq, sr. We want to show that

F (p, q, r) = G(p) +H(p, q, r)

where H is symmetric in all the pairs (p, sp), (q, sq), (r
j, srj).

For p0 ∈ (0, 1) denote

p̄ = p− p0, q̄ = q − p0, r̄ = r − p0

From the smoothness and the symmetry property of F , we can write, for some functions a, b, c, d, e of

the type probabilities,

F (p, q, r) =
∞∑
n=0

anp̄
n+

∞∑
n=1

(bqnq̄
n+brnr̄

n)+
∞∑

m,n=1

p̄m(cqm,nq̄
n+crm,nr̄

n)+
∞∑

m,n=1

dm,nq̄
mr̄n+

∞∑
l,m,n=1

el,m,np̄
lq̄mr̄n

where, by the symmetry property,

bqn(sp, sq, sr) = brn(sp, sr, sq) , cqm,n(sp, sq, sr) = crm,n(sp, sr, sq)

dm,n(sp, sq, sr) = dn,m(sp, sr, sq) , el,m,n(sp, sq, sr) = el,n,m(sp, sr, sq)
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Note that it is sufficient to show that

crm,n = dm,n , el,m,n = em,l,n

because then we can write

F (p, q, r) =
∞∑
n=0

[an − bqn]p̄n +H(p, q, r)

where H is symmetric in all the pairs (pi, sp), (q
i, sq), (r

i
j, srj).

Let us consider the consequences of strict separation inequality (3.7), using Lemma 3.1. We have

∂qF (p, p, r)− ∂pF (p, p, r)

=
∞∑
n=1

nbqnp̄
n−1 +

∞∑
m,n=1

cqm,nnp̄
m+n−1 +

∞∑
m,n=1

dm,nmp̄
m−1r̄n +

∞∑
l,m,n=1

el,m,nmp̄
l+m−1r̄n

−
∞∑
n=0

nanp̄
n−1 −

∞∑
m,n=1

mp̄m−1(cqm,np̄
n + crm,nr̄

n)−
∞∑

l,m,n=1

el,m,nlp̄
l+m−1r̄n

We can then write

p∂qF (p, p, r)− p∂pF (p, p, r)

=
∞∑
n=1

nbqnp̄
n +

∞∑
m,n=1

cqm,nnp̄
m+n +

∞∑
m,n=1

dm,nmp̄
mr̄n +

∞∑
l,m,n=1

el,m,nmp̄
l+mr̄n

−
∞∑
n=0

nanp̄
n −

∞∑
m,n=1

mp̄m(cqm,np̄
n + crm,nr̄

n)−
∞∑

l,m,n=1

el,m,nlp̄
l+mr̄n

+
∞∑
n=1

nbqnp
0p̄n−1 +

∞∑
m,n=1

ncqm,np
0p̄m+n−1 +

∞∑
m,n=1

dm,nmp
0p̄m−1r̄n +

∞∑
l,m,n=1

el,m,nmp
0p̄l+m−1r̄n

−
∞∑
n=0

nanp
0p̄n−1 −

∞∑
m,n=1

mp0p̄m−1(cqm,np̄
n + crm,nr̄

n)−
∞∑

l,m,n=1

el,m,nlp
0p̄l+m−1r̄n

By Lemma 3.1, to have a PLEPS this has to be equal to (−λ) for all p, r, which is possible only if

- from r̄n terms:

cr1,n = d1,n (7.2)

- from p̄r̄n terms:

0 = cr1,n − d1,n + cr2,n − d2,n (7.3)

- from p̄2r̄n terms:

0 = 2(d2,n − cr2,n) + 3p0(d3,n − cr3,n) + p0(e1,2,n − e2,1,n) (7.4)
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- from p̄3r̄n terms:

0 = 3(d3,n − cr3,n) + (e1,2,n − e2,1,n) + 4p0(d4,n − cr4,n) + 2p0(e1,3,n − e3,1,n) (7.5)

And so on.

So, it is sufficient to show el,m,n = em,l,n This follows directly from Assumption 3.1, because then

the third mixed derivative of the difference F (p, q, r)−F (q, p, r) in scores is zero for all p, q, r, that is,

0 =
∞∑

l,m,n=1

lmn el,m,np̄
l−1q̄m−1r̄n−1 −

∞∑
l,m,n=1

lmn el,m,nq̄
l−1p̄m−1r̄n−1

This completes the proof.

Then following lemma is the key ingredient in proving Theorem 3.2. It is a slight extension of

Lemma A.1 in Schervish (1989).

Lemma 7.1 (Schervish 1989). Let 0 < a ≤ 1, p, q ∈ (0, a), and p > q. If A,B are real numbers

such that

pA+ (a− p)B > 0

q(−A) + (a− q)(−B) > 0

then A > 0 and B < 0.

Proof:

Notice that A 6= 0. If not, then the two above inequalities become (a−p)B > 0 and (a−q)(−B) > 0,

a contradiction. In order to prove the lemma we only need to prove that A > 0. Suppose to the contrary

that A < 0. Then B > 0. From (a − p)B > −pA it follows that B > − p
a−pA > 0. We then get

0 < q(−A) + (a − q)(−B) < q(−A) + a−q
a−ppA = Aa p−q

a−p < 0, which is impossible. This contradiction

proves A > 0.
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Proof of Theorem 3.2:

We suppress the dependence on sk’s in our notation. This is justified because fixing sk’s does not

restrict the choice of any two rows of the Z-matrix, because we can always define Q by qki = ziksk.

We consider three cases separately according to the values of M and N .

Case 1: Assume M = 2, N = 2. The matrix Z can be written then as

z1
1 z2

1

z1
2 z2

2

. If we denote

p := z1
1 , q := z1

2 , then the matrix Z becomes Z =

p 1− p

q 1− q

. Suppose p > q (which is equivalent to

1− q > 1− p). The IC property (2.1) of Fi implies

pF1(p, q) + (1− p)F2(1− p, 1− q) > pF1(q, p) + (1− p)F2(1− q, 1− p) and

qF1(q, p) + (1− q)F2(1− q, 1− p) > qF1(p, q) + (1− q)F2(1− p, 1− q).

This leads to

p[F1(p, q)− F1(q, p)] + (1− p)[F2(1− p, 1− q)− F2(1− q, 1− p)] > 0 and

q[F1(q, p)− F1(p, q)] + (1− q)[F2(1− q, 1− p)− F2(1− p, 1− q)] > 0.

We set a = 1, A = F1(p, q)−F1(q, p) and B = F2(1− p, 1− q)−F2(1− q, 1− p), and apply Lemma

7.1 in Appendix to the above equations. We obtain that F1(p, q) > F1(q, p) and F2(1 − p, 1 − q) >

F2(1− q, 1− p), which proves the theorem in this case.

Case 2: Assume M ≥ 3, N = 2. The matrix Z can be written as


z1

1 z2
1

z1
2 z2

2

...
...

z1
M z2

M

.

The matrix entries satisfy z2
k = 1 − z1

k, k = 1, ...,M . Take any k, j ∈ {1, ...,M} such that z1
k > z1

j

(which is equivalent to z2
j > z2

k). Using the notation p := z1
k, q := z1

j , and the notation zi−j,k for the

(N − 2)-tuple which consists of {zi1, ..., ziM} \ {zij, zik}, from (2.1) we obtain that the following two

equations hold:

pF1(p, q, z1
−(j,k)) + (1− p)F2(1− p, 1− q, z2

−(j,k)) > pF1(q, p, z1
−(j,k)) + (1− p)F2(1− q, 1− p, z2

−(j,k))

qF1(q, p, z1
−(j,k)) + (1− q)F2(1− q, 1− p, z2

−(j,k)) > qF1(p, q, z1
−(j,k)) + (1− q)F2(1− p, 1− q, z2

−(j,k)).

Hence, if we define A and B in the following way,

A = F1(p, q, z1
−(j,k))− F1(q, p, z1

−(j,k)) = F1(z1
k, z

1
−k)− F1(z1

j , z
1
−j)
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and

B = F2(1− p, 1− q, z2
−(j,k))− F2(1− q, 1− p, z2

−(j,k)) = F2(z2
k, z

2
−k)− F2(z2

j , z
2
−j)

we are again within the framework of Lemma 7.1, and we conclude that A > 0 and B < 0, which

proves (3.9) for both i = 1 and i = 2.

Case 3: Assume M ≥ 2, N ≥ 3 and denote Z =


z1

1 z2
1 . . . zN1

z1
2 z2

2 . . . zN2
...

...
...

...

z1
M z2

M . . . zNM

. We consider the i-th

column in the matrix Z. We can pair it up with any other column, so, without loss of generality

we consider i 6= 1 and we focus on the first and the i-th column,


z1

1

z1
2

...

z1
M

 and


zi1

zi2
...

ziM

 . We take any

rows j, k ∈ {1, ...,M} where j 6= k. Since the only requirement for the matrix Z is that its rows are

non-degenerate probability distributions, and since the values of Fi will depend only on the quantities

in the i-th column, then in order to complete our proof we need to prove only that for every p := zik

and q := zij, with 1 > p > q > 0, for any choice of zi−(k,j) ∈ (0, 1)M−2 (if M = 2 this last requirement

is unnecessary), and for any choice of corresponding Si, we have

Fi(p, q, z
i
−(k,j)) > Fi(q, p, z

i
−(k,j)) (7.6)

Observe that other entries of the matrix Z (in other than the i-th column) do not enter into (7.6),

and therefore can be adjusted accordingly, as long as we have a Z-matrix.

Because we can always choose Q by setting qki = ziksk, the following matrix can be taken as a

Z−matrix with unchanged original type probabilities sk’s: Take 0 < ε < 1 and a := 1− ε ; we adjust

the matrix Z̃ so that
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Z̃t
l :=



ztl , if l ∈ {1, ...,M} \ {j, k}

p, if l = k, t = i

q, if l = j, t = i

a− p, if l = k, t = 1

a− q, if l = j, t = 1

ε
N−2

, otherwise

where p, q are arbitrary values in (0, a) with p > q. Then for every choice of ε and p and q, we have

that Z̃ is a Z-matrix which differs from Z only in the j-th and k-th row and these rows are

a− p ε
N−2

. . . ε
N−2

p ε
N−2

. . . ε
N−2

a− q ε
N−2

. . . ε
N−2

q ε
N−2

. . . ε
N−2


.

The IC property (2.1) applied now to j and k yields

N∑
t=1

z̃tkFt(z̃
t
k, z̃

t
−k) >

N∑
t=1

z̃tkFt(z̃
t
j, z̃

t
−j)

N∑
t=1

z̃tjFt(z̃
t
j, z̃

t
−j) >

N∑
t=1

z̃tjFt(z̃
t
k, z̃

t
−k)

Observe that for t ∈ {1, .., N}\{1, i} we have z̃tj = z̃tk = ε
N−2

. Hence on both sides of the above inequal-

ities we have terms ε
N−2

Ft(
ε

N−2
, ε
N−2

, zt−(j,k)) and they cancel each other. Therefore, the inequalities

take the following form:

(a− p)F1(a− p, a− q, z1
−(j,k)) + pFi(p, q, z

i
−(j,k)) > (a− p)F1(a− q, a− p, z1

−(j,k)) + pFi(q, p, z
i
−(j,k))

(a− q)F1(a− q, a− p, z1
−(j,k)) + qFi(q, p, z

i
−(j,k)) > (a− q)F1(a− p, a− q, z1

−(j,k)) + qFi(p, q, z
i
−(j,k))

If we set A and B as A = Fi(p, q, z
i
−(j,k)) − Fi(q, p, zi−(j,k)) and B = F1(a − p, a − q, z1

−(j,k)) − F1(a −

q, a − p, z1
−(j,k)), we are again within the framework of Lemma 7.1. Therefore A > 0, which proves

inequality (7.6) for a > p > q > 0. By letting ε→ 0, we obtain (7.6) for 1 > p > q > 0.
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Proof of Theorem 4.1:

Let us denote

pij = Pr(Xr
i = 1, Xs

j = 1)

where we use the fact that, by exchangeability, the right-hand side does not depend on the choice of

r 6= s. Thus, we also have

Pr(Xr = xr|Xs = xs) =
pij∑M
k=1 pkj

(7.7)

We will need the following three properties.

- Property I: yrj =
∑M

i=1 x
r
i

pij∑M
k=1 pki

- Property II: logPr(Xs = xs | Xr = xr) =
∑M

j=1 x
s
j log yrj , where conditioning indicates condition-

ing on the truthful response, hence on the signal.

- Property III: logPr(Xr = xr|X̄ = x̄) =
∑M

k=1 x
r
k log x̄k.

Property I is assumed because we assume a Bayesian game: the respondents compute conditional

probabilities in a Bayesian fashion. Property II is a consequence of Property I and equation (7.7). For

Property III, let ` be such that xr` = 1. De Finetti’s theorem implies

Pr(Xr = xr|X̄ = x̄) = x̄` =
M∑
k=1

xrkx̄k .

The sum on the right always has only one term different from zero. Therefore, taking the log implies

Property III.

Next, let xs be any values such that

x̄k = lim
n

1

n

∑
s

xsk

Note that we can use exchangeability to reorder the respondents so that r = 1 and s = 2, ..., n+ 1.

For such choice of r and s we have logPr(Xr = xr|Xs = xs) =
∑M

j=1 x
r
j log(ysj ). We may always omit

those s such that Pr(Xs = xs) = 0. Thus, we actually have only finitely many choices for an M -tuple

xs such that 0 < Pr(Xs = xs) < 1, and there is a lower bound A and an upper bound B such that

0 < A ≤ Pr(Xs = xs) ≤ B < 1. Then it follows that A = n
√
An ≤ n

√∏n
s=1 Pr(X

s = xs) ≤ n
√
Bn = B.
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The log function is continuous, so log(lim(f)) = lim(log(f)) as long as f and lim(f) are both finite

and strictly positive. We conclude that the limit limn→∞
∏n

s=1 Pr(X
s = xs) exists, that it is not zero,

and that we can take the log outside or inside the limit.

Next, using the above conclusion, from Properties I-III we get

M∑
k=1

x̄k log yrk = lim
n

1

n

∑
s

logPr(Xs = xs|Xr = xr)

and
M∑
k=1

xrk log ȳk = lim
n

1

n

∑
s

logPr(Xr = xr|Xs = xs)

and so, using Bayes rule,

BTSr =
M∑
k=1

xrk log
x̄k
ȳk

+
M∑
k=1

x̄k log yrk

= logPr(Xr = xr|X̄ = x̄) + lim
n

1

n

∑
s

logPr(Xs = xs|Xr = xr)− lim
n

1

n

∑
s

logPr(Xr = xr|Xs = xs)

= log

(
Pr(Xr = xr|X̄ = x̄) lim

n
Πn
s=1

Pr1/n(Xs = xs|Xr = xr)

Pr1/n(Xr = xr|Xs = xs)

)
= log

(
Pr(Xr = xr|X̄ = x̄)

limn Πn
s=1Pr

1/n(Xs = xs)

Pr(Xr = xr)

)
= logPr(X̄ = x̄|Xr = xr)− logPr(X̄ = x̄) + lim

n

1

n

∑
s

logPr(Xs = xs)

Since the last two terms do not depend on r, and
∑

r BTS
r = 0, we get equation (4.1). Next, for fixed

n and x̄, denote by nj the number of respondents who have type j, so that∑
j

nj = n

Then we can write equation (4.1) as

BTSr = logPr(X̄ = x̄|Xr = xr)

− lim
n→∞

1

n

[ n1∑
s=1

logPr(X̄ = x̄|Xr = x1) + . . .+

nM∑
s=nM−1+1

logPr(X̄ = x̄|Xr = xM)

]

= logPr(X̄ = x̄|Xr = xr)− lim
n→∞

[
n1

n
logPr(X̄ = x̄|Xr = x1) + . . .+

nm
n

logPr(X̄ = x̄|Xr = xM)

]
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Since

lim
n→∞

nj
n

= Pr(T r = j | X̄ = x̄)

we prove equation (4.2).
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